linux/drivers/spi/spi-sn-f-ospi.c

691 lines
17 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Socionext SPI flash controller F_OSPI driver
* Copyright (C) 2021 Socionext Inc.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/* Registers */
#define OSPI_PROT_CTL_INDIR 0x00
#define OSPI_PROT_MODE_DATA_MASK GENMASK(31, 30)
#define OSPI_PROT_MODE_ALT_MASK GENMASK(29, 28)
#define OSPI_PROT_MODE_ADDR_MASK GENMASK(27, 26)
#define OSPI_PROT_MODE_CODE_MASK GENMASK(25, 24)
#define OSPI_PROT_MODE_SINGLE 0
#define OSPI_PROT_MODE_DUAL 1
#define OSPI_PROT_MODE_QUAD 2
#define OSPI_PROT_MODE_OCTAL 3
#define OSPI_PROT_DATA_RATE_DATA BIT(23)
#define OSPI_PROT_DATA_RATE_ALT BIT(22)
#define OSPI_PROT_DATA_RATE_ADDR BIT(21)
#define OSPI_PROT_DATA_RATE_CODE BIT(20)
#define OSPI_PROT_SDR 0
#define OSPI_PROT_DDR 1
#define OSPI_PROT_BIT_POS_DATA BIT(19)
#define OSPI_PROT_BIT_POS_ALT BIT(18)
#define OSPI_PROT_BIT_POS_ADDR BIT(17)
#define OSPI_PROT_BIT_POS_CODE BIT(16)
#define OSPI_PROT_SAMP_EDGE BIT(12)
#define OSPI_PROT_DATA_UNIT_MASK GENMASK(11, 10)
#define OSPI_PROT_DATA_UNIT_1B 0
#define OSPI_PROT_DATA_UNIT_2B 1
#define OSPI_PROT_DATA_UNIT_4B 3
#define OSPI_PROT_TRANS_DIR_WRITE BIT(9)
#define OSPI_PROT_DATA_EN BIT(8)
#define OSPI_PROT_ALT_SIZE_MASK GENMASK(7, 5)
#define OSPI_PROT_ADDR_SIZE_MASK GENMASK(4, 2)
#define OSPI_PROT_CODE_SIZE_MASK GENMASK(1, 0)
#define OSPI_CLK_CTL 0x10
#define OSPI_CLK_CTL_BOOT_INT_CLK_EN BIT(16)
#define OSPI_CLK_CTL_PHA BIT(12)
#define OSPI_CLK_CTL_PHA_180 0
#define OSPI_CLK_CTL_PHA_90 1
#define OSPI_CLK_CTL_DIV GENMASK(9, 8)
#define OSPI_CLK_CTL_DIV_1 0
#define OSPI_CLK_CTL_DIV_2 1
#define OSPI_CLK_CTL_DIV_4 2
#define OSPI_CLK_CTL_DIV_8 3
#define OSPI_CLK_CTL_INT_CLK_EN BIT(0)
#define OSPI_CS_CTL1 0x14
#define OSPI_CS_CTL2 0x18
#define OSPI_SSEL 0x20
#define OSPI_CMD_IDX_INDIR 0x40
#define OSPI_ADDR 0x50
#define OSPI_ALT_INDIR 0x60
#define OSPI_DMY_INDIR 0x70
#define OSPI_DAT 0x80
#define OSPI_DAT_SWP_INDIR 0x90
#define OSPI_DAT_SIZE_INDIR 0xA0
#define OSPI_DAT_SIZE_EN BIT(15)
#define OSPI_DAT_SIZE_MASK GENMASK(10, 0)
#define OSPI_DAT_SIZE_MAX (OSPI_DAT_SIZE_MASK + 1)
#define OSPI_TRANS_CTL 0xC0
#define OSPI_TRANS_CTL_STOP_REQ BIT(1) /* RW1AC */
#define OSPI_TRANS_CTL_START_REQ BIT(0) /* RW1AC */
#define OSPI_ACC_MODE 0xC4
#define OSPI_ACC_MODE_BOOT_DISABLE BIT(0)
#define OSPI_SWRST 0xD0
#define OSPI_SWRST_INDIR_WRITE_FIFO BIT(9) /* RW1AC */
#define OSPI_SWRST_INDIR_READ_FIFO BIT(8) /* RW1AC */
#define OSPI_STAT 0xE0
#define OSPI_STAT_IS_AXI_WRITING BIT(10)
#define OSPI_STAT_IS_AXI_READING BIT(9)
#define OSPI_STAT_IS_SPI_INT_CLK_STOP BIT(4)
#define OSPI_STAT_IS_SPI_IDLE BIT(3)
#define OSPI_IRQ 0xF0
#define OSPI_IRQ_CS_DEASSERT BIT(8)
#define OSPI_IRQ_WRITE_BUF_READY BIT(2)
#define OSPI_IRQ_READ_BUF_READY BIT(1)
#define OSPI_IRQ_CS_TRANS_COMP BIT(0)
#define OSPI_IRQ_ALL \
(OSPI_IRQ_CS_DEASSERT | OSPI_IRQ_WRITE_BUF_READY \
| OSPI_IRQ_READ_BUF_READY | OSPI_IRQ_CS_TRANS_COMP)
#define OSPI_IRQ_STAT_EN 0xF4
#define OSPI_IRQ_SIG_EN 0xF8
/* Parameters */
#define OSPI_NUM_CS 4
#define OSPI_DUMMY_CYCLE_MAX 255
#define OSPI_WAIT_MAX_MSEC 100
struct f_ospi {
void __iomem *base;
struct device *dev;
struct clk *clk;
struct mutex mlock;
};
static u32 f_ospi_get_dummy_cycle(const struct spi_mem_op *op)
{
return (op->dummy.nbytes * 8) / op->dummy.buswidth;
}
static void f_ospi_clear_irq(struct f_ospi *ospi)
{
writel(OSPI_IRQ_CS_DEASSERT | OSPI_IRQ_CS_TRANS_COMP,
ospi->base + OSPI_IRQ);
}
static void f_ospi_enable_irq_status(struct f_ospi *ospi, u32 irq_bits)
{
u32 val;
val = readl(ospi->base + OSPI_IRQ_STAT_EN);
val |= irq_bits;
writel(val, ospi->base + OSPI_IRQ_STAT_EN);
}
static void f_ospi_disable_irq_status(struct f_ospi *ospi, u32 irq_bits)
{
u32 val;
val = readl(ospi->base + OSPI_IRQ_STAT_EN);
val &= ~irq_bits;
writel(val, ospi->base + OSPI_IRQ_STAT_EN);
}
static void f_ospi_disable_irq_output(struct f_ospi *ospi, u32 irq_bits)
{
u32 val;
val = readl(ospi->base + OSPI_IRQ_SIG_EN);
val &= ~irq_bits;
writel(val, ospi->base + OSPI_IRQ_SIG_EN);
}
static int f_ospi_prepare_config(struct f_ospi *ospi)
{
u32 val, stat0, stat1;
/* G4: Disable internal clock */
val = readl(ospi->base + OSPI_CLK_CTL);
val &= ~(OSPI_CLK_CTL_BOOT_INT_CLK_EN | OSPI_CLK_CTL_INT_CLK_EN);
writel(val, ospi->base + OSPI_CLK_CTL);
/* G5: Wait for stop */
stat0 = OSPI_STAT_IS_AXI_WRITING | OSPI_STAT_IS_AXI_READING;
stat1 = OSPI_STAT_IS_SPI_IDLE | OSPI_STAT_IS_SPI_INT_CLK_STOP;
return readl_poll_timeout(ospi->base + OSPI_STAT,
val, (val & (stat0 | stat1)) == stat1,
0, OSPI_WAIT_MAX_MSEC);
}
static int f_ospi_unprepare_config(struct f_ospi *ospi)
{
u32 val;
/* G11: Enable internal clock */
val = readl(ospi->base + OSPI_CLK_CTL);
val |= OSPI_CLK_CTL_BOOT_INT_CLK_EN | OSPI_CLK_CTL_INT_CLK_EN;
writel(val, ospi->base + OSPI_CLK_CTL);
/* G12: Wait for clock to start */
return readl_poll_timeout(ospi->base + OSPI_STAT,
val, !(val & OSPI_STAT_IS_SPI_INT_CLK_STOP),
0, OSPI_WAIT_MAX_MSEC);
}
static void f_ospi_config_clk(struct f_ospi *ospi, u32 device_hz)
{
long rate_hz = clk_get_rate(ospi->clk);
u32 div = DIV_ROUND_UP(rate_hz, device_hz);
u32 div_reg;
u32 val;
if (rate_hz < device_hz) {
dev_warn(ospi->dev, "Device frequency too large: %d\n",
device_hz);
div_reg = OSPI_CLK_CTL_DIV_1;
} else {
if (div == 1) {
div_reg = OSPI_CLK_CTL_DIV_1;
} else if (div == 2) {
div_reg = OSPI_CLK_CTL_DIV_2;
} else if (div <= 4) {
div_reg = OSPI_CLK_CTL_DIV_4;
} else if (div <= 8) {
div_reg = OSPI_CLK_CTL_DIV_8;
} else {
dev_warn(ospi->dev, "Device frequency too small: %d\n",
device_hz);
div_reg = OSPI_CLK_CTL_DIV_8;
}
}
/*
* G7: Set clock mode
* clock phase is fixed at 180 degrees and configure edge direction
* instead.
*/
val = readl(ospi->base + OSPI_CLK_CTL);
val &= ~(OSPI_CLK_CTL_PHA | OSPI_CLK_CTL_DIV);
val |= FIELD_PREP(OSPI_CLK_CTL_PHA, OSPI_CLK_CTL_PHA_180)
| FIELD_PREP(OSPI_CLK_CTL_DIV, div_reg);
writel(val, ospi->base + OSPI_CLK_CTL);
}
static void f_ospi_config_dll(struct f_ospi *ospi)
{
/* G8: Configure DLL, nothing */
}
static u8 f_ospi_get_mode(struct f_ospi *ospi, int width, int data_size)
{
u8 mode = OSPI_PROT_MODE_SINGLE;
switch (width) {
case 1:
mode = OSPI_PROT_MODE_SINGLE;
break;
case 2:
mode = OSPI_PROT_MODE_DUAL;
break;
case 4:
mode = OSPI_PROT_MODE_QUAD;
break;
case 8:
mode = OSPI_PROT_MODE_OCTAL;
break;
default:
if (data_size)
dev_err(ospi->dev, "Invalid buswidth: %d\n", width);
break;
}
return mode;
}
static void f_ospi_config_indir_protocol(struct f_ospi *ospi,
struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
u8 mode;
u32 prot = 0, val;
int unit;
/* Set one chip select */
writel(BIT(spi_get_chipselect(spi, 0)), ospi->base + OSPI_SSEL);
mode = f_ospi_get_mode(ospi, op->cmd.buswidth, 1);
prot |= FIELD_PREP(OSPI_PROT_MODE_CODE_MASK, mode);
mode = f_ospi_get_mode(ospi, op->addr.buswidth, op->addr.nbytes);
prot |= FIELD_PREP(OSPI_PROT_MODE_ADDR_MASK, mode);
mode = f_ospi_get_mode(ospi, op->data.buswidth, op->data.nbytes);
prot |= FIELD_PREP(OSPI_PROT_MODE_DATA_MASK, mode);
prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_DATA, OSPI_PROT_SDR);
prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_ALT, OSPI_PROT_SDR);
prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_ADDR, OSPI_PROT_SDR);
prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_CODE, OSPI_PROT_SDR);
if (spi->mode & SPI_LSB_FIRST)
prot |= OSPI_PROT_BIT_POS_DATA | OSPI_PROT_BIT_POS_ALT
| OSPI_PROT_BIT_POS_ADDR | OSPI_PROT_BIT_POS_CODE;
if (spi->mode & SPI_CPHA)
prot |= OSPI_PROT_SAMP_EDGE;
/* Examine nbytes % 4 */
switch (op->data.nbytes & 0x3) {
case 0:
unit = OSPI_PROT_DATA_UNIT_4B;
val = 0;
break;
case 2:
unit = OSPI_PROT_DATA_UNIT_2B;
val = OSPI_DAT_SIZE_EN | (op->data.nbytes - 1);
break;
default:
unit = OSPI_PROT_DATA_UNIT_1B;
val = OSPI_DAT_SIZE_EN | (op->data.nbytes - 1);
break;
}
prot |= FIELD_PREP(OSPI_PROT_DATA_UNIT_MASK, unit);
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
prot |= OSPI_PROT_DATA_EN;
break;
case SPI_MEM_DATA_OUT:
prot |= OSPI_PROT_TRANS_DIR_WRITE | OSPI_PROT_DATA_EN;
break;
case SPI_MEM_NO_DATA:
prot |= OSPI_PROT_TRANS_DIR_WRITE;
break;
default:
dev_warn(ospi->dev, "Unsupported direction");
break;
}
prot |= FIELD_PREP(OSPI_PROT_ADDR_SIZE_MASK, op->addr.nbytes);
prot |= FIELD_PREP(OSPI_PROT_CODE_SIZE_MASK, 1); /* 1byte */
writel(prot, ospi->base + OSPI_PROT_CTL_INDIR);
writel(val, ospi->base + OSPI_DAT_SIZE_INDIR);
}
static int f_ospi_indir_prepare_op(struct f_ospi *ospi, struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
u32 irq_stat_en;
int ret;
ret = f_ospi_prepare_config(ospi);
if (ret)
return ret;
f_ospi_config_clk(ospi, spi->max_speed_hz);
f_ospi_config_indir_protocol(ospi, mem, op);
writel(f_ospi_get_dummy_cycle(op), ospi->base + OSPI_DMY_INDIR);
writel(op->addr.val, ospi->base + OSPI_ADDR);
writel(op->cmd.opcode, ospi->base + OSPI_CMD_IDX_INDIR);
f_ospi_clear_irq(ospi);
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
irq_stat_en = OSPI_IRQ_READ_BUF_READY | OSPI_IRQ_CS_TRANS_COMP;
break;
case SPI_MEM_DATA_OUT:
irq_stat_en = OSPI_IRQ_WRITE_BUF_READY | OSPI_IRQ_CS_TRANS_COMP;
break;
case SPI_MEM_NO_DATA:
irq_stat_en = OSPI_IRQ_CS_TRANS_COMP;
break;
default:
dev_warn(ospi->dev, "Unsupported direction");
irq_stat_en = 0;
}
f_ospi_disable_irq_status(ospi, ~irq_stat_en);
f_ospi_enable_irq_status(ospi, irq_stat_en);
return f_ospi_unprepare_config(ospi);
}
static void f_ospi_indir_start_xfer(struct f_ospi *ospi)
{
/* Write only 1, auto cleared */
writel(OSPI_TRANS_CTL_START_REQ, ospi->base + OSPI_TRANS_CTL);
}
static void f_ospi_indir_stop_xfer(struct f_ospi *ospi)
{
/* Write only 1, auto cleared */
writel(OSPI_TRANS_CTL_STOP_REQ, ospi->base + OSPI_TRANS_CTL);
}
static int f_ospi_indir_wait_xfer_complete(struct f_ospi *ospi)
{
u32 val;
return readl_poll_timeout(ospi->base + OSPI_IRQ, val,
val & OSPI_IRQ_CS_TRANS_COMP,
0, OSPI_WAIT_MAX_MSEC);
}
static int f_ospi_indir_read(struct f_ospi *ospi, struct spi_mem *mem,
const struct spi_mem_op *op)
{
u8 *buf = op->data.buf.in;
u32 val;
int i, ret;
mutex_lock(&ospi->mlock);
/* E1-2: Prepare transfer operation */
ret = f_ospi_indir_prepare_op(ospi, mem, op);
if (ret)
goto out;
f_ospi_indir_start_xfer(ospi);
/* E3-4: Wait for ready and read data */
for (i = 0; i < op->data.nbytes; i++) {
ret = readl_poll_timeout(ospi->base + OSPI_IRQ, val,
val & OSPI_IRQ_READ_BUF_READY,
0, OSPI_WAIT_MAX_MSEC);
if (ret)
goto out;
buf[i] = readl(ospi->base + OSPI_DAT) & 0xFF;
}
/* E5-6: Stop transfer if data size is nothing */
if (!(readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN))
f_ospi_indir_stop_xfer(ospi);
/* E7-8: Wait for completion and clear */
ret = f_ospi_indir_wait_xfer_complete(ospi);
if (ret)
goto out;
writel(OSPI_IRQ_CS_TRANS_COMP, ospi->base + OSPI_IRQ);
/* E9: Do nothing if data size is valid */
if (readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN)
goto out;
/* E10-11: Reset and check read fifo */
writel(OSPI_SWRST_INDIR_READ_FIFO, ospi->base + OSPI_SWRST);
ret = readl_poll_timeout(ospi->base + OSPI_SWRST, val,
!(val & OSPI_SWRST_INDIR_READ_FIFO),
0, OSPI_WAIT_MAX_MSEC);
out:
mutex_unlock(&ospi->mlock);
return ret;
}
static int f_ospi_indir_write(struct f_ospi *ospi, struct spi_mem *mem,
const struct spi_mem_op *op)
{
u8 *buf = (u8 *)op->data.buf.out;
u32 val;
int i, ret;
mutex_lock(&ospi->mlock);
/* F1-3: Prepare transfer operation */
ret = f_ospi_indir_prepare_op(ospi, mem, op);
if (ret)
goto out;
f_ospi_indir_start_xfer(ospi);
if (!(readl(ospi->base + OSPI_PROT_CTL_INDIR) & OSPI_PROT_DATA_EN))
goto nodata;
/* F4-5: Wait for buffer ready and write data */
for (i = 0; i < op->data.nbytes; i++) {
ret = readl_poll_timeout(ospi->base + OSPI_IRQ, val,
val & OSPI_IRQ_WRITE_BUF_READY,
0, OSPI_WAIT_MAX_MSEC);
if (ret)
goto out;
writel(buf[i], ospi->base + OSPI_DAT);
}
/* F6-7: Stop transfer if data size is nothing */
if (!(readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN))
f_ospi_indir_stop_xfer(ospi);
nodata:
/* F8-9: Wait for completion and clear */
ret = f_ospi_indir_wait_xfer_complete(ospi);
if (ret)
goto out;
writel(OSPI_IRQ_CS_TRANS_COMP, ospi->base + OSPI_IRQ);
out:
mutex_unlock(&ospi->mlock);
return ret;
}
static int f_ospi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct f_ospi *ospi = spi_controller_get_devdata(mem->spi->controller);
int err = 0;
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
err = f_ospi_indir_read(ospi, mem, op);
break;
case SPI_MEM_DATA_OUT:
fallthrough;
case SPI_MEM_NO_DATA:
err = f_ospi_indir_write(ospi, mem, op);
break;
default:
dev_warn(ospi->dev, "Unsupported direction");
err = -EOPNOTSUPP;
}
return err;
}
static bool f_ospi_supports_op_width(struct spi_mem *mem,
const struct spi_mem_op *op)
{
static const u8 width_available[] = { 0, 1, 2, 4, 8 };
u8 width_op[] = { op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth };
bool is_match_found;
int i, j;
for (i = 0; i < ARRAY_SIZE(width_op); i++) {
is_match_found = false;
for (j = 0; j < ARRAY_SIZE(width_available); j++) {
if (width_op[i] == width_available[j]) {
is_match_found = true;
break;
}
}
if (!is_match_found)
return false;
}
return true;
}
static bool f_ospi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (f_ospi_get_dummy_cycle(op) > OSPI_DUMMY_CYCLE_MAX)
return false;
if (op->addr.nbytes > 4)
return false;
if (!f_ospi_supports_op_width(mem, op))
return false;
return spi_mem_default_supports_op(mem, op);
}
static int f_ospi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
op->data.nbytes = min_t(int, op->data.nbytes, OSPI_DAT_SIZE_MAX);
return 0;
}
static const struct spi_controller_mem_ops f_ospi_mem_ops = {
.adjust_op_size = f_ospi_adjust_op_size,
.supports_op = f_ospi_supports_op,
.exec_op = f_ospi_exec_op,
};
static int f_ospi_init(struct f_ospi *ospi)
{
int ret;
ret = f_ospi_prepare_config(ospi);
if (ret)
return ret;
/* Disable boot signal */
writel(OSPI_ACC_MODE_BOOT_DISABLE, ospi->base + OSPI_ACC_MODE);
f_ospi_config_dll(ospi);
/* Disable IRQ */
f_ospi_clear_irq(ospi);
f_ospi_disable_irq_status(ospi, OSPI_IRQ_ALL);
f_ospi_disable_irq_output(ospi, OSPI_IRQ_ALL);
return f_ospi_unprepare_config(ospi);
}
static int f_ospi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct device *dev = &pdev->dev;
struct f_ospi *ospi;
u32 num_cs = OSPI_NUM_CS;
int ret;
ctlr = spi_alloc_host(dev, sizeof(*ospi));
if (!ctlr)
return -ENOMEM;
ctlr->mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL
| SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL
| SPI_MODE_0 | SPI_MODE_1 | SPI_LSB_FIRST;
ctlr->mem_ops = &f_ospi_mem_ops;
ctlr->bus_num = -1;
of_property_read_u32(dev->of_node, "num-cs", &num_cs);
if (num_cs > OSPI_NUM_CS) {
dev_err(dev, "num-cs too large: %d\n", num_cs);
return -ENOMEM;
}
ctlr->num_chipselect = num_cs;
ctlr->dev.of_node = dev->of_node;
ospi = spi_controller_get_devdata(ctlr);
ospi->dev = dev;
platform_set_drvdata(pdev, ospi);
ospi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ospi->base)) {
ret = PTR_ERR(ospi->base);
goto err_put_ctlr;
}
ospi->clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(ospi->clk)) {
ret = PTR_ERR(ospi->clk);
goto err_put_ctlr;
}
mutex_init(&ospi->mlock);
ret = f_ospi_init(ospi);
if (ret)
goto err_destroy_mutex;
ret = devm_spi_register_controller(dev, ctlr);
if (ret)
goto err_destroy_mutex;
return 0;
err_destroy_mutex:
mutex_destroy(&ospi->mlock);
err_put_ctlr:
spi_controller_put(ctlr);
return ret;
}
static void f_ospi_remove(struct platform_device *pdev)
{
struct f_ospi *ospi = platform_get_drvdata(pdev);
mutex_destroy(&ospi->mlock);
}
static const struct of_device_id f_ospi_dt_ids[] = {
{ .compatible = "socionext,f-ospi" },
{}
};
MODULE_DEVICE_TABLE(of, f_ospi_dt_ids);
static struct platform_driver f_ospi_driver = {
.driver = {
.name = "socionext,f-ospi",
.of_match_table = f_ospi_dt_ids,
},
.probe = f_ospi_probe,
.remove = f_ospi_remove,
};
module_platform_driver(f_ospi_driver);
MODULE_DESCRIPTION("Socionext F_OSPI controller driver");
MODULE_AUTHOR("Socionext Inc.");
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_LICENSE("GPL");