# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """configure script to get build parameters from user.""" import argparse import errno import json import os import platform import re import shutil import subprocess import sys _DEFAULT_CUDA_COMPUTE_CAPABILITIES = '3.5,7.0' _SUPPORTED_ANDROID_NDK_VERSIONS = [19, 20, 21, 25] _DEFAULT_PROMPT_ASK_ATTEMPTS = 10 _TF_BAZELRC_FILENAME = '.tf_configure.bazelrc' _TF_WORKSPACE_ROOT = '' _TF_BAZELRC = '' _TF_CURRENT_BAZEL_VERSION = None NCCL_LIB_PATHS = [ 'lib64/', 'lib/powerpc64le-linux-gnu/', 'lib/x86_64-linux-gnu/', '' ] # List of files to configure when building Bazel on Apple platforms. APPLE_BAZEL_FILES = [ 'tensorflow/lite/ios/BUILD', 'tensorflow/lite/objc/BUILD', 'tensorflow/lite/swift/BUILD', 'tensorflow/lite/tools/benchmark/experimental/ios/BUILD' ] # List of files to move when building for iOS. IOS_FILES = [ 'tensorflow/lite/objc/TensorFlowLiteObjC.podspec', 'tensorflow/lite/swift/TensorFlowLiteSwift.podspec', ] class UserInputError(Exception): pass def is_windows(): return platform.system() == 'Windows' def is_linux(): return platform.system() == 'Linux' def is_macos(): return platform.system() == 'Darwin' def is_ppc64le(): return platform.machine() == 'ppc64le' def is_s390x(): return platform.machine() == 's390x' def is_cygwin(): return platform.system().startswith('CYGWIN_NT') def get_input(question): try: try: answer = raw_input(question) except NameError: answer = input(question) # pylint: disable=bad-builtin except EOFError: answer = '' return answer def symlink_force(target, link_name): """Force symlink, equivalent of 'ln -sf'. Args: target: items to link to. link_name: name of the link. """ try: os.symlink(target, link_name) except OSError as e: if e.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise e def write_to_bazelrc(line): with open(_TF_BAZELRC, 'a') as f: f.write(line + '\n') def write_action_env_to_bazelrc(var_name, var): write_to_bazelrc('build --action_env {}="{}"'.format(var_name, str(var))) def write_repo_env_to_bazelrc(config_name, var_name, var): write_to_bazelrc( 'build:{} --repo_env {}="{}"'.format(config_name, var_name, str(var)) ) def run_shell(cmd, allow_non_zero=False, stderr=None): if stderr is None: stderr = sys.stdout if allow_non_zero: try: output = subprocess.check_output(cmd, stderr=stderr) except subprocess.CalledProcessError as e: output = e.output else: output = subprocess.check_output(cmd, stderr=stderr) return output.decode('UTF-8').strip() def cygpath(path): """Convert path from posix to windows.""" return os.path.abspath(path).replace('\\', '/') def get_python_path(environ_cp, python_bin_path): """Get the python site package paths.""" python_paths = [] if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') try: stderr = open(os.devnull, 'wb') library_paths = run_shell([ python_bin_path, '-c', 'import site; print("\\n".join(site.getsitepackages()))' ], stderr=stderr).split('\n') except subprocess.CalledProcessError: library_paths = [ run_shell([ python_bin_path, '-c', 'import sysconfig;print(sysconfig.get_path("purelib")', ]) ] all_paths = set(python_paths + library_paths) # Sort set so order is deterministic all_paths = sorted(all_paths) paths = [] for path in all_paths: if os.path.isdir(path): paths.append(path) return paths def get_python_major_version(python_bin_path): """Get the python major version.""" return run_shell([python_bin_path, '-c', 'import sys; print(sys.version[0])']) def setup_python(environ_cp): """Setup python related env variables.""" # Get PYTHON_BIN_PATH, default is the current running python. default_python_bin_path = sys.executable ask_python_bin_path = ('Please specify the location of python. [Default is ' '{}]: ').format(default_python_bin_path) while True: python_bin_path = get_from_env_or_user_or_default(environ_cp, 'PYTHON_BIN_PATH', ask_python_bin_path, default_python_bin_path) # Check if the path is valid if os.path.isfile(python_bin_path) and os.access(python_bin_path, os.X_OK): break elif not os.path.exists(python_bin_path): print('Invalid python path: {} cannot be found.'.format(python_bin_path)) else: print('{} is not executable. Is it the python binary?'.format( python_bin_path)) environ_cp['PYTHON_BIN_PATH'] = '' # Convert python path to Windows style before checking lib and version if is_windows() or is_cygwin(): python_bin_path = cygpath(python_bin_path) # Get PYTHON_LIB_PATH python_lib_path = environ_cp.get('PYTHON_LIB_PATH') if not python_lib_path: python_lib_paths = get_python_path(environ_cp, python_bin_path) if environ_cp.get('USE_DEFAULT_PYTHON_LIB_PATH') == '1': python_lib_path = python_lib_paths[0] else: print('Found possible Python library paths:\n %s' % '\n '.join(python_lib_paths)) default_python_lib_path = python_lib_paths[0] python_lib_path = get_input( 'Please input the desired Python library path to use. ' 'Default is [{}]\n'.format(python_lib_paths[0])) if not python_lib_path: python_lib_path = default_python_lib_path environ_cp['PYTHON_LIB_PATH'] = python_lib_path python_major_version = get_python_major_version(python_bin_path) if python_major_version == '2': write_to_bazelrc('build --host_force_python=PY2') # Convert python path to Windows style before writing into bazel.rc if is_windows() or is_cygwin(): python_lib_path = cygpath(python_lib_path) # Set-up env variables used by python_configure.bzl write_action_env_to_bazelrc('PYTHON_BIN_PATH', python_bin_path) write_action_env_to_bazelrc('PYTHON_LIB_PATH', python_lib_path) write_to_bazelrc('build --python_path=\"{}"'.format(python_bin_path)) environ_cp['PYTHON_BIN_PATH'] = python_bin_path # If chosen python_lib_path is from a path specified in the PYTHONPATH # variable, need to tell bazel to include PYTHONPATH if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') if python_lib_path in python_paths: write_action_env_to_bazelrc('PYTHONPATH', environ_cp.get('PYTHONPATH')) # Write tools/python_bin_path.sh with open( os.path.join(_TF_WORKSPACE_ROOT, 'tools', 'python_bin_path.sh'), 'w') as f: f.write('export PYTHON_BIN_PATH="{}"'.format(python_bin_path)) def reset_tf_configure_bazelrc(): """Reset file that contains customized config settings.""" open(_TF_BAZELRC, 'w').close() def cleanup_makefile(): """Delete any leftover BUILD files from the Makefile build. These files could interfere with Bazel parsing. """ makefile_download_dir = os.path.join(_TF_WORKSPACE_ROOT, 'tensorflow', 'contrib', 'makefile', 'downloads') if os.path.isdir(makefile_download_dir): for root, _, filenames in os.walk(makefile_download_dir): for f in filenames: if f.endswith('BUILD'): os.remove(os.path.join(root, f)) def get_var(environ_cp, var_name, query_item, enabled_by_default, question=None, yes_reply=None, no_reply=None): """Get boolean input from user. If var_name is not set in env, ask user to enable query_item or not. If the response is empty, use the default. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". enabled_by_default: boolean for default behavior. question: optional string for how to ask for user input. yes_reply: optional string for reply when feature is enabled. no_reply: optional string for reply when feature is disabled. Returns: boolean value of the variable. Raises: UserInputError: if an environment variable is set, but it cannot be interpreted as a boolean indicator, assume that the user has made a scripting error, and will continue to provide invalid input. Raise the error to avoid infinitely looping. """ if not question: question = 'Do you wish to build TensorFlow with {} support?'.format( query_item) if not yes_reply: yes_reply = '{} support will be enabled for TensorFlow.'.format(query_item) if not no_reply: no_reply = 'No {}'.format(yes_reply) yes_reply += '\n' no_reply += '\n' if enabled_by_default: question += ' [Y/n]: ' else: question += ' [y/N]: ' var = environ_cp.get(var_name) if var is not None: var_content = var.strip().lower() true_strings = ('1', 't', 'true', 'y', 'yes') false_strings = ('0', 'f', 'false', 'n', 'no') if var_content in true_strings: var = True elif var_content in false_strings: var = False else: raise UserInputError( 'Environment variable %s must be set as a boolean indicator.\n' 'The following are accepted as TRUE : %s.\n' 'The following are accepted as FALSE: %s.\n' 'Current value is %s.' % (var_name, ', '.join(true_strings), ', '.join(false_strings), var)) while var is None: user_input_origin = get_input(question) user_input = user_input_origin.strip().lower() if user_input == 'y': print(yes_reply) var = True elif user_input == 'n': print(no_reply) var = False elif not user_input: if enabled_by_default: print(yes_reply) var = True else: print(no_reply) var = False else: print('Invalid selection: {}'.format(user_input_origin)) return var def set_action_env_var(environ_cp, var_name, query_item, enabled_by_default, question=None, yes_reply=None, no_reply=None, bazel_config_name=None): """Set boolean action_env variable. Ask user if query_item will be enabled. Default is used if no input is given. Set environment variable and write to .bazelrc. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". enabled_by_default: boolean for default behavior. question: optional string for how to ask for user input. yes_reply: optional string for reply when feature is enabled. no_reply: optional string for reply when feature is disabled. bazel_config_name: adding config to .bazelrc instead of action_env. """ var = int( get_var(environ_cp, var_name, query_item, enabled_by_default, question, yes_reply, no_reply)) if not bazel_config_name: write_action_env_to_bazelrc(var_name, var) elif var: write_to_bazelrc('build --config=%s' % bazel_config_name) environ_cp[var_name] = str(var) def convert_version_to_int(version): """Convert a version number to a integer that can be used to compare. Version strings of the form X.YZ and X.Y.Z-xxxxx are supported. The 'xxxxx' part, for instance 'homebrew' on OS/X, is ignored. Args: version: a version to be converted Returns: An integer if converted successfully, otherwise return None. """ version = version.split('-')[0] version_segments = version.split('.') # Treat "0.24" as "0.24.0" if len(version_segments) == 2: version_segments.append('0') for seg in version_segments: if not seg.isdigit(): return None version_str = ''.join(['%03d' % int(seg) for seg in version_segments]) return int(version_str) def retrieve_bazel_version(): """Retrieve installed bazel version (or bazelisk). Returns: The bazel version detected. """ bazel_executable = shutil.which('bazel') if bazel_executable is None: bazel_executable = shutil.which('bazelisk') if bazel_executable is None: print('Cannot find bazel. Please install bazel/bazelisk.') sys.exit(1) stderr = open(os.devnull, 'wb') curr_version = run_shell([bazel_executable, '--version'], allow_non_zero=True, stderr=stderr) if curr_version.startswith('bazel '): curr_version = curr_version.split('bazel ')[1] curr_version_int = convert_version_to_int(curr_version) # Check if current bazel version can be detected properly. if not curr_version_int: print('WARNING: current bazel installation is not a release version.') return curr_version print('You have bazel %s installed.' % curr_version) return curr_version def set_cc_opt_flags(environ_cp): """Set up architecture-dependent optimization flags. Also append CC optimization flags to bazel.rc.. Args: environ_cp: copy of the os.environ. """ if is_ppc64le(): # gcc on ppc64le does not support -march, use mcpu instead default_cc_opt_flags = '-mcpu=native' elif is_windows(): default_cc_opt_flags = '/arch:AVX' else: # On all other platforms, no longer use `-march=native` as this can result # in instructions that are too modern being generated. Users that want # maximum performance should compile TF in their environment and can pass # `-march=native` there. # See https://github.com/tensorflow/tensorflow/issues/45744 and duplicates default_cc_opt_flags = '-Wno-sign-compare' question = ('Please specify optimization flags to use during compilation when' ' bazel option "--config=opt" is specified [Default is %s]: ' ) % default_cc_opt_flags cc_opt_flags = get_from_env_or_user_or_default(environ_cp, 'CC_OPT_FLAGS', question, default_cc_opt_flags) for opt in cc_opt_flags.split(): write_to_bazelrc('build:opt --copt=%s' % opt) write_to_bazelrc('build:opt --host_copt=%s' % opt) def set_tf_cuda_clang(environ_cp): """set TF_CUDA_CLANG action_env. Args: environ_cp: copy of the os.environ. """ question = 'Do you want to use clang as CUDA compiler?' yes_reply = 'Clang will be used as CUDA compiler.' no_reply = 'nvcc will be used as CUDA compiler.' set_action_env_var( environ_cp, 'TF_CUDA_CLANG', None, True, question=question, yes_reply=yes_reply, no_reply=no_reply, bazel_config_name='cuda_clang', ) def set_tf_download_clang(environ_cp): """Set TF_DOWNLOAD_CLANG action_env.""" question = 'Do you wish to download a fresh release of clang? (Experimental)' yes_reply = 'Clang will be downloaded and used to compile tensorflow.' no_reply = 'Clang will not be downloaded.' set_action_env_var( environ_cp, 'TF_DOWNLOAD_CLANG', None, False, question=question, yes_reply=yes_reply, no_reply=no_reply, bazel_config_name='download_clang') def get_from_env_or_user_or_default(environ_cp, var_name, ask_for_var, var_default): """Get var_name either from env, or user or default. If var_name has been set as environment variable, use the preset value, else ask for user input. If no input is provided, the default is used. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". ask_for_var: string for how to ask for user input. var_default: default value string. Returns: string value for var_name """ var = environ_cp.get(var_name) if not var: var = get_input(ask_for_var) print('\n') if not var: var = var_default return var def prompt_loop_or_load_from_env(environ_cp, var_name, var_default, ask_for_var, check_success, error_msg, suppress_default_error=False, resolve_symlinks=False, n_ask_attempts=_DEFAULT_PROMPT_ASK_ATTEMPTS): """Loop over user prompts for an ENV param until receiving a valid response. For the env param var_name, read from the environment or verify user input until receiving valid input. When done, set var_name in the environ_cp to its new value. Args: environ_cp: (Dict) copy of the os.environ. var_name: (String) string for name of environment variable, e.g. "TF_MYVAR". var_default: (String) default value string. ask_for_var: (String) string for how to ask for user input. check_success: (Function) function that takes one argument and returns a boolean. Should return True if the value provided is considered valid. May contain a complex error message if error_msg does not provide enough information. In that case, set suppress_default_error to True. error_msg: (String) String with one and only one '%s'. Formatted with each invalid response upon check_success(input) failure. suppress_default_error: (Bool) Suppress the above error message in favor of one from the check_success function. resolve_symlinks: (Bool) Translate symbolic links into the real filepath. n_ask_attempts: (Integer) Number of times to query for valid input before raising an error and quitting. Returns: [String] The value of var_name after querying for input. Raises: UserInputError: if a query has been attempted n_ask_attempts times without success, assume that the user has made a scripting error, and will continue to provide invalid input. Raise the error to avoid infinitely looping. """ default = environ_cp.get(var_name) or var_default full_query = '%s [Default is %s]: ' % ( ask_for_var, default, ) for _ in range(n_ask_attempts): val = get_from_env_or_user_or_default(environ_cp, var_name, full_query, default) if check_success(val): break if not suppress_default_error: print(error_msg % val) environ_cp[var_name] = '' else: raise UserInputError('Invalid %s setting was provided %d times in a row. ' 'Assuming to be a scripting mistake.' % (var_name, n_ask_attempts)) if resolve_symlinks: val = os.path.realpath(val) environ_cp[var_name] = val return val def set_clang_cuda_compiler_path(environ_cp): """Set CLANG_CUDA_COMPILER_PATH.""" # Upon clang 19 drop the check for 16 default_clang_path = '/usr/lib/llvm-18/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = '/usr/lib/llvm-17/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = '/usr/lib/llvm-16/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = shutil.which('clang') or '' clang_cuda_compiler_path = prompt_loop_or_load_from_env( environ_cp, var_name='CLANG_CUDA_COMPILER_PATH', var_default=default_clang_path, ask_for_var='Please specify clang path that to be used as host compiler.', check_success=os.path.exists, resolve_symlinks=True, error_msg='Invalid clang path. %s cannot be found.', ) # Set CLANG_CUDA_COMPILER_PATH environ_cp['CLANG_CUDA_COMPILER_PATH'] = clang_cuda_compiler_path write_action_env_to_bazelrc('CLANG_CUDA_COMPILER_PATH', clang_cuda_compiler_path) return clang_cuda_compiler_path def create_android_ndk_rule(environ_cp): """Set ANDROID_NDK_HOME and write Android NDK WORKSPACE rule.""" if is_windows() or is_cygwin(): default_ndk_path = cygpath('%s/Android/Sdk/ndk-bundle' % environ_cp['APPDATA']) elif is_macos(): default_ndk_path = '%s/library/Android/Sdk/ndk-bundle' % environ_cp['HOME'] else: default_ndk_path = '%s/Android/Sdk/ndk-bundle' % environ_cp['HOME'] def valid_ndk_path(path): return (os.path.exists(path) and os.path.exists(os.path.join(path, 'source.properties'))) android_ndk_home_path = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_NDK_HOME', var_default=default_ndk_path, ask_for_var='Please specify the home path of the Android NDK to use.', check_success=valid_ndk_path, error_msg=('The path %s or its child file "source.properties" ' 'does not exist.')) write_action_env_to_bazelrc('ANDROID_NDK_HOME', android_ndk_home_path) write_action_env_to_bazelrc( 'ANDROID_NDK_API_LEVEL', get_ndk_api_level(environ_cp, android_ndk_home_path)) def create_android_sdk_rule(environ_cp): """Set Android variables and write Android SDK WORKSPACE rule.""" if is_windows() or is_cygwin(): default_sdk_path = cygpath('%s/Android/Sdk' % environ_cp['APPDATA']) elif is_macos(): default_sdk_path = '%s/library/Android/Sdk' % environ_cp['HOME'] else: default_sdk_path = '%s/Android/Sdk' % environ_cp['HOME'] def valid_sdk_path(path): return (os.path.exists(path) and os.path.exists(os.path.join(path, 'platforms')) and os.path.exists(os.path.join(path, 'build-tools'))) android_sdk_home_path = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_SDK_HOME', var_default=default_sdk_path, ask_for_var='Please specify the home path of the Android SDK to use.', check_success=valid_sdk_path, error_msg=('Either %s does not exist, or it does not contain the ' 'subdirectories "platforms" and "build-tools".')) platforms = os.path.join(android_sdk_home_path, 'platforms') api_levels = sorted(os.listdir(platforms)) api_levels = [x.replace('android-', '') for x in api_levels] def valid_api_level(api_level): return os.path.exists( os.path.join(android_sdk_home_path, 'platforms', 'android-' + api_level)) android_api_level = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_API_LEVEL', var_default=api_levels[-1], ask_for_var=('Please specify the Android SDK API level to use. ' '[Available levels: %s]') % api_levels, check_success=valid_api_level, error_msg='Android-%s is not present in the SDK path.') build_tools = os.path.join(android_sdk_home_path, 'build-tools') versions = sorted(os.listdir(build_tools)) def valid_build_tools(version): return os.path.exists( os.path.join(android_sdk_home_path, 'build-tools', version)) android_build_tools_version = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_BUILD_TOOLS_VERSION', var_default=versions[-1], ask_for_var=('Please specify an Android build tools version to use. ' '[Available versions: %s]') % versions, check_success=valid_build_tools, error_msg=('The selected SDK does not have build-tools version %s ' 'available.')) write_action_env_to_bazelrc('ANDROID_BUILD_TOOLS_VERSION', android_build_tools_version) write_action_env_to_bazelrc('ANDROID_SDK_API_LEVEL', android_api_level) write_action_env_to_bazelrc('ANDROID_SDK_HOME', android_sdk_home_path) def get_ndk_api_level(environ_cp, android_ndk_home_path): """Gets the appropriate NDK API level to use for the provided Android NDK path. """ # First check to see if we're using a blessed version of the NDK. properties_path = '%s/source.properties' % android_ndk_home_path if is_windows() or is_cygwin(): properties_path = cygpath(properties_path) with open(properties_path, 'r') as f: filedata = f.read() revision = re.search(r'Pkg.Revision = (\d+)', filedata) if revision: ndk_version = revision.group(1) else: raise Exception('Unable to parse NDK revision.') if int(ndk_version) not in _SUPPORTED_ANDROID_NDK_VERSIONS: print('WARNING: The NDK version in %s is %s, which is not ' 'supported by Bazel (officially supported versions: %s). Please use ' 'another version. Compiling Android targets may result in confusing ' 'errors.\n' % (android_ndk_home_path, ndk_version, _SUPPORTED_ANDROID_NDK_VERSIONS)) write_action_env_to_bazelrc('ANDROID_NDK_VERSION', ndk_version) # Now grab the NDK API level to use. Note that this is different from the # SDK API level, as the NDK API level is effectively the *min* target SDK # version. meta = open(os.path.join(android_ndk_home_path, 'meta/platforms.json')) platforms = json.load(meta) meta.close() aliases = platforms['aliases'] api_levels = sorted(list(set([aliases[i] for i in aliases]))) android_ndk_api_level = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_NDK_API_LEVEL', var_default='21', # 21 is required for ARM64 support. ask_for_var=( 'Please specify the (min) Android NDK API level to use. ' '[Available levels: %s]' ) % api_levels, check_success=(lambda *_: True), error_msg='Android-%s is not present in the NDK path.', ) return android_ndk_api_level def set_gcc_host_compiler_path(environ_cp): """Set GCC_HOST_COMPILER_PATH.""" default_gcc_host_compiler_path = shutil.which('gcc') or '' gcc_host_compiler_path = prompt_loop_or_load_from_env( environ_cp, var_name='GCC_HOST_COMPILER_PATH', var_default=default_gcc_host_compiler_path, ask_for_var='Please specify which gcc should be used by nvcc as the host ' 'compiler.', check_success=os.path.exists, resolve_symlinks=True, error_msg='Invalid gcc path. %s cannot be found.', ) write_action_env_to_bazelrc('GCC_HOST_COMPILER_PATH', gcc_host_compiler_path) def choose_compiler(environ_cp): question = 'Do you want to use Clang to build TensorFlow?' yes_reply = 'Clang will be used to compile TensorFlow.' no_reply = 'GCC will be used to compile TensorFlow.' var = int( get_var( environ_cp, 'TF_NEED_CLANG', None, True, question, yes_reply, no_reply ) ) return var def choose_compiler_Win(environ_cp): question = 'Do you want to use Clang to build TensorFlow?' yes_reply = 'Add "--config=win_clang" to compile TensorFlow with CLANG.' no_reply = 'MSVC will be used to compile TensorFlow.' var = int( get_var( environ_cp, 'TF_NEED_CLANG', None, True, question, yes_reply, no_reply ) ) return var def set_clang_compiler_path(environ_cp): """Set CLANG_COMPILER_PATH and environment variables. Loop over user prompts for clang path until receiving a valid response. Default is used if no input is given. Set CLANG_COMPILER_PATH and write environment variables CC and BAZEL_COMPILER to .bazelrc. Args: environ_cp: (Dict) copy of the os.environ. Returns: string value for clang_compiler_path. """ # Default path if clang-18 is installed by using apt-get install # remove 16 logic upon release of 19 default_clang_path = '/usr/lib/llvm-18/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = '/usr/lib/llvm-17/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = '/usr/lib/llvm-16/bin/clang' if not os.path.exists(default_clang_path): default_clang_path = shutil.which('clang') or '' clang_compiler_path = prompt_loop_or_load_from_env( environ_cp, var_name='CLANG_COMPILER_PATH', var_default=default_clang_path, ask_for_var='Please specify the path to clang executable.', check_success=os.path.exists, resolve_symlinks=True, error_msg=( 'Invalid clang path. %s cannot be found. Note that TensorFlow now' ' requires clang to compile. You may override this behavior by' ' setting TF_NEED_CLANG=0' ), ) write_action_env_to_bazelrc('CLANG_COMPILER_PATH', clang_compiler_path) write_to_bazelrc('build --repo_env=CC=%s' % clang_compiler_path) write_to_bazelrc('build --repo_env=BAZEL_COMPILER=%s' % clang_compiler_path) return clang_compiler_path def set_clang_compiler_path_win(environ_cp): """Set CLANG_COMPILER_PATH and environment variables. Loop over user prompts for clang path until receiving a valid response. Default is used if no input is given. Set CLANG_COMPILER_PATH and write environment variables CC and BAZEL_COMPILER to .bazelrc. Args: environ_cp: (Dict) copy of the os.environ. Returns: string value for clang_compiler_path. """ # Default path if clang-16 is installed by using apt-get install default_clang_path = 'C:/Program Files/LLVM/bin/clang.exe' if not os.path.exists(default_clang_path): default_clang_path = shutil.which('clang') or '' clang_compiler_path = prompt_loop_or_load_from_env( environ_cp, var_name='CLANG_COMPILER_PATH', var_default=default_clang_path, ask_for_var='Please specify the path to clang executable.', check_success=os.path.exists, resolve_symlinks=True, error_msg=( 'Invalid clang path. %s cannot be found. Note that Clang is now' 'preferred compiler. You may use MSVC by removing --config=win_clang' ), ) write_action_env_to_bazelrc('CLANG_COMPILER_PATH', clang_compiler_path) write_to_bazelrc(f'build --repo_env=CC="{clang_compiler_path}"') write_to_bazelrc(f'build --repo_env=BAZEL_COMPILER="{clang_compiler_path}"') return clang_compiler_path def retrieve_clang_version(clang_executable): """Retrieve installed clang version. Args: clang_executable: (String) path to clang executable Returns: The clang version detected. """ stderr = open(os.devnull, 'wb') curr_version = run_shell([clang_executable, '--version'], allow_non_zero=True, stderr=stderr) curr_version_split = curr_version.lower().split('clang version ') if len(curr_version_split) > 1: curr_version = curr_version_split[1].split()[0].split('git') if len(curr_version) > 1: print('WARNING: current clang installation is not a release version.\n') curr_version = curr_version[0] curr_version_int = convert_version_to_int(curr_version) # Check if current clang version can be detected properly. if not curr_version_int: print('WARNING: current clang installation version unknown.\n') return None print('You have Clang %s installed.\n' % curr_version) return curr_version # Disable clang extension that rejects type definitions within offsetof. # This was added in clang-16 by https://reviews.llvm.org/D133574. # Still required for clang-17. # Can be removed once upb is updated, since a type definition is used within # offset of in the current version of ubp. See # https://github.com/protocolbuffers/upb/blob/9effcbcb27f0a665f9f345030188c0b291e32482/upb/upb.c#L183. def disable_clang_offsetof_extension(clang_version): if int(clang_version.split('.')[0]) in (16, 17): write_to_bazelrc('build --copt=-Wno-gnu-offsetof-extensions') def set_hermetic_cuda_version(environ_cp): """Set HERMETIC_CUDA_VERSION.""" ask_cuda_version = ( 'Please specify the hermetic CUDA version you want to use ' 'or leave empty to use the default version. ' ) hermetic_cuda_version = get_from_env_or_user_or_default( environ_cp, 'HERMETIC_CUDA_VERSION', ask_cuda_version, None ) if hermetic_cuda_version: environ_cp['HERMETIC_CUDA_VERSION'] = hermetic_cuda_version write_repo_env_to_bazelrc( 'cuda', 'HERMETIC_CUDA_VERSION', hermetic_cuda_version ) def set_hermetic_cudnn_version(environ_cp): """Set HERMETIC_CUDNN_VERSION.""" ask_cudnn_version = ( 'Please specify the hermetic cuDNN version you want to use ' 'or leave empty to use the default version. ' ) hermetic_cudnn_version = get_from_env_or_user_or_default( environ_cp, 'HERMETIC_CUDNN_VERSION', ask_cudnn_version, None ) if hermetic_cudnn_version: environ_cp['HERMETIC_CUDNN_VERSION'] = hermetic_cudnn_version write_repo_env_to_bazelrc( 'cuda', 'HERMETIC_CUDNN_VERSION', hermetic_cudnn_version ) def set_hermetic_cuda_compute_capabilities(environ_cp): """Set HERMETIC_CUDA_COMPUTE_CAPABILITIES.""" while True: default_cuda_compute_capabilities = _DEFAULT_CUDA_COMPUTE_CAPABILITIES ask_cuda_compute_capabilities = ( 'Please specify a list of comma-separated CUDA compute capabilities ' 'you want to build with.\nYou can find the compute capability of your ' 'device at: https://developer.nvidia.com/cuda-gpus. Each capability ' 'can be specified as "x.y" or "compute_xy" to include both virtual and' ' binary GPU code, or as "sm_xy" to only include the binary ' 'code.\nPlease note that each additional compute capability ' 'significantly increases your build time and binary size, and that ' 'TensorFlow only supports compute capabilities >= 3.5 [Default is: ' '%s]: ' % default_cuda_compute_capabilities) hermetic_cuda_compute_capabilities = get_from_env_or_user_or_default( environ_cp, 'HERMETIC_CUDA_COMPUTE_CAPABILITIES', ask_cuda_compute_capabilities, default_cuda_compute_capabilities, ) # Check whether all capabilities from the input is valid all_valid = True # Remove all whitespace characters before splitting the string # that users may insert by accident, as this will result in error hermetic_cuda_compute_capabilities = ''.join( hermetic_cuda_compute_capabilities.split() ) for compute_capability in hermetic_cuda_compute_capabilities.split(','): m = re.match('[0-9]+.[0-9]+', compute_capability) if not m: # We now support sm_35,sm_50,sm_60,compute_70. sm_compute_match = re.match('(sm|compute)_?([0-9]+[0-9]+)', compute_capability) if not sm_compute_match: print('Invalid compute capability: %s' % compute_capability) all_valid = False else: ver = int(sm_compute_match.group(2)) if ver < 30: print( 'ERROR: TensorFlow only supports small CUDA compute' ' capabilities of sm_30 and higher. Please re-specify the list' ' of compute capabilities excluding version %s.' % ver) all_valid = False if ver < 35: print('WARNING: XLA does not support CUDA compute capabilities ' 'lower than sm_35. Disable XLA when running on older GPUs.') else: ver = float(m.group(0)) if ver < 3.0: print('ERROR: TensorFlow only supports CUDA compute capabilities 3.0 ' 'and higher. Please re-specify the list of compute ' 'capabilities excluding version %s.' % ver) all_valid = False if ver < 3.5: print('WARNING: XLA does not support CUDA compute capabilities ' 'lower than 3.5. Disable XLA when running on older GPUs.') if all_valid: break # Reset and Retry environ_cp['HERMETIC_CUDA_COMPUTE_CAPABILITIES'] = '' # Set HERMETIC_CUDA_COMPUTE_CAPABILITIES environ_cp['HERMETIC_CUDA_COMPUTE_CAPABILITIES'] = ( hermetic_cuda_compute_capabilities ) write_repo_env_to_bazelrc( 'cuda', 'HERMETIC_CUDA_COMPUTE_CAPABILITIES', hermetic_cuda_compute_capabilities, ) def set_cuda_local_path(environ_cp, dist_name, env_var): ask_path = ( 'Please specify the local {} path you want to use ' 'or leave empty to use the default version. ' ).format(dist_name) local_path = get_from_env_or_user_or_default( environ_cp, env_var, ask_path, None ) if local_path: environ_cp[env_var] = local_path write_repo_env_to_bazelrc('cuda', env_var, local_path) def set_other_cuda_vars(environ_cp): """Set other CUDA related variables.""" # If CUDA is enabled, always use GPU during build and test. if environ_cp.get('TF_CUDA_CLANG') == '1': write_to_bazelrc('build --config=cuda_clang') else: write_to_bazelrc('build --config=cuda') def system_specific_test_config(environ_cp): """Add default build and test flags required for TF tests to bazelrc.""" write_to_bazelrc('test --test_size_filters=small,medium') # Each instance of --test_tag_filters or --build_tag_filters overrides all # previous instances, so we need to build up a complete list and write a # single list of filters for the .bazelrc file. # Filters to use with both --test_tag_filters and --build_tag_filters test_and_build_filters = ['-benchmark-test', '-no_oss', '-oss_excluded'] # Additional filters for --test_tag_filters beyond those in # test_and_build_filters test_only_filters = ['-oss_serial'] if is_windows(): test_and_build_filters += ['-no_windows', '-windows_excluded'] if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or (environ_cp.get('TF_NEED_ROCM', None) == '1')): test_and_build_filters += ['-no_windows_gpu', '-no_gpu'] else: test_and_build_filters.append('-gpu') elif is_macos(): test_and_build_filters += ['-gpu', '-nomac', '-no_mac', '-mac_excluded'] elif is_linux(): if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or (environ_cp.get('TF_NEED_ROCM', None) == '1')): test_and_build_filters.append('-no_gpu') write_to_bazelrc('test --test_env=LD_LIBRARY_PATH') else: test_and_build_filters.append('-gpu') # Disable tests with "v1only" tag in "v2" Bazel config, but not in "v1" config write_to_bazelrc('test:v1 --test_tag_filters=%s' % ','.join(test_and_build_filters + test_only_filters)) write_to_bazelrc('test:v1 --build_tag_filters=%s' % ','.join(test_and_build_filters)) write_to_bazelrc( 'test:v2 --test_tag_filters=%s' % ','.join(test_and_build_filters + test_only_filters + ['-v1only'])) write_to_bazelrc('test:v2 --build_tag_filters=%s' % ','.join(test_and_build_filters + ['-v1only'])) def set_system_libs_flag(environ_cp): """Set system libs flags.""" syslibs = environ_cp.get('TF_SYSTEM_LIBS', '') if is_s390x() and 'boringssl' not in syslibs: syslibs = 'boringssl' + (', ' + syslibs if syslibs else '') if syslibs: if ',' in syslibs: syslibs = ','.join(sorted(syslibs.split(','))) else: syslibs = ','.join(sorted(syslibs.split())) write_action_env_to_bazelrc('TF_SYSTEM_LIBS', syslibs) for varname in ('PREFIX', 'LIBDIR', 'INCLUDEDIR', 'PROTOBUF_INCLUDE_PATH'): if varname in environ_cp: write_to_bazelrc('build --define=%s=%s' % (varname, environ_cp[varname])) def set_windows_build_flags(environ_cp): """Set Windows specific build options.""" # First available in VS 16.4. Speeds up Windows compile times by a lot. See # https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion # pylint: disable=line-too-long write_to_bazelrc( 'build --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions' ) if get_var( environ_cp, 'TF_OVERRIDE_EIGEN_STRONG_INLINE', 'Eigen strong inline', True, ('Would you like to override eigen strong inline for some C++ ' 'compilation to reduce the compilation time?'), 'Eigen strong inline overridden.', 'Not overriding eigen strong inline, ' 'some compilations could take more than 20 mins.'): # Due to a known MSVC compiler issue # https://github.com/tensorflow/tensorflow/issues/10521 # Overriding eigen strong inline speeds up the compiling of # conv_grad_ops_3d.cc and conv_ops_3d.cc by 20 minutes, # but this also hurts the performance. Let users decide what they want. write_to_bazelrc('build --define=override_eigen_strong_inline=true') def config_info_line(name, help_text): """Helper function to print formatted help text for Bazel config options.""" print('\t--config=%-12s\t# %s' % (name, help_text)) def configure_ios(environ_cp): """Configures TensorFlow for iOS builds.""" if not is_macos(): return if not get_var(environ_cp, 'TF_CONFIGURE_IOS', 'iOS', False): return for filepath in APPLE_BAZEL_FILES: existing_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath + '.apple') renamed_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath) symlink_force(existing_filepath, renamed_filepath) for filepath in IOS_FILES: filename = os.path.basename(filepath) new_filepath = os.path.join(_TF_WORKSPACE_ROOT, filename) symlink_force(filepath, new_filepath) def get_gcc_compiler(environ_cp): gcc_env = environ_cp.get('CXX') or environ_cp.get('CC') or shutil.which('gcc') if gcc_env is not None: gcc_version = run_shell([gcc_env, '--version']).split() if gcc_version[0] in ('gcc', 'g++'): return gcc_env return None def main(): global _TF_WORKSPACE_ROOT global _TF_BAZELRC global _TF_CURRENT_BAZEL_VERSION parser = argparse.ArgumentParser() parser.add_argument( '--workspace', type=str, default=os.path.abspath(os.path.dirname(__file__)), help='The absolute path to your active Bazel workspace.') args = parser.parse_args() _TF_WORKSPACE_ROOT = args.workspace _TF_BAZELRC = os.path.join(_TF_WORKSPACE_ROOT, _TF_BAZELRC_FILENAME) # Make a copy of os.environ to be clear when functions and getting and setting # environment variables. environ_cp = dict(os.environ) try: current_bazel_version = retrieve_bazel_version() except subprocess.CalledProcessError as e: print('Error retrieving bazel version: ', e.output.decode('UTF-8').strip()) raise e _TF_CURRENT_BAZEL_VERSION = convert_version_to_int(current_bazel_version) reset_tf_configure_bazelrc() cleanup_makefile() setup_python(environ_cp) if is_windows(): environ_cp['TF_NEED_OPENCL'] = '0' environ_cp['TF_CUDA_CLANG'] = '0' # TODO(ibiryukov): Investigate using clang as a cpu or cuda compiler on # Windows. environ_cp['TF_DOWNLOAD_CLANG'] = '0' environ_cp['TF_NEED_MPI'] = '0' if is_ppc64le(): # Enable MMA Dynamic Dispatch support if 'gcc' and if linker >= 2.35 gcc_env = get_gcc_compiler(environ_cp) if gcc_env is not None: # Use gold linker if 'gcc' and if 'ppc64le' write_to_bazelrc('build --linkopt="-fuse-ld=gold"') # Get the linker version ld_version = run_shell([gcc_env, '-Wl,-version']).split() ld_version_int = convert_version_to_int(ld_version[3]) if ld_version_int is None: ld_version_int = convert_version_to_int(ld_version[4]) # Enable if 'ld' version >= 2.35 if ld_version_int >= 2035000: write_to_bazelrc( 'build --copt="-DEIGEN_ALTIVEC_ENABLE_MMA_DYNAMIC_DISPATCH=1"') with_xla_support = environ_cp.get('TF_ENABLE_XLA', None) if with_xla_support is not None: write_to_bazelrc('build --define=with_xla_support=%s' % ('true' if int(with_xla_support) else 'false')) set_action_env_var( environ_cp, 'TF_NEED_ROCM', 'ROCm', False, bazel_config_name='rocm') if (environ_cp.get('TF_NEED_ROCM') == '1' and 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get('LD_LIBRARY_PATH') != '1'): write_action_env_to_bazelrc('LD_LIBRARY_PATH', environ_cp.get('LD_LIBRARY_PATH')) if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('ROCM_PATH')): write_action_env_to_bazelrc('ROCM_PATH', environ_cp.get('ROCM_PATH')) if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('HIP_PLATFORM')): write_action_env_to_bazelrc('HIP_PLATFORM', environ_cp.get('HIP_PLATFORM')) if is_windows(): print('\nWARNING: Cannot build with CUDA support on Windows.\n' 'Starting in TF 2.11, CUDA build is not supported for Windows. ' 'For using TensorFlow GPU on Windows, you will need to build/install ' 'TensorFlow in WSL2.\n') environ_cp['TF_NEED_CUDA'] = '0' else: environ_cp['TF_NEED_CUDA'] = str( int(get_var(environ_cp, 'TF_NEED_CUDA', 'CUDA', False))) if environ_cp.get('TF_NEED_CUDA') == '1': set_hermetic_cuda_version(environ_cp) set_hermetic_cudnn_version(environ_cp) set_hermetic_cuda_compute_capabilities(environ_cp) set_cuda_local_path(environ_cp, 'CUDA', 'LOCAL_CUDA_PATH') set_cuda_local_path(environ_cp, 'CUDNN', 'LOCAL_CUDNN_PATH') set_cuda_local_path(environ_cp, 'NCCL', 'LOCAL_NCCL_PATH') if 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get( 'LD_LIBRARY_PATH') != '1': write_action_env_to_bazelrc('LD_LIBRARY_PATH', environ_cp.get('LD_LIBRARY_PATH')) set_tf_cuda_clang(environ_cp) if environ_cp.get('TF_CUDA_CLANG') == '1': # Set up which clang we should use as the cuda / host compiler. clang_cuda_compiler_path = set_clang_cuda_compiler_path(environ_cp) clang_version = retrieve_clang_version(clang_cuda_compiler_path) disable_clang_offsetof_extension(clang_version) else: # Set up which gcc nvcc should use as the host compiler # No need to set this on Windows if not is_windows(): set_gcc_host_compiler_path(environ_cp) set_other_cuda_vars(environ_cp) else: # CUDA not required. Ask whether we should use clang for the CPU build. if is_linux(): environ_cp['TF_NEED_CLANG'] = str(choose_compiler(environ_cp)) if environ_cp.get('TF_NEED_CLANG') == '1': clang_compiler_path = set_clang_compiler_path(environ_cp) clang_version = retrieve_clang_version(clang_compiler_path) disable_clang_offsetof_extension(clang_version) if is_windows(): environ_cp['TF_NEED_CLANG'] = str(choose_compiler_Win(environ_cp)) if environ_cp.get('TF_NEED_CLANG') == '1': clang_compiler_path = set_clang_compiler_path_win(environ_cp) clang_version = retrieve_clang_version(clang_compiler_path) disable_clang_offsetof_extension(clang_version) # ROCm / CUDA are mutually exclusive. # At most 1 GPU platform can be configured. gpu_platform_count = 0 if environ_cp.get('TF_NEED_ROCM') == '1': gpu_platform_count += 1 if environ_cp.get('TF_NEED_CUDA') == '1': gpu_platform_count += 1 if gpu_platform_count >= 2: raise UserInputError('CUDA / ROCm are mututally exclusive. ' 'At most 1 GPU platform can be configured.') set_cc_opt_flags(environ_cp) set_system_libs_flag(environ_cp) if is_windows(): set_windows_build_flags(environ_cp) if get_var(environ_cp, 'TF_SET_ANDROID_WORKSPACE', 'android workspace', False, ('Would you like to interactively configure ./WORKSPACE for ' 'Android builds?'), 'Searching for NDK and SDK installations.', 'Not configuring the WORKSPACE for Android builds.'): create_android_ndk_rule(environ_cp) create_android_sdk_rule(environ_cp) system_specific_test_config(environ_cp) configure_ios(environ_cp) print('Preconfigured Bazel build configs. You can use any of the below by ' 'adding "--config=<>" to your build command. See .bazelrc for more ' 'details.') config_info_line('mkl', 'Build with MKL support.') config_info_line( 'mkl_aarch64', 'Build with oneDNN and Compute Library for the Arm Architecture (ACL).') config_info_line('monolithic', 'Config for mostly static monolithic build.') config_info_line('numa', 'Build with NUMA support.') config_info_line( 'dynamic_kernels', '(Experimental) Build kernels into separate shared objects.') config_info_line('v1', 'Build with TensorFlow 1 API instead of TF 2 API.') print('Preconfigured Bazel build configs to DISABLE default on features:') config_info_line('nogcp', 'Disable GCP support.') config_info_line('nonccl', 'Disable NVIDIA NCCL support.') if __name__ == '__main__': main()