linux/lib/Kconfig.kasan
Marco Elver 237ab03e30 Revert "kasan: Disable Software Tag-Based KASAN with GCC"
This reverts commit 7aed6a2c51.

Now that __no_sanitize_address attribute is fixed for KASAN_SW_TAGS with
GCC, allow re-enabling KASAN_SW_TAGS with GCC.

Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrew Pinski <pinskia@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20241021120013.3209481-2-elver@google.com
Signed-off-by: Will Deacon <will@kernel.org>
2024-10-23 16:04:30 +01:00

227 lines
7.5 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0-only
# This config refers to the generic KASAN mode.
config HAVE_ARCH_KASAN
bool
config HAVE_ARCH_KASAN_SW_TAGS
bool
config HAVE_ARCH_KASAN_HW_TAGS
bool
config HAVE_ARCH_KASAN_VMALLOC
bool
config ARCH_DISABLE_KASAN_INLINE
bool
help
Disables both inline and stack instrumentation. Selected by
architectures that do not support these instrumentation types.
config CC_HAS_KASAN_GENERIC
def_bool $(cc-option, -fsanitize=kernel-address)
config CC_HAS_KASAN_SW_TAGS
def_bool $(cc-option, -fsanitize=kernel-hwaddress)
# This option is only required for software KASAN modes.
# Old GCC versions do not have proper support for no_sanitize_address.
# See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89124 for details.
config CC_HAS_WORKING_NOSANITIZE_ADDRESS
def_bool !CC_IS_GCC || GCC_VERSION >= 80300
menuconfig KASAN
bool "KASAN: dynamic memory safety error detector"
depends on (((HAVE_ARCH_KASAN && CC_HAS_KASAN_GENERIC) || \
(HAVE_ARCH_KASAN_SW_TAGS && CC_HAS_KASAN_SW_TAGS)) && \
CC_HAS_WORKING_NOSANITIZE_ADDRESS) || \
HAVE_ARCH_KASAN_HW_TAGS
depends on SYSFS && !SLUB_TINY
select STACKDEPOT_ALWAYS_INIT
help
Enables KASAN (Kernel Address Sanitizer) - a dynamic memory safety
error detector designed to find out-of-bounds and use-after-free bugs.
See Documentation/dev-tools/kasan.rst for details.
For better error reports, also enable CONFIG_STACKTRACE.
if KASAN
config CC_HAS_KASAN_MEMINTRINSIC_PREFIX
def_bool (CC_IS_CLANG && $(cc-option,-fsanitize=kernel-address -mllvm -asan-kernel-mem-intrinsic-prefix=1)) || \
(CC_IS_GCC && $(cc-option,-fsanitize=kernel-address --param asan-kernel-mem-intrinsic-prefix=1))
# Don't define it if we don't need it: compilation of the test uses
# this variable to decide how the compiler should treat builtins.
depends on !KASAN_HW_TAGS
help
The compiler is able to prefix memintrinsics with __asan or __hwasan.
choice
prompt "KASAN mode"
default KASAN_GENERIC
help
KASAN has three modes:
1. Generic KASAN (supported by many architectures, enabled with
CONFIG_KASAN_GENERIC, similar to userspace ASan),
2. Software Tag-Based KASAN (arm64 only, based on software memory
tagging, enabled with CONFIG_KASAN_SW_TAGS, similar to userspace
HWASan), and
3. Hardware Tag-Based KASAN (arm64 only, based on hardware memory
tagging, enabled with CONFIG_KASAN_HW_TAGS).
See Documentation/dev-tools/kasan.rst for details about each mode.
config KASAN_GENERIC
bool "Generic KASAN"
depends on HAVE_ARCH_KASAN && CC_HAS_KASAN_GENERIC
depends on CC_HAS_WORKING_NOSANITIZE_ADDRESS
select SLUB_DEBUG
select CONSTRUCTORS
help
Enables Generic KASAN.
Requires GCC 8.3.0+ or Clang.
Consumes about 1/8th of available memory at kernel start and adds an
overhead of ~50% for dynamic allocations.
The performance slowdown is ~x3.
config KASAN_SW_TAGS
bool "Software Tag-Based KASAN"
depends on HAVE_ARCH_KASAN_SW_TAGS && CC_HAS_KASAN_SW_TAGS
depends on CC_HAS_WORKING_NOSANITIZE_ADDRESS
select SLUB_DEBUG
select CONSTRUCTORS
help
Enables Software Tag-Based KASAN.
Requires GCC 11+ or Clang.
Supported only on arm64 CPUs and relies on Top Byte Ignore.
Consumes about 1/16th of available memory at kernel start and
add an overhead of ~20% for dynamic allocations.
May potentially introduce problems related to pointer casting and
comparison, as it embeds a tag into the top byte of each pointer.
config KASAN_HW_TAGS
bool "Hardware Tag-Based KASAN"
depends on HAVE_ARCH_KASAN_HW_TAGS
help
Enables Hardware Tag-Based KASAN.
Requires GCC 10+ or Clang 12+.
Supported only on arm64 CPUs starting from ARMv8.5 and relies on
Memory Tagging Extension and Top Byte Ignore.
Consumes about 1/32nd of available memory.
May potentially introduce problems related to pointer casting and
comparison, as it embeds a tag into the top byte of each pointer.
endchoice
choice
prompt "Instrumentation type"
depends on KASAN_GENERIC || KASAN_SW_TAGS
default KASAN_INLINE if !ARCH_DISABLE_KASAN_INLINE
config KASAN_OUTLINE
bool "Outline instrumentation"
help
Makes the compiler insert function calls that check whether the memory
is accessible before each memory access. Slower than KASAN_INLINE, but
does not bloat the size of the kernel's .text section so much.
config KASAN_INLINE
bool "Inline instrumentation"
depends on !ARCH_DISABLE_KASAN_INLINE
help
Makes the compiler directly insert memory accessibility checks before
each memory access. Faster than KASAN_OUTLINE (gives ~x2 boost for
some workloads), but makes the kernel's .text size much bigger.
endchoice
config KASAN_STACK
bool "Stack instrumentation (unsafe)" if CC_IS_CLANG && !COMPILE_TEST
depends on KASAN_GENERIC || KASAN_SW_TAGS
depends on !ARCH_DISABLE_KASAN_INLINE
default y if CC_IS_GCC
help
Disables stack instrumentation and thus KASAN's ability to detect
out-of-bounds bugs in stack variables.
With Clang, stack instrumentation has a problem that causes excessive
stack usage, see https://llvm.org/pr38809. Thus,
with Clang, this option is deemed unsafe.
This option is always disabled when compile-testing with Clang to
avoid cluttering the log with stack overflow warnings.
With GCC, enabling stack instrumentation is assumed to be safe.
If the architecture disables inline instrumentation via
ARCH_DISABLE_KASAN_INLINE, stack instrumentation gets disabled
as well, as it adds inline-style instrumentation that is run
unconditionally.
config KASAN_VMALLOC
bool "Check accesses to vmalloc allocations"
depends on HAVE_ARCH_KASAN_VMALLOC
help
Makes KASAN check the validity of accesses to vmalloc allocations.
With software KASAN modes, all types vmalloc allocations are
checked. Enabling this option leads to higher memory usage.
With Hardware Tag-Based KASAN, only non-executable VM_ALLOC mappings
are checked. There is no additional memory usage.
config KASAN_KUNIT_TEST
tristate "KUnit-compatible tests of KASAN bug detection capabilities" if !KUNIT_ALL_TESTS
depends on KASAN && KUNIT && TRACEPOINTS
default KUNIT_ALL_TESTS
help
A KUnit-based KASAN test suite. Triggers different kinds of
out-of-bounds and use-after-free accesses. Useful for testing whether
KASAN can detect certain bug types.
For more information on KUnit and unit tests in general, please refer
to the KUnit documentation in Documentation/dev-tools/kunit/.
config KASAN_MODULE_TEST
tristate "KUnit-incompatible tests of KASAN bug detection capabilities"
depends on m && KASAN && !KASAN_HW_TAGS
help
A part of the KASAN test suite that is not integrated with KUnit.
Incompatible with Hardware Tag-Based KASAN.
config KASAN_EXTRA_INFO
bool "Record and report more information"
depends on KASAN
help
Record and report more information to help us find the cause of the
bug and to help us correlate the error with other system events.
Currently, the CPU number and timestamp are additionally
recorded for each heap block at allocation and free time, and
8 bytes will be added to each metadata structure that records
allocation or free information.
In Generic KASAN, each kmalloc-8 and kmalloc-16 object will add
16 bytes of additional memory consumption, and each kmalloc-32
object will add 8 bytes of additional memory consumption, not
affecting other larger objects.
In SW_TAGS KASAN and HW_TAGS KASAN, depending on the stack_ring_size
boot parameter, it will add 8 * stack_ring_size bytes of additional
memory consumption.
endif # KASAN