linux/io_uring/timeout.c
Linus Torvalds bf9aa14fc5 A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
 
     posix-timers are currently auto-rearmed by the kernel when the signal
     of the timer is ignored so that the timer signal can be delivered once
     the corresponding signal is unignored.
 
     This requires to throttle the timer to prevent a DoS by small intervals
     and keeps the system pointlessly out of low power states for no value.
     This is a long standing non-trivial problem due to the lock order of
     posix-timer lock and the sighand lock along with life time issues as
     the timer and the sigqueue have different life time rules.
 
     Cure this by:
 
      * Embedding the sigqueue into the timer struct to have the same life
        time rules. Aside of that this also avoids the lookup of the timer
        in the signal delivery and rearm path as it's just a always valid
        container_of() now.
 
      * Queuing ignored timer signals onto a seperate ignored list.
 
      * Moving queued timer signals onto the ignored list when the signal is
        switched to SIG_IGN before it could be delivered.
 
      * Walking the ignored list when SIG_IGN is lifted and requeue the
        signals to the actual signal lists. This allows the signal delivery
        code to rearm the timer.
 
     This also required to consolidate the signal delivery rules so they are
     consistent across all situations. With that all self test scenarios
     finally succeed.
 
   - Core infrastructure for VFS multigrain timestamping
 
     This is required to allow the kernel to use coarse grained time stamps
     by default and switch to fine grained time stamps when inode attributes
     are actively observed via getattr().
 
     These changes have been provided to the VFS tree as well, so that the
     VFS specific infrastructure could be built on top.
 
   - Cleanup and consolidation of the sleep() infrastructure
 
     * Move all sleep and timeout functions into one file
 
     * Rework udelay() and ndelay() into proper documented inline functions
       and replace the hardcoded magic numbers by proper defines.
 
     * Rework the fsleep() implementation to take the reality of the timer
       wheel granularity on different HZ values into account. Right now the
       boundaries are hard coded time ranges which fail to provide the
       requested accuracy on different HZ settings.
 
     * Update documentation for all sleep/timeout related functions and fix
       up stale documentation links all over the place
 
     * Fixup a few usage sites
 
   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
 
     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as that's
     the clock which drives the timekeeping adjustments via the various user
     space daemons through adjtimex(2).
 
     The non TAI based clock domains are accessible via the file descriptor
     based posix clocks, but their usability is very limited. They can't be
     accessed fast as they always go all the way out to the hardware and
     they cannot be utilized in the kernel itself.
 
     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.
 
     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the kernel
     provides access to clock MONOTONIC, REALTIME etc.
 
     Instead of creating a duplicated infrastructure this rework converts
     timekeeping and adjtimex(2) into generic functionality which operates
     on pointers to data structures instead of using static variables.
 
     This allows to provide time accessors and adjtimex(2) functionality for
     the independent PTP clocks in a subsequent step.
 
   - Consolidate hrtimer initialization
 
     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.
 
     That's an extra unnecessary step and makes Rust support less straight
     forward than it should be.
 
     Provide a new set of hrtimer_setup*() functions and convert the core
     code and a few usage sites of the less frequently used interfaces over.
 
     The bulk of the htimer_init() to hrtimer_setup() conversion is already
     prepared and scheduled for the next merge window.
 
   - Drivers:
 
     * Ensure that the global timekeeping clocksource is utilizing the
       cluster 0 timer on MIPS multi-cluster systems.
 
       Otherwise CPUs on different clusters use their cluster specific
       clocksource which is not guaranteed to be synchronized with other
       clusters.
 
     * Mostly boring cleanups, fixes, improvements and code movement
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
 tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
 EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
 bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
 DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
 Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
 AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
 hZZ4hdM9+3T7cg==
 =2VC6
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "A rather large update for timekeeping and timers:

   - The final step to get rid of auto-rearming posix-timers

     posix-timers are currently auto-rearmed by the kernel when the
     signal of the timer is ignored so that the timer signal can be
     delivered once the corresponding signal is unignored.

     This requires to throttle the timer to prevent a DoS by small
     intervals and keeps the system pointlessly out of low power states
     for no value. This is a long standing non-trivial problem due to
     the lock order of posix-timer lock and the sighand lock along with
     life time issues as the timer and the sigqueue have different life
     time rules.

     Cure this by:

       - Embedding the sigqueue into the timer struct to have the same
         life time rules. Aside of that this also avoids the lookup of
         the timer in the signal delivery and rearm path as it's just a
         always valid container_of() now.

       - Queuing ignored timer signals onto a seperate ignored list.

       - Moving queued timer signals onto the ignored list when the
         signal is switched to SIG_IGN before it could be delivered.

       - Walking the ignored list when SIG_IGN is lifted and requeue the
         signals to the actual signal lists. This allows the signal
         delivery code to rearm the timer.

     This also required to consolidate the signal delivery rules so they
     are consistent across all situations. With that all self test
     scenarios finally succeed.

   - Core infrastructure for VFS multigrain timestamping

     This is required to allow the kernel to use coarse grained time
     stamps by default and switch to fine grained time stamps when inode
     attributes are actively observed via getattr().

     These changes have been provided to the VFS tree as well, so that
     the VFS specific infrastructure could be built on top.

   - Cleanup and consolidation of the sleep() infrastructure

       - Move all sleep and timeout functions into one file

       - Rework udelay() and ndelay() into proper documented inline
         functions and replace the hardcoded magic numbers by proper
         defines.

       - Rework the fsleep() implementation to take the reality of the
         timer wheel granularity on different HZ values into account.
         Right now the boundaries are hard coded time ranges which fail
         to provide the requested accuracy on different HZ settings.

       - Update documentation for all sleep/timeout related functions
         and fix up stale documentation links all over the place

       - Fixup a few usage sites

   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
     clocks

     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as
     that's the clock which drives the timekeeping adjustments via the
     various user space daemons through adjtimex(2).

     The non TAI based clock domains are accessible via the file
     descriptor based posix clocks, but their usability is very limited.
     They can't be accessed fast as they always go all the way out to
     the hardware and they cannot be utilized in the kernel itself.

     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.

     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the
     kernel provides access to clock MONOTONIC, REALTIME etc.

     Instead of creating a duplicated infrastructure this rework
     converts timekeeping and adjtimex(2) into generic functionality
     which operates on pointers to data structures instead of using
     static variables.

     This allows to provide time accessors and adjtimex(2) functionality
     for the independent PTP clocks in a subsequent step.

   - Consolidate hrtimer initialization

     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.

     That's an extra unnecessary step and makes Rust support less
     straight forward than it should be.

     Provide a new set of hrtimer_setup*() functions and convert the
     core code and a few usage sites of the less frequently used
     interfaces over.

     The bulk of the htimer_init() to hrtimer_setup() conversion is
     already prepared and scheduled for the next merge window.

   - Drivers:

       - Ensure that the global timekeeping clocksource is utilizing the
         cluster 0 timer on MIPS multi-cluster systems.

         Otherwise CPUs on different clusters use their cluster specific
         clocksource which is not guaranteed to be synchronized with
         other clusters.

       - Mostly boring cleanups, fixes, improvements and code movement"

* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
  posix-timers: Fix spurious warning on double enqueue versus do_exit()
  clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
  clocksource/drivers/gpx: Remove redundant casts
  clocksource/drivers/timer-ti-dm: Fix child node refcount handling
  dt-bindings: timer: actions,owl-timer: convert to YAML
  clocksource/drivers/ralink: Add Ralink System Tick Counter driver
  clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
  clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
  clocksource/drivers:sp804: Make user selectable
  clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
  hrtimers: Delete hrtimer_init_on_stack()
  alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
  io_uring: Switch to use hrtimer_setup_on_stack()
  sched/idle: Switch to use hrtimer_setup_on_stack()
  hrtimers: Delete hrtimer_init_sleeper_on_stack()
  wait: Switch to use hrtimer_setup_sleeper_on_stack()
  timers: Switch to use hrtimer_setup_sleeper_on_stack()
  net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
  futex: Switch to use hrtimer_setup_sleeper_on_stack()
  fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
  ...
2024-11-19 16:35:06 -08:00

683 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/io_uring.h>
#include <trace/events/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "refs.h"
#include "cancel.h"
#include "timeout.h"
struct io_timeout {
struct file *file;
u32 off;
u32 target_seq;
u32 repeats;
struct list_head list;
/* head of the link, used by linked timeouts only */
struct io_kiocb *head;
/* for linked completions */
struct io_kiocb *prev;
};
struct io_timeout_rem {
struct file *file;
u64 addr;
/* timeout update */
struct timespec64 ts;
u32 flags;
bool ltimeout;
};
static inline bool io_is_timeout_noseq(struct io_kiocb *req)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_timeout_data *data = req->async_data;
return !timeout->off || data->flags & IORING_TIMEOUT_MULTISHOT;
}
static inline void io_put_req(struct io_kiocb *req)
{
if (req_ref_put_and_test(req)) {
io_queue_next(req);
io_free_req(req);
}
}
static inline bool io_timeout_finish(struct io_timeout *timeout,
struct io_timeout_data *data)
{
if (!(data->flags & IORING_TIMEOUT_MULTISHOT))
return true;
if (!timeout->off || (timeout->repeats && --timeout->repeats))
return false;
return true;
}
static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer);
static void io_timeout_complete(struct io_kiocb *req, struct io_tw_state *ts)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_timeout_data *data = req->async_data;
struct io_ring_ctx *ctx = req->ctx;
if (!io_timeout_finish(timeout, data)) {
if (io_req_post_cqe(req, -ETIME, IORING_CQE_F_MORE)) {
/* re-arm timer */
spin_lock_irq(&ctx->timeout_lock);
list_add(&timeout->list, ctx->timeout_list.prev);
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
spin_unlock_irq(&ctx->timeout_lock);
return;
}
}
io_req_task_complete(req, ts);
}
static bool io_kill_timeout(struct io_kiocb *req, int status)
__must_hold(&req->ctx->timeout_lock)
{
struct io_timeout_data *io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) != -1) {
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
if (status)
req_set_fail(req);
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
list_del_init(&timeout->list);
io_req_queue_tw_complete(req, status);
return true;
}
return false;
}
__cold void io_flush_timeouts(struct io_ring_ctx *ctx)
{
u32 seq;
struct io_timeout *timeout, *tmp;
spin_lock_irq(&ctx->timeout_lock);
seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
list_for_each_entry_safe(timeout, tmp, &ctx->timeout_list, list) {
struct io_kiocb *req = cmd_to_io_kiocb(timeout);
u32 events_needed, events_got;
if (io_is_timeout_noseq(req))
break;
/*
* Since seq can easily wrap around over time, subtract
* the last seq at which timeouts were flushed before comparing.
* Assuming not more than 2^31-1 events have happened since,
* these subtractions won't have wrapped, so we can check if
* target is in [last_seq, current_seq] by comparing the two.
*/
events_needed = timeout->target_seq - ctx->cq_last_tm_flush;
events_got = seq - ctx->cq_last_tm_flush;
if (events_got < events_needed)
break;
io_kill_timeout(req, 0);
}
ctx->cq_last_tm_flush = seq;
spin_unlock_irq(&ctx->timeout_lock);
}
static void io_req_tw_fail_links(struct io_kiocb *link, struct io_tw_state *ts)
{
io_tw_lock(link->ctx, ts);
while (link) {
struct io_kiocb *nxt = link->link;
long res = -ECANCELED;
if (link->flags & REQ_F_FAIL)
res = link->cqe.res;
link->link = NULL;
io_req_set_res(link, res, 0);
io_req_task_complete(link, ts);
link = nxt;
}
}
static void io_fail_links(struct io_kiocb *req)
__must_hold(&req->ctx->completion_lock)
{
struct io_kiocb *link = req->link;
bool ignore_cqes = req->flags & REQ_F_SKIP_LINK_CQES;
if (!link)
return;
while (link) {
if (ignore_cqes)
link->flags |= REQ_F_CQE_SKIP;
else
link->flags &= ~REQ_F_CQE_SKIP;
trace_io_uring_fail_link(req, link);
link = link->link;
}
link = req->link;
link->io_task_work.func = io_req_tw_fail_links;
io_req_task_work_add(link);
req->link = NULL;
}
static inline void io_remove_next_linked(struct io_kiocb *req)
{
struct io_kiocb *nxt = req->link;
req->link = nxt->link;
nxt->link = NULL;
}
void io_disarm_next(struct io_kiocb *req)
__must_hold(&req->ctx->completion_lock)
{
struct io_kiocb *link = NULL;
if (req->flags & REQ_F_ARM_LTIMEOUT) {
link = req->link;
req->flags &= ~REQ_F_ARM_LTIMEOUT;
if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
io_remove_next_linked(req);
io_req_queue_tw_complete(link, -ECANCELED);
}
} else if (req->flags & REQ_F_LINK_TIMEOUT) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->timeout_lock);
link = io_disarm_linked_timeout(req);
spin_unlock_irq(&ctx->timeout_lock);
if (link)
io_req_queue_tw_complete(link, -ECANCELED);
}
if (unlikely((req->flags & REQ_F_FAIL) &&
!(req->flags & REQ_F_HARDLINK)))
io_fail_links(req);
}
struct io_kiocb *__io_disarm_linked_timeout(struct io_kiocb *req,
struct io_kiocb *link)
__must_hold(&req->ctx->completion_lock)
__must_hold(&req->ctx->timeout_lock)
{
struct io_timeout_data *io = link->async_data;
struct io_timeout *timeout = io_kiocb_to_cmd(link, struct io_timeout);
io_remove_next_linked(req);
timeout->head = NULL;
if (hrtimer_try_to_cancel(&io->timer) != -1) {
list_del(&timeout->list);
return link;
}
return NULL;
}
static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *req = data->req;
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->timeout_lock, flags);
list_del_init(&timeout->list);
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
spin_unlock_irqrestore(&ctx->timeout_lock, flags);
if (!(data->flags & IORING_TIMEOUT_ETIME_SUCCESS))
req_set_fail(req);
io_req_set_res(req, -ETIME, 0);
req->io_task_work.func = io_timeout_complete;
io_req_task_work_add(req);
return HRTIMER_NORESTART;
}
static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
struct io_cancel_data *cd)
__must_hold(&ctx->timeout_lock)
{
struct io_timeout *timeout;
struct io_timeout_data *io;
struct io_kiocb *req = NULL;
list_for_each_entry(timeout, &ctx->timeout_list, list) {
struct io_kiocb *tmp = cmd_to_io_kiocb(timeout);
if (io_cancel_req_match(tmp, cd)) {
req = tmp;
break;
}
}
if (!req)
return ERR_PTR(-ENOENT);
io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) == -1)
return ERR_PTR(-EALREADY);
timeout = io_kiocb_to_cmd(req, struct io_timeout);
list_del_init(&timeout->list);
return req;
}
int io_timeout_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
__must_hold(&ctx->completion_lock)
{
struct io_kiocb *req;
spin_lock_irq(&ctx->timeout_lock);
req = io_timeout_extract(ctx, cd);
spin_unlock_irq(&ctx->timeout_lock);
if (IS_ERR(req))
return PTR_ERR(req);
io_req_task_queue_fail(req, -ECANCELED);
return 0;
}
static void io_req_task_link_timeout(struct io_kiocb *req, struct io_tw_state *ts)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_kiocb *prev = timeout->prev;
int ret;
if (prev) {
if (!io_should_terminate_tw()) {
struct io_cancel_data cd = {
.ctx = req->ctx,
.data = prev->cqe.user_data,
};
ret = io_try_cancel(req->tctx, &cd, 0);
} else {
ret = -ECANCELED;
}
io_req_set_res(req, ret ?: -ETIME, 0);
io_req_task_complete(req, ts);
io_put_req(prev);
} else {
io_req_set_res(req, -ETIME, 0);
io_req_task_complete(req, ts);
}
}
static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *prev, *req = data->req;
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->timeout_lock, flags);
prev = timeout->head;
timeout->head = NULL;
/*
* We don't expect the list to be empty, that will only happen if we
* race with the completion of the linked work.
*/
if (prev) {
io_remove_next_linked(prev);
if (!req_ref_inc_not_zero(prev))
prev = NULL;
}
list_del(&timeout->list);
timeout->prev = prev;
spin_unlock_irqrestore(&ctx->timeout_lock, flags);
req->io_task_work.func = io_req_task_link_timeout;
io_req_task_work_add(req);
return HRTIMER_NORESTART;
}
static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
{
switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
case IORING_TIMEOUT_BOOTTIME:
return CLOCK_BOOTTIME;
case IORING_TIMEOUT_REALTIME:
return CLOCK_REALTIME;
default:
/* can't happen, vetted at prep time */
WARN_ON_ONCE(1);
fallthrough;
case 0:
return CLOCK_MONOTONIC;
}
}
static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
struct timespec64 *ts, enum hrtimer_mode mode)
__must_hold(&ctx->timeout_lock)
{
struct io_timeout_data *io;
struct io_timeout *timeout;
struct io_kiocb *req = NULL;
list_for_each_entry(timeout, &ctx->ltimeout_list, list) {
struct io_kiocb *tmp = cmd_to_io_kiocb(timeout);
if (user_data == tmp->cqe.user_data) {
req = tmp;
break;
}
}
if (!req)
return -ENOENT;
io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) == -1)
return -EALREADY;
hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
io->timer.function = io_link_timeout_fn;
hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
return 0;
}
static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
struct timespec64 *ts, enum hrtimer_mode mode)
__must_hold(&ctx->timeout_lock)
{
struct io_cancel_data cd = { .ctx = ctx, .data = user_data, };
struct io_kiocb *req = io_timeout_extract(ctx, &cd);
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_timeout_data *data;
if (IS_ERR(req))
return PTR_ERR(req);
timeout->off = 0; /* noseq */
data = req->async_data;
list_add_tail(&timeout->list, &ctx->timeout_list);
hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
return 0;
}
int io_timeout_remove_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_timeout_rem *tr = io_kiocb_to_cmd(req, struct io_timeout_rem);
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->buf_index || sqe->len || sqe->splice_fd_in)
return -EINVAL;
tr->ltimeout = false;
tr->addr = READ_ONCE(sqe->addr);
tr->flags = READ_ONCE(sqe->timeout_flags);
if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
return -EINVAL;
if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
tr->ltimeout = true;
if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
return -EINVAL;
if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
return -EFAULT;
if (tr->ts.tv_sec < 0 || tr->ts.tv_nsec < 0)
return -EINVAL;
} else if (tr->flags) {
/* timeout removal doesn't support flags */
return -EINVAL;
}
return 0;
}
static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
{
return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL;
}
/*
* Remove or update an existing timeout command
*/
int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_timeout_rem *tr = io_kiocb_to_cmd(req, struct io_timeout_rem);
struct io_ring_ctx *ctx = req->ctx;
int ret;
if (!(tr->flags & IORING_TIMEOUT_UPDATE)) {
struct io_cancel_data cd = { .ctx = ctx, .data = tr->addr, };
spin_lock(&ctx->completion_lock);
ret = io_timeout_cancel(ctx, &cd);
spin_unlock(&ctx->completion_lock);
} else {
enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
spin_lock_irq(&ctx->timeout_lock);
if (tr->ltimeout)
ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
else
ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
spin_unlock_irq(&ctx->timeout_lock);
}
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static int __io_timeout_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe,
bool is_timeout_link)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_timeout_data *data;
unsigned flags;
u32 off = READ_ONCE(sqe->off);
if (sqe->buf_index || sqe->len != 1 || sqe->splice_fd_in)
return -EINVAL;
if (off && is_timeout_link)
return -EINVAL;
flags = READ_ONCE(sqe->timeout_flags);
if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK |
IORING_TIMEOUT_ETIME_SUCCESS |
IORING_TIMEOUT_MULTISHOT))
return -EINVAL;
/* more than one clock specified is invalid, obviously */
if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
return -EINVAL;
/* multishot requests only make sense with rel values */
if (!(~flags & (IORING_TIMEOUT_MULTISHOT | IORING_TIMEOUT_ABS)))
return -EINVAL;
INIT_LIST_HEAD(&timeout->list);
timeout->off = off;
if (unlikely(off && !req->ctx->off_timeout_used))
req->ctx->off_timeout_used = true;
/*
* for multishot reqs w/ fixed nr of repeats, repeats tracks the
* remaining nr
*/
timeout->repeats = 0;
if ((flags & IORING_TIMEOUT_MULTISHOT) && off > 0)
timeout->repeats = off;
if (WARN_ON_ONCE(req_has_async_data(req)))
return -EFAULT;
if (io_alloc_async_data(req))
return -ENOMEM;
data = req->async_data;
data->req = req;
data->flags = flags;
if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
return -EFAULT;
if (data->ts.tv_sec < 0 || data->ts.tv_nsec < 0)
return -EINVAL;
data->mode = io_translate_timeout_mode(flags);
hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
if (is_timeout_link) {
struct io_submit_link *link = &req->ctx->submit_state.link;
if (!link->head)
return -EINVAL;
if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
return -EINVAL;
timeout->head = link->last;
link->last->flags |= REQ_F_ARM_LTIMEOUT;
}
return 0;
}
int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
return __io_timeout_prep(req, sqe, false);
}
int io_link_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
return __io_timeout_prep(req, sqe, true);
}
int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_ring_ctx *ctx = req->ctx;
struct io_timeout_data *data = req->async_data;
struct list_head *entry;
u32 tail, off = timeout->off;
spin_lock_irq(&ctx->timeout_lock);
/*
* sqe->off holds how many events that need to occur for this
* timeout event to be satisfied. If it isn't set, then this is
* a pure timeout request, sequence isn't used.
*/
if (io_is_timeout_noseq(req)) {
entry = ctx->timeout_list.prev;
goto add;
}
tail = data_race(ctx->cached_cq_tail) - atomic_read(&ctx->cq_timeouts);
timeout->target_seq = tail + off;
/* Update the last seq here in case io_flush_timeouts() hasn't.
* This is safe because ->completion_lock is held, and submissions
* and completions are never mixed in the same ->completion_lock section.
*/
ctx->cq_last_tm_flush = tail;
/*
* Insertion sort, ensuring the first entry in the list is always
* the one we need first.
*/
list_for_each_prev(entry, &ctx->timeout_list) {
struct io_timeout *nextt = list_entry(entry, struct io_timeout, list);
struct io_kiocb *nxt = cmd_to_io_kiocb(nextt);
if (io_is_timeout_noseq(nxt))
continue;
/* nxt.seq is behind @tail, otherwise would've been completed */
if (off >= nextt->target_seq - tail)
break;
}
add:
list_add(&timeout->list, entry);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
spin_unlock_irq(&ctx->timeout_lock);
return IOU_ISSUE_SKIP_COMPLETE;
}
void io_queue_linked_timeout(struct io_kiocb *req)
{
struct io_timeout *timeout = io_kiocb_to_cmd(req, struct io_timeout);
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->timeout_lock);
/*
* If the back reference is NULL, then our linked request finished
* before we got a chance to setup the timer
*/
if (timeout->head) {
struct io_timeout_data *data = req->async_data;
data->timer.function = io_link_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
data->mode);
list_add_tail(&timeout->list, &ctx->ltimeout_list);
}
spin_unlock_irq(&ctx->timeout_lock);
/* drop submission reference */
io_put_req(req);
}
static bool io_match_task(struct io_kiocb *head, struct io_uring_task *tctx,
bool cancel_all)
__must_hold(&head->ctx->timeout_lock)
{
struct io_kiocb *req;
if (tctx && head->tctx != tctx)
return false;
if (cancel_all)
return true;
io_for_each_link(req, head) {
if (req->flags & REQ_F_INFLIGHT)
return true;
}
return false;
}
/* Returns true if we found and killed one or more timeouts */
__cold bool io_kill_timeouts(struct io_ring_ctx *ctx, struct io_uring_task *tctx,
bool cancel_all)
{
struct io_timeout *timeout, *tmp;
int canceled = 0;
/*
* completion_lock is needed for io_match_task(). Take it before
* timeout_lockfirst to keep locking ordering.
*/
spin_lock(&ctx->completion_lock);
spin_lock_irq(&ctx->timeout_lock);
list_for_each_entry_safe(timeout, tmp, &ctx->timeout_list, list) {
struct io_kiocb *req = cmd_to_io_kiocb(timeout);
if (io_match_task(req, tctx, cancel_all) &&
io_kill_timeout(req, -ECANCELED))
canceled++;
}
spin_unlock_irq(&ctx->timeout_lock);
spin_unlock(&ctx->completion_lock);
return canceled != 0;
}