linux/crypto/ecdsa.c
Lukas Wunner b04163863c crypto: ecdsa - Support P1363 signature decoding
Alternatively to the X9.62 encoding of ecdsa signatures, which uses
ASN.1 and is already supported by the kernel, there's another common
encoding called P1363.  It stores r and s as the concatenation of two
big endian, unsigned integers.  The name originates from IEEE P1363.

Add a P1363 template in support of the forthcoming SPDM library
(Security Protocol and Data Model) for PCI device authentication.

P1363 is prescribed by SPDM 1.2.1 margin no 44:

   "For ECDSA signatures, excluding SM2, in SPDM, the signature shall be
    the concatenation of r and s.  The size of r shall be the size of
    the selected curve.  Likewise, the size of s shall be the size of
    the selected curve.  See BaseAsymAlgo in NEGOTIATE_ALGORITHMS for
    the size of r and s.  The byte order for r and s shall be in big
    endian order.  When placing ECDSA signatures into an SPDM signature
    field, r shall come first followed by s."

Link: https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.2.1.pdf
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-10-05 13:22:05 +08:00

348 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2021 IBM Corporation
*/
#include <linux/module.h>
#include <crypto/internal/ecc.h>
#include <crypto/internal/sig.h>
#include <crypto/ecdh.h>
#include <crypto/sha2.h>
#include <crypto/sig.h>
struct ecc_ctx {
unsigned int curve_id;
const struct ecc_curve *curve;
bool pub_key_set;
u64 x[ECC_MAX_DIGITS]; /* pub key x and y coordinates */
u64 y[ECC_MAX_DIGITS];
struct ecc_point pub_key;
};
static int _ecdsa_verify(struct ecc_ctx *ctx, const u64 *hash, const u64 *r, const u64 *s)
{
const struct ecc_curve *curve = ctx->curve;
unsigned int ndigits = curve->g.ndigits;
u64 s1[ECC_MAX_DIGITS];
u64 u1[ECC_MAX_DIGITS];
u64 u2[ECC_MAX_DIGITS];
u64 x1[ECC_MAX_DIGITS];
u64 y1[ECC_MAX_DIGITS];
struct ecc_point res = ECC_POINT_INIT(x1, y1, ndigits);
/* 0 < r < n and 0 < s < n */
if (vli_is_zero(r, ndigits) || vli_cmp(r, curve->n, ndigits) >= 0 ||
vli_is_zero(s, ndigits) || vli_cmp(s, curve->n, ndigits) >= 0)
return -EBADMSG;
/* hash is given */
pr_devel("hash : %016llx %016llx ... %016llx\n",
hash[ndigits - 1], hash[ndigits - 2], hash[0]);
/* s1 = (s^-1) mod n */
vli_mod_inv(s1, s, curve->n, ndigits);
/* u1 = (hash * s1) mod n */
vli_mod_mult_slow(u1, hash, s1, curve->n, ndigits);
/* u2 = (r * s1) mod n */
vli_mod_mult_slow(u2, r, s1, curve->n, ndigits);
/* res = u1*G + u2 * pub_key */
ecc_point_mult_shamir(&res, u1, &curve->g, u2, &ctx->pub_key, curve);
/* res.x = res.x mod n (if res.x > order) */
if (unlikely(vli_cmp(res.x, curve->n, ndigits) == 1))
/* faster alternative for NIST p521, p384, p256 & p192 */
vli_sub(res.x, res.x, curve->n, ndigits);
if (!vli_cmp(res.x, r, ndigits))
return 0;
return -EKEYREJECTED;
}
/*
* Verify an ECDSA signature.
*/
static int ecdsa_verify(struct crypto_sig *tfm,
const void *src, unsigned int slen,
const void *digest, unsigned int dlen)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
size_t bufsize = ctx->curve->g.ndigits * sizeof(u64);
const struct ecdsa_raw_sig *sig = src;
u64 hash[ECC_MAX_DIGITS];
if (unlikely(!ctx->pub_key_set))
return -EINVAL;
if (slen != sizeof(*sig))
return -EINVAL;
if (bufsize > dlen)
bufsize = dlen;
ecc_digits_from_bytes(digest, bufsize, hash, ctx->curve->g.ndigits);
return _ecdsa_verify(ctx, hash, sig->r, sig->s);
}
static int ecdsa_ecc_ctx_init(struct ecc_ctx *ctx, unsigned int curve_id)
{
ctx->curve_id = curve_id;
ctx->curve = ecc_get_curve(curve_id);
if (!ctx->curve)
return -EINVAL;
return 0;
}
static void ecdsa_ecc_ctx_deinit(struct ecc_ctx *ctx)
{
ctx->pub_key_set = false;
}
static int ecdsa_ecc_ctx_reset(struct ecc_ctx *ctx)
{
unsigned int curve_id = ctx->curve_id;
int ret;
ecdsa_ecc_ctx_deinit(ctx);
ret = ecdsa_ecc_ctx_init(ctx, curve_id);
if (ret == 0)
ctx->pub_key = ECC_POINT_INIT(ctx->x, ctx->y,
ctx->curve->g.ndigits);
return ret;
}
/*
* Set the public ECC key as defined by RFC5480 section 2.2 "Subject Public
* Key". Only the uncompressed format is supported.
*/
static int ecdsa_set_pub_key(struct crypto_sig *tfm, const void *key,
unsigned int keylen)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
unsigned int digitlen, ndigits;
const unsigned char *d = key;
int ret;
ret = ecdsa_ecc_ctx_reset(ctx);
if (ret < 0)
return ret;
if (keylen < 1 || ((keylen - 1) & 1) != 0)
return -EINVAL;
/* we only accept uncompressed format indicated by '4' */
if (d[0] != 4)
return -EINVAL;
keylen--;
digitlen = keylen >> 1;
ndigits = DIV_ROUND_UP(digitlen, sizeof(u64));
if (ndigits != ctx->curve->g.ndigits)
return -EINVAL;
d++;
ecc_digits_from_bytes(d, digitlen, ctx->pub_key.x, ndigits);
ecc_digits_from_bytes(&d[digitlen], digitlen, ctx->pub_key.y, ndigits);
ret = ecc_is_pubkey_valid_full(ctx->curve, &ctx->pub_key);
ctx->pub_key_set = ret == 0;
return ret;
}
static void ecdsa_exit_tfm(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
ecdsa_ecc_ctx_deinit(ctx);
}
static unsigned int ecdsa_key_size(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
return DIV_ROUND_UP(ctx->curve->nbits, 8);
}
static unsigned int ecdsa_digest_size(struct crypto_sig *tfm)
{
/*
* ECDSA key sizes are much smaller than RSA, and thus could
* operate on (hashed) inputs that are larger than the key size.
* E.g. SHA384-hashed input used with secp256r1 based keys.
* Return the largest supported hash size (SHA512).
*/
return SHA512_DIGEST_SIZE;
}
static int ecdsa_nist_p521_init_tfm(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P521);
}
static struct sig_alg ecdsa_nist_p521 = {
.verify = ecdsa_verify,
.set_pub_key = ecdsa_set_pub_key,
.key_size = ecdsa_key_size,
.digest_size = ecdsa_digest_size,
.init = ecdsa_nist_p521_init_tfm,
.exit = ecdsa_exit_tfm,
.base = {
.cra_name = "ecdsa-nist-p521",
.cra_driver_name = "ecdsa-nist-p521-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct ecc_ctx),
},
};
static int ecdsa_nist_p384_init_tfm(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P384);
}
static struct sig_alg ecdsa_nist_p384 = {
.verify = ecdsa_verify,
.set_pub_key = ecdsa_set_pub_key,
.key_size = ecdsa_key_size,
.digest_size = ecdsa_digest_size,
.init = ecdsa_nist_p384_init_tfm,
.exit = ecdsa_exit_tfm,
.base = {
.cra_name = "ecdsa-nist-p384",
.cra_driver_name = "ecdsa-nist-p384-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct ecc_ctx),
},
};
static int ecdsa_nist_p256_init_tfm(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P256);
}
static struct sig_alg ecdsa_nist_p256 = {
.verify = ecdsa_verify,
.set_pub_key = ecdsa_set_pub_key,
.key_size = ecdsa_key_size,
.digest_size = ecdsa_digest_size,
.init = ecdsa_nist_p256_init_tfm,
.exit = ecdsa_exit_tfm,
.base = {
.cra_name = "ecdsa-nist-p256",
.cra_driver_name = "ecdsa-nist-p256-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct ecc_ctx),
},
};
static int ecdsa_nist_p192_init_tfm(struct crypto_sig *tfm)
{
struct ecc_ctx *ctx = crypto_sig_ctx(tfm);
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P192);
}
static struct sig_alg ecdsa_nist_p192 = {
.verify = ecdsa_verify,
.set_pub_key = ecdsa_set_pub_key,
.key_size = ecdsa_key_size,
.digest_size = ecdsa_digest_size,
.init = ecdsa_nist_p192_init_tfm,
.exit = ecdsa_exit_tfm,
.base = {
.cra_name = "ecdsa-nist-p192",
.cra_driver_name = "ecdsa-nist-p192-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct ecc_ctx),
},
};
static bool ecdsa_nist_p192_registered;
static int __init ecdsa_init(void)
{
int ret;
/* NIST p192 may not be available in FIPS mode */
ret = crypto_register_sig(&ecdsa_nist_p192);
ecdsa_nist_p192_registered = ret == 0;
ret = crypto_register_sig(&ecdsa_nist_p256);
if (ret)
goto nist_p256_error;
ret = crypto_register_sig(&ecdsa_nist_p384);
if (ret)
goto nist_p384_error;
ret = crypto_register_sig(&ecdsa_nist_p521);
if (ret)
goto nist_p521_error;
ret = crypto_register_template(&ecdsa_x962_tmpl);
if (ret)
goto x962_tmpl_error;
ret = crypto_register_template(&ecdsa_p1363_tmpl);
if (ret)
goto p1363_tmpl_error;
return 0;
p1363_tmpl_error:
crypto_unregister_template(&ecdsa_x962_tmpl);
x962_tmpl_error:
crypto_unregister_sig(&ecdsa_nist_p521);
nist_p521_error:
crypto_unregister_sig(&ecdsa_nist_p384);
nist_p384_error:
crypto_unregister_sig(&ecdsa_nist_p256);
nist_p256_error:
if (ecdsa_nist_p192_registered)
crypto_unregister_sig(&ecdsa_nist_p192);
return ret;
}
static void __exit ecdsa_exit(void)
{
crypto_unregister_template(&ecdsa_x962_tmpl);
crypto_unregister_template(&ecdsa_p1363_tmpl);
if (ecdsa_nist_p192_registered)
crypto_unregister_sig(&ecdsa_nist_p192);
crypto_unregister_sig(&ecdsa_nist_p256);
crypto_unregister_sig(&ecdsa_nist_p384);
crypto_unregister_sig(&ecdsa_nist_p521);
}
subsys_initcall(ecdsa_init);
module_exit(ecdsa_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stefan Berger <stefanb@linux.ibm.com>");
MODULE_DESCRIPTION("ECDSA generic algorithm");
MODULE_ALIAS_CRYPTO("ecdsa-nist-p192");
MODULE_ALIAS_CRYPTO("ecdsa-nist-p256");
MODULE_ALIAS_CRYPTO("ecdsa-nist-p384");
MODULE_ALIAS_CRYPTO("ecdsa-nist-p521");
MODULE_ALIAS_CRYPTO("ecdsa-generic");