mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:46:16 +00:00
1a6151017e
What psi needs to do on each enqueue and dequeue has gotten more subtle, and the generic sched code trying to distill this into a bool for the callbacks is awkward. Pass the flags directly and let psi parse them. For that to work, the #include "stats.h" (which has the psi callback implementations) needs to be below the flag definitions in "sched.h". Move that section further down, next to some of the other accounting stuff. This also puts the ENQUEUE_SAVE/RESTORE branch behind the psi jump label, slightly reducing overhead when PSI=y but runtime disabled. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241014144358.GB1021@cmpxchg.org
329 lines
10 KiB
C
329 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _KERNEL_STATS_H
|
|
#define _KERNEL_STATS_H
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
|
|
extern struct static_key_false sched_schedstats;
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq) {
|
|
rq->rq_sched_info.run_delay += delta;
|
|
rq->rq_sched_info.pcount++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_cpu_time += delta;
|
|
}
|
|
|
|
static inline void
|
|
rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_sched_info.run_delay += delta;
|
|
}
|
|
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
|
|
#define __schedstat_inc(var) do { var++; } while (0)
|
|
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
|
|
#define __schedstat_add(var, amt) do { var += (amt); } while (0)
|
|
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
|
|
#define __schedstat_set(var, val) do { var = (val); } while (0)
|
|
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
|
|
#define schedstat_val(var) (var)
|
|
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
|
|
|
|
void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
|
|
void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
|
|
static inline void
|
|
check_schedstat_required(void)
|
|
{
|
|
if (schedstat_enabled())
|
|
return;
|
|
|
|
/* Force schedstat enabled if a dependent tracepoint is active */
|
|
if (trace_sched_stat_wait_enabled() ||
|
|
trace_sched_stat_sleep_enabled() ||
|
|
trace_sched_stat_iowait_enabled() ||
|
|
trace_sched_stat_blocked_enabled() ||
|
|
trace_sched_stat_runtime_enabled())
|
|
printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
|
|
}
|
|
|
|
#else /* !CONFIG_SCHEDSTATS: */
|
|
|
|
static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
|
|
static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
|
|
static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
|
|
# define schedstat_enabled() 0
|
|
# define __schedstat_inc(var) do { } while (0)
|
|
# define schedstat_inc(var) do { } while (0)
|
|
# define __schedstat_add(var, amt) do { } while (0)
|
|
# define schedstat_add(var, amt) do { } while (0)
|
|
# define __schedstat_set(var, val) do { } while (0)
|
|
# define schedstat_set(var, val) do { } while (0)
|
|
# define schedstat_val(var) 0
|
|
# define schedstat_val_or_zero(var) 0
|
|
|
|
# define __update_stats_wait_start(rq, p, stats) do { } while (0)
|
|
# define __update_stats_wait_end(rq, p, stats) do { } while (0)
|
|
# define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0)
|
|
# define check_schedstat_required() do { } while (0)
|
|
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct sched_entity_stats {
|
|
struct sched_entity se;
|
|
struct sched_statistics stats;
|
|
} __no_randomize_layout;
|
|
#endif
|
|
|
|
static inline struct sched_statistics *
|
|
__schedstats_from_se(struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
if (!entity_is_task(se))
|
|
return &container_of(se, struct sched_entity_stats, se)->stats;
|
|
#endif
|
|
return &task_of(se)->stats;
|
|
}
|
|
|
|
#ifdef CONFIG_PSI
|
|
void psi_task_change(struct task_struct *task, int clear, int set);
|
|
void psi_task_switch(struct task_struct *prev, struct task_struct *next,
|
|
bool sleep);
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
|
|
#else
|
|
static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
|
|
struct task_struct *prev) {}
|
|
#endif /*CONFIG_IRQ_TIME_ACCOUNTING */
|
|
/*
|
|
* PSI tracks state that persists across sleeps, such as iowaits and
|
|
* memory stalls. As a result, it has to distinguish between sleeps,
|
|
* where a task's runnable state changes, and migrations, where a task
|
|
* and its runnable state are being moved between CPUs and runqueues.
|
|
*
|
|
* A notable case is a task whose dequeue is delayed. PSI considers
|
|
* those sleeping, but because they are still on the runqueue they can
|
|
* go through migration requeues. In this case, *sleeping* states need
|
|
* to be transferred.
|
|
*/
|
|
static inline void psi_enqueue(struct task_struct *p, int flags)
|
|
{
|
|
int clear = 0, set = 0;
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
/* Same runqueue, nothing changed for psi */
|
|
if (flags & ENQUEUE_RESTORE)
|
|
return;
|
|
|
|
if (p->se.sched_delayed) {
|
|
/* CPU migration of "sleeping" task */
|
|
SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
|
|
if (p->in_memstall)
|
|
set |= TSK_MEMSTALL;
|
|
if (p->in_iowait)
|
|
set |= TSK_IOWAIT;
|
|
} else if (flags & ENQUEUE_MIGRATED) {
|
|
/* CPU migration of runnable task */
|
|
set = TSK_RUNNING;
|
|
if (p->in_memstall)
|
|
set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
|
|
} else {
|
|
/* Wakeup of new or sleeping task */
|
|
if (p->in_iowait)
|
|
clear |= TSK_IOWAIT;
|
|
set = TSK_RUNNING;
|
|
if (p->in_memstall)
|
|
set |= TSK_MEMSTALL_RUNNING;
|
|
}
|
|
|
|
psi_task_change(p, clear, set);
|
|
}
|
|
|
|
static inline void psi_dequeue(struct task_struct *p, int flags)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
/* Same runqueue, nothing changed for psi */
|
|
if (flags & DEQUEUE_SAVE)
|
|
return;
|
|
|
|
/*
|
|
* A voluntary sleep is a dequeue followed by a task switch. To
|
|
* avoid walking all ancestors twice, psi_task_switch() handles
|
|
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
|
|
* Do nothing here.
|
|
*/
|
|
if (flags & DEQUEUE_SLEEP)
|
|
return;
|
|
|
|
/*
|
|
* When migrating a task to another CPU, clear all psi
|
|
* state. The enqueue callback above will work it out.
|
|
*/
|
|
psi_task_change(p, p->psi_flags, 0);
|
|
}
|
|
|
|
static inline void psi_ttwu_dequeue(struct task_struct *p)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
/*
|
|
* Is the task being migrated during a wakeup? Make sure to
|
|
* deregister its sleep-persistent psi states from the old
|
|
* queue, and let psi_enqueue() know it has to requeue.
|
|
*/
|
|
if (unlikely(p->psi_flags)) {
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
psi_task_change(p, p->psi_flags, 0);
|
|
__task_rq_unlock(rq, &rf);
|
|
}
|
|
}
|
|
|
|
static inline void psi_sched_switch(struct task_struct *prev,
|
|
struct task_struct *next,
|
|
bool sleep)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
psi_task_switch(prev, next, sleep);
|
|
}
|
|
|
|
#else /* CONFIG_PSI */
|
|
static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
|
|
static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
|
|
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
|
|
static inline void psi_sched_switch(struct task_struct *prev,
|
|
struct task_struct *next,
|
|
bool sleep) {}
|
|
static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
|
|
struct task_struct *prev) {}
|
|
#endif /* CONFIG_PSI */
|
|
|
|
#ifdef CONFIG_SCHED_INFO
|
|
/*
|
|
* We are interested in knowing how long it was from the *first* time a
|
|
* task was queued to the time that it finally hit a CPU, we call this routine
|
|
* from dequeue_task() to account for possible rq->clock skew across CPUs. The
|
|
* delta taken on each CPU would annul the skew.
|
|
*/
|
|
static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long delta = 0;
|
|
|
|
if (!t->sched_info.last_queued)
|
|
return;
|
|
|
|
delta = rq_clock(rq) - t->sched_info.last_queued;
|
|
t->sched_info.last_queued = 0;
|
|
t->sched_info.run_delay += delta;
|
|
|
|
rq_sched_info_dequeue(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* Called when a task finally hits the CPU. We can now calculate how
|
|
* long it was waiting to run. We also note when it began so that we
|
|
* can keep stats on how long its time-slice is.
|
|
*/
|
|
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long now, delta = 0;
|
|
|
|
if (!t->sched_info.last_queued)
|
|
return;
|
|
|
|
now = rq_clock(rq);
|
|
delta = now - t->sched_info.last_queued;
|
|
t->sched_info.last_queued = 0;
|
|
t->sched_info.run_delay += delta;
|
|
t->sched_info.last_arrival = now;
|
|
t->sched_info.pcount++;
|
|
|
|
rq_sched_info_arrive(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
* the timestamp if it is already not set. It's assumed that
|
|
* sched_info_dequeue() will clear that stamp when appropriate.
|
|
*/
|
|
static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
|
|
{
|
|
if (!t->sched_info.last_queued)
|
|
t->sched_info.last_queued = rq_clock(rq);
|
|
}
|
|
|
|
/*
|
|
* Called when a process ceases being the active-running process involuntarily
|
|
* due, typically, to expiring its time slice (this may also be called when
|
|
* switching to the idle task). Now we can calculate how long we ran.
|
|
* Also, if the process is still in the TASK_RUNNING state, call
|
|
* sched_info_enqueue() to mark that it has now again started waiting on
|
|
* the runqueue.
|
|
*/
|
|
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
|
|
|
|
rq_sched_info_depart(rq, delta);
|
|
|
|
if (task_is_running(t))
|
|
sched_info_enqueue(rq, t);
|
|
}
|
|
|
|
/*
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
* their time slice. (This may also be called when switching to or from
|
|
* the idle task.) We are only called when prev != next.
|
|
*/
|
|
static inline void
|
|
sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
/*
|
|
* prev now departs the CPU. It's not interesting to record
|
|
* stats about how efficient we were at scheduling the idle
|
|
* process, however.
|
|
*/
|
|
if (prev != rq->idle)
|
|
sched_info_depart(rq, prev);
|
|
|
|
if (next != rq->idle)
|
|
sched_info_arrive(rq, next);
|
|
}
|
|
|
|
#else /* !CONFIG_SCHED_INFO: */
|
|
# define sched_info_enqueue(rq, t) do { } while (0)
|
|
# define sched_info_dequeue(rq, t) do { } while (0)
|
|
# define sched_info_switch(rq, t, next) do { } while (0)
|
|
#endif /* CONFIG_SCHED_INFO */
|
|
|
|
#endif /* _KERNEL_STATS_H */
|