linux/kernel/sched/idle.c
Linus Torvalds bf9aa14fc5 A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
 
     posix-timers are currently auto-rearmed by the kernel when the signal
     of the timer is ignored so that the timer signal can be delivered once
     the corresponding signal is unignored.
 
     This requires to throttle the timer to prevent a DoS by small intervals
     and keeps the system pointlessly out of low power states for no value.
     This is a long standing non-trivial problem due to the lock order of
     posix-timer lock and the sighand lock along with life time issues as
     the timer and the sigqueue have different life time rules.
 
     Cure this by:
 
      * Embedding the sigqueue into the timer struct to have the same life
        time rules. Aside of that this also avoids the lookup of the timer
        in the signal delivery and rearm path as it's just a always valid
        container_of() now.
 
      * Queuing ignored timer signals onto a seperate ignored list.
 
      * Moving queued timer signals onto the ignored list when the signal is
        switched to SIG_IGN before it could be delivered.
 
      * Walking the ignored list when SIG_IGN is lifted and requeue the
        signals to the actual signal lists. This allows the signal delivery
        code to rearm the timer.
 
     This also required to consolidate the signal delivery rules so they are
     consistent across all situations. With that all self test scenarios
     finally succeed.
 
   - Core infrastructure for VFS multigrain timestamping
 
     This is required to allow the kernel to use coarse grained time stamps
     by default and switch to fine grained time stamps when inode attributes
     are actively observed via getattr().
 
     These changes have been provided to the VFS tree as well, so that the
     VFS specific infrastructure could be built on top.
 
   - Cleanup and consolidation of the sleep() infrastructure
 
     * Move all sleep and timeout functions into one file
 
     * Rework udelay() and ndelay() into proper documented inline functions
       and replace the hardcoded magic numbers by proper defines.
 
     * Rework the fsleep() implementation to take the reality of the timer
       wheel granularity on different HZ values into account. Right now the
       boundaries are hard coded time ranges which fail to provide the
       requested accuracy on different HZ settings.
 
     * Update documentation for all sleep/timeout related functions and fix
       up stale documentation links all over the place
 
     * Fixup a few usage sites
 
   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
 
     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as that's
     the clock which drives the timekeeping adjustments via the various user
     space daemons through adjtimex(2).
 
     The non TAI based clock domains are accessible via the file descriptor
     based posix clocks, but their usability is very limited. They can't be
     accessed fast as they always go all the way out to the hardware and
     they cannot be utilized in the kernel itself.
 
     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.
 
     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the kernel
     provides access to clock MONOTONIC, REALTIME etc.
 
     Instead of creating a duplicated infrastructure this rework converts
     timekeeping and adjtimex(2) into generic functionality which operates
     on pointers to data structures instead of using static variables.
 
     This allows to provide time accessors and adjtimex(2) functionality for
     the independent PTP clocks in a subsequent step.
 
   - Consolidate hrtimer initialization
 
     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.
 
     That's an extra unnecessary step and makes Rust support less straight
     forward than it should be.
 
     Provide a new set of hrtimer_setup*() functions and convert the core
     code and a few usage sites of the less frequently used interfaces over.
 
     The bulk of the htimer_init() to hrtimer_setup() conversion is already
     prepared and scheduled for the next merge window.
 
   - Drivers:
 
     * Ensure that the global timekeeping clocksource is utilizing the
       cluster 0 timer on MIPS multi-cluster systems.
 
       Otherwise CPUs on different clusters use their cluster specific
       clocksource which is not guaranteed to be synchronized with other
       clusters.
 
     * Mostly boring cleanups, fixes, improvements and code movement
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
 tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
 EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
 bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
 DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
 Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
 AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
 hZZ4hdM9+3T7cg==
 =2VC6
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "A rather large update for timekeeping and timers:

   - The final step to get rid of auto-rearming posix-timers

     posix-timers are currently auto-rearmed by the kernel when the
     signal of the timer is ignored so that the timer signal can be
     delivered once the corresponding signal is unignored.

     This requires to throttle the timer to prevent a DoS by small
     intervals and keeps the system pointlessly out of low power states
     for no value. This is a long standing non-trivial problem due to
     the lock order of posix-timer lock and the sighand lock along with
     life time issues as the timer and the sigqueue have different life
     time rules.

     Cure this by:

       - Embedding the sigqueue into the timer struct to have the same
         life time rules. Aside of that this also avoids the lookup of
         the timer in the signal delivery and rearm path as it's just a
         always valid container_of() now.

       - Queuing ignored timer signals onto a seperate ignored list.

       - Moving queued timer signals onto the ignored list when the
         signal is switched to SIG_IGN before it could be delivered.

       - Walking the ignored list when SIG_IGN is lifted and requeue the
         signals to the actual signal lists. This allows the signal
         delivery code to rearm the timer.

     This also required to consolidate the signal delivery rules so they
     are consistent across all situations. With that all self test
     scenarios finally succeed.

   - Core infrastructure for VFS multigrain timestamping

     This is required to allow the kernel to use coarse grained time
     stamps by default and switch to fine grained time stamps when inode
     attributes are actively observed via getattr().

     These changes have been provided to the VFS tree as well, so that
     the VFS specific infrastructure could be built on top.

   - Cleanup and consolidation of the sleep() infrastructure

       - Move all sleep and timeout functions into one file

       - Rework udelay() and ndelay() into proper documented inline
         functions and replace the hardcoded magic numbers by proper
         defines.

       - Rework the fsleep() implementation to take the reality of the
         timer wheel granularity on different HZ values into account.
         Right now the boundaries are hard coded time ranges which fail
         to provide the requested accuracy on different HZ settings.

       - Update documentation for all sleep/timeout related functions
         and fix up stale documentation links all over the place

       - Fixup a few usage sites

   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
     clocks

     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as
     that's the clock which drives the timekeeping adjustments via the
     various user space daemons through adjtimex(2).

     The non TAI based clock domains are accessible via the file
     descriptor based posix clocks, but their usability is very limited.
     They can't be accessed fast as they always go all the way out to
     the hardware and they cannot be utilized in the kernel itself.

     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.

     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the
     kernel provides access to clock MONOTONIC, REALTIME etc.

     Instead of creating a duplicated infrastructure this rework
     converts timekeeping and adjtimex(2) into generic functionality
     which operates on pointers to data structures instead of using
     static variables.

     This allows to provide time accessors and adjtimex(2) functionality
     for the independent PTP clocks in a subsequent step.

   - Consolidate hrtimer initialization

     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.

     That's an extra unnecessary step and makes Rust support less
     straight forward than it should be.

     Provide a new set of hrtimer_setup*() functions and convert the
     core code and a few usage sites of the less frequently used
     interfaces over.

     The bulk of the htimer_init() to hrtimer_setup() conversion is
     already prepared and scheduled for the next merge window.

   - Drivers:

       - Ensure that the global timekeeping clocksource is utilizing the
         cluster 0 timer on MIPS multi-cluster systems.

         Otherwise CPUs on different clusters use their cluster specific
         clocksource which is not guaranteed to be synchronized with
         other clusters.

       - Mostly boring cleanups, fixes, improvements and code movement"

* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
  posix-timers: Fix spurious warning on double enqueue versus do_exit()
  clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
  clocksource/drivers/gpx: Remove redundant casts
  clocksource/drivers/timer-ti-dm: Fix child node refcount handling
  dt-bindings: timer: actions,owl-timer: convert to YAML
  clocksource/drivers/ralink: Add Ralink System Tick Counter driver
  clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
  clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
  clocksource/drivers:sp804: Make user selectable
  clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
  hrtimers: Delete hrtimer_init_on_stack()
  alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
  io_uring: Switch to use hrtimer_setup_on_stack()
  sched/idle: Switch to use hrtimer_setup_on_stack()
  hrtimers: Delete hrtimer_init_sleeper_on_stack()
  wait: Switch to use hrtimer_setup_sleeper_on_stack()
  timers: Switch to use hrtimer_setup_sleeper_on_stack()
  net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
  futex: Switch to use hrtimer_setup_sleeper_on_stack()
  fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
  ...
2024-11-19 16:35:06 -08:00

540 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic entry points for the idle threads and
* implementation of the idle task scheduling class.
*
* (NOTE: these are not related to SCHED_IDLE batch scheduled
* tasks which are handled in sched/fair.c )
*/
/* Linker adds these: start and end of __cpuidle functions */
extern char __cpuidle_text_start[], __cpuidle_text_end[];
/**
* sched_idle_set_state - Record idle state for the current CPU.
* @idle_state: State to record.
*/
void sched_idle_set_state(struct cpuidle_state *idle_state)
{
idle_set_state(this_rq(), idle_state);
}
static int __read_mostly cpu_idle_force_poll;
void cpu_idle_poll_ctrl(bool enable)
{
if (enable) {
cpu_idle_force_poll++;
} else {
cpu_idle_force_poll--;
WARN_ON_ONCE(cpu_idle_force_poll < 0);
}
}
#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
static int __init cpu_idle_poll_setup(char *__unused)
{
cpu_idle_force_poll = 1;
return 1;
}
__setup("nohlt", cpu_idle_poll_setup);
static int __init cpu_idle_nopoll_setup(char *__unused)
{
cpu_idle_force_poll = 0;
return 1;
}
__setup("hlt", cpu_idle_nopoll_setup);
#endif
static noinline int __cpuidle cpu_idle_poll(void)
{
instrumentation_begin();
trace_cpu_idle(0, smp_processor_id());
stop_critical_timings();
ct_cpuidle_enter();
raw_local_irq_enable();
while (!tif_need_resched() &&
(cpu_idle_force_poll || tick_check_broadcast_expired()))
cpu_relax();
raw_local_irq_disable();
ct_cpuidle_exit();
start_critical_timings();
trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
local_irq_enable();
instrumentation_end();
return 1;
}
/* Weak implementations for optional arch specific functions */
void __weak arch_cpu_idle_prepare(void) { }
void __weak arch_cpu_idle_enter(void) { }
void __weak arch_cpu_idle_exit(void) { }
void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
void __weak arch_cpu_idle(void)
{
cpu_idle_force_poll = 1;
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
static inline void cond_tick_broadcast_enter(void)
{
if (static_branch_unlikely(&arch_needs_tick_broadcast))
tick_broadcast_enter();
}
static inline void cond_tick_broadcast_exit(void)
{
if (static_branch_unlikely(&arch_needs_tick_broadcast))
tick_broadcast_exit();
}
#else
static inline void cond_tick_broadcast_enter(void) { }
static inline void cond_tick_broadcast_exit(void) { }
#endif
/**
* default_idle_call - Default CPU idle routine.
*
* To use when the cpuidle framework cannot be used.
*/
void __cpuidle default_idle_call(void)
{
instrumentation_begin();
if (!current_clr_polling_and_test()) {
cond_tick_broadcast_enter();
trace_cpu_idle(1, smp_processor_id());
stop_critical_timings();
ct_cpuidle_enter();
arch_cpu_idle();
ct_cpuidle_exit();
start_critical_timings();
trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
cond_tick_broadcast_exit();
}
local_irq_enable();
instrumentation_end();
}
static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
if (current_clr_polling_and_test())
return -EBUSY;
return cpuidle_enter_s2idle(drv, dev);
}
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
int next_state)
{
/*
* The idle task must be scheduled, it is pointless to go to idle, just
* update no idle residency and return.
*/
if (current_clr_polling_and_test()) {
dev->last_residency_ns = 0;
local_irq_enable();
return -EBUSY;
}
/*
* Enter the idle state previously returned by the governor decision.
* This function will block until an interrupt occurs and will take
* care of re-enabling the local interrupts
*/
return cpuidle_enter(drv, dev, next_state);
}
/**
* cpuidle_idle_call - the main idle function
*
* NOTE: no locks or semaphores should be used here
*
* On architectures that support TIF_POLLING_NRFLAG, is called with polling
* set, and it returns with polling set. If it ever stops polling, it
* must clear the polling bit.
*/
static void cpuidle_idle_call(void)
{
struct cpuidle_device *dev = cpuidle_get_device();
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
int next_state, entered_state;
/*
* Check if the idle task must be rescheduled. If it is the
* case, exit the function after re-enabling the local IRQ.
*/
if (need_resched()) {
local_irq_enable();
return;
}
if (cpuidle_not_available(drv, dev)) {
tick_nohz_idle_stop_tick();
default_idle_call();
goto exit_idle;
}
/*
* Suspend-to-idle ("s2idle") is a system state in which all user space
* has been frozen, all I/O devices have been suspended and the only
* activity happens here and in interrupts (if any). In that case bypass
* the cpuidle governor and go straight for the deepest idle state
* available. Possibly also suspend the local tick and the entire
* timekeeping to prevent timer interrupts from kicking us out of idle
* until a proper wakeup interrupt happens.
*/
if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
u64 max_latency_ns;
if (idle_should_enter_s2idle()) {
entered_state = call_cpuidle_s2idle(drv, dev);
if (entered_state > 0)
goto exit_idle;
max_latency_ns = U64_MAX;
} else {
max_latency_ns = dev->forced_idle_latency_limit_ns;
}
tick_nohz_idle_stop_tick();
next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
call_cpuidle(drv, dev, next_state);
} else {
bool stop_tick = true;
/*
* Ask the cpuidle framework to choose a convenient idle state.
*/
next_state = cpuidle_select(drv, dev, &stop_tick);
if (stop_tick || tick_nohz_tick_stopped())
tick_nohz_idle_stop_tick();
else
tick_nohz_idle_retain_tick();
entered_state = call_cpuidle(drv, dev, next_state);
/*
* Give the governor an opportunity to reflect on the outcome
*/
cpuidle_reflect(dev, entered_state);
}
exit_idle:
__current_set_polling();
/*
* It is up to the idle functions to re-enable local interrupts
*/
if (WARN_ON_ONCE(irqs_disabled()))
local_irq_enable();
}
/*
* Generic idle loop implementation
*
* Called with polling cleared.
*/
static void do_idle(void)
{
int cpu = smp_processor_id();
/*
* Check if we need to update blocked load
*/
nohz_run_idle_balance(cpu);
/*
* If the arch has a polling bit, we maintain an invariant:
*
* Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
* rq->idle). This means that, if rq->idle has the polling bit set,
* then setting need_resched is guaranteed to cause the CPU to
* reschedule.
*/
__current_set_polling();
tick_nohz_idle_enter();
while (!need_resched()) {
/*
* Interrupts shouldn't be re-enabled from that point on until
* the CPU sleeping instruction is reached. Otherwise an interrupt
* may fire and queue a timer that would be ignored until the CPU
* wakes from the sleeping instruction. And testing need_resched()
* doesn't tell about pending needed timer reprogram.
*
* Several cases to consider:
*
* - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
* "wfi" or "mwait" are fine because they can be entered with
* interrupt disabled.
*
* - sti;mwait() couple is fine because the interrupts are
* re-enabled only upon the execution of mwait, leaving no gap
* in-between.
*
* - ROLLBACK based idle handlers with the sleeping instruction
* called with interrupts enabled are NOT fine. In this scheme
* when the interrupt detects it has interrupted an idle handler,
* it rolls back to its beginning which performs the
* need_resched() check before re-executing the sleeping
* instruction. This can leak a pending needed timer reprogram.
* If such a scheme is really mandatory due to the lack of an
* appropriate CPU sleeping instruction, then a FAST-FORWARD
* must instead be applied: when the interrupt detects it has
* interrupted an idle handler, it must resume to the end of
* this idle handler so that the generic idle loop is iterated
* again to reprogram the tick.
*/
local_irq_disable();
if (cpu_is_offline(cpu)) {
cpuhp_report_idle_dead();
arch_cpu_idle_dead();
}
arch_cpu_idle_enter();
rcu_nocb_flush_deferred_wakeup();
/*
* In poll mode we re-enable interrupts and spin. Also if we
* detected in the wakeup from idle path that the tick
* broadcast device expired for us, we don't want to go deep
* idle as we know that the IPI is going to arrive right away.
*/
if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
tick_nohz_idle_restart_tick();
cpu_idle_poll();
} else {
cpuidle_idle_call();
}
arch_cpu_idle_exit();
}
/*
* Since we fell out of the loop above, we know TIF_NEED_RESCHED must
* be set, propagate it into PREEMPT_NEED_RESCHED.
*
* This is required because for polling idle loops we will not have had
* an IPI to fold the state for us.
*/
preempt_set_need_resched();
tick_nohz_idle_exit();
__current_clr_polling();
/*
* We promise to call sched_ttwu_pending() and reschedule if
* need_resched() is set while polling is set. That means that clearing
* polling needs to be visible before doing these things.
*/
smp_mb__after_atomic();
/*
* RCU relies on this call to be done outside of an RCU read-side
* critical section.
*/
flush_smp_call_function_queue();
schedule_idle();
if (unlikely(klp_patch_pending(current)))
klp_update_patch_state(current);
}
bool cpu_in_idle(unsigned long pc)
{
return pc >= (unsigned long)__cpuidle_text_start &&
pc < (unsigned long)__cpuidle_text_end;
}
struct idle_timer {
struct hrtimer timer;
int done;
};
static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
{
struct idle_timer *it = container_of(timer, struct idle_timer, timer);
WRITE_ONCE(it->done, 1);
set_tsk_need_resched(current);
return HRTIMER_NORESTART;
}
void play_idle_precise(u64 duration_ns, u64 latency_ns)
{
struct idle_timer it;
/*
* Only FIFO tasks can disable the tick since they don't need the forced
* preemption.
*/
WARN_ON_ONCE(current->policy != SCHED_FIFO);
WARN_ON_ONCE(current->nr_cpus_allowed != 1);
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
WARN_ON_ONCE(!duration_ns);
WARN_ON_ONCE(current->mm);
rcu_sleep_check();
preempt_disable();
current->flags |= PF_IDLE;
cpuidle_use_deepest_state(latency_ns);
it.done = 0;
hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_HARD);
hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
HRTIMER_MODE_REL_PINNED_HARD);
while (!READ_ONCE(it.done))
do_idle();
cpuidle_use_deepest_state(0);
current->flags &= ~PF_IDLE;
preempt_fold_need_resched();
preempt_enable();
}
EXPORT_SYMBOL_GPL(play_idle_precise);
void cpu_startup_entry(enum cpuhp_state state)
{
current->flags |= PF_IDLE;
arch_cpu_idle_prepare();
cpuhp_online_idle(state);
while (1)
do_idle();
}
/*
* idle-task scheduling class.
*/
#ifdef CONFIG_SMP
static int
select_task_rq_idle(struct task_struct *p, int cpu, int flags)
{
return task_cpu(p); /* IDLE tasks as never migrated */
}
static int
balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
return WARN_ON_ONCE(1);
}
#endif
/*
* Idle tasks are unconditionally rescheduled:
*/
static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
{
resched_curr(rq);
}
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
dl_server_update_idle_time(rq, prev);
scx_update_idle(rq, false);
}
static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
{
update_idle_core(rq);
scx_update_idle(rq, true);
schedstat_inc(rq->sched_goidle);
next->se.exec_start = rq_clock_task(rq);
}
struct task_struct *pick_task_idle(struct rq *rq)
{
return rq->idle;
}
/*
* It is not legal to sleep in the idle task - print a warning
* message if some code attempts to do it:
*/
static bool
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
{
raw_spin_rq_unlock_irq(rq);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
dump_stack();
raw_spin_rq_lock_irq(rq);
return true;
}
/*
* scheduler tick hitting a task of our scheduling class.
*
* NOTE: This function can be called remotely by the tick offload that
* goes along full dynticks. Therefore no local assumption can be made
* and everything must be accessed through the @rq and @curr passed in
* parameters.
*/
static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
{
}
static void switched_to_idle(struct rq *rq, struct task_struct *p)
{
BUG();
}
static void
prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
{
BUG();
}
static void update_curr_idle(struct rq *rq)
{
}
/*
* Simple, special scheduling class for the per-CPU idle tasks:
*/
DEFINE_SCHED_CLASS(idle) = {
/* no enqueue/yield_task for idle tasks */
/* dequeue is not valid, we print a debug message there: */
.dequeue_task = dequeue_task_idle,
.wakeup_preempt = wakeup_preempt_idle,
.pick_task = pick_task_idle,
.put_prev_task = put_prev_task_idle,
.set_next_task = set_next_task_idle,
#ifdef CONFIG_SMP
.balance = balance_idle,
.select_task_rq = select_task_rq_idle,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
.task_tick = task_tick_idle,
.prio_changed = prio_changed_idle,
.switched_to = switched_to_idle,
.update_curr = update_curr_idle,
};