linux/include/asm-generic/io.h
Julian Vetter b660d0a2ac
New implementation for IO memcpy and IO memset
The IO memcpy and IO memset functions in asm-generic/io.h simply call
memcpy and memset. This can lead to alignment problems or faults on
architectures that do not define their own version and fall back to
these defaults.
This patch introduces new implementations for IO memcpy and IO memset,
that use read{l,q} accessor functions, align accesses to machine word
size, and resort to byte accesses when the target memory is not aligned.
For new architectures and existing ones that were using the old
fallbacks these functions are save to use, because IO memory constraints
are taken into account. Moreover, architectures with similar
implementations can now use these new versions, not needing to implement
their own.

Reviewed-by: Yann Sionneau <ysionneau@kalrayinc.com>
Signed-off-by: Julian Vetter <jvetter@kalrayinc.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-10-28 21:44:29 +00:00

1254 lines
28 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Generic I/O port emulation.
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef __ASM_GENERIC_IO_H
#define __ASM_GENERIC_IO_H
#include <asm/page.h> /* I/O is all done through memory accesses */
#include <linux/string.h> /* for memset() and memcpy() */
#include <linux/sizes.h>
#include <linux/types.h>
#include <linux/instruction_pointer.h>
#ifdef CONFIG_GENERIC_IOMAP
#include <asm-generic/iomap.h>
#endif
#include <asm/mmiowb.h>
#include <asm-generic/pci_iomap.h>
#ifndef __io_br
#define __io_br() barrier()
#endif
/* prevent prefetching of coherent DMA data ahead of a dma-complete */
#ifndef __io_ar
#ifdef rmb
#define __io_ar(v) rmb()
#else
#define __io_ar(v) barrier()
#endif
#endif
/* flush writes to coherent DMA data before possibly triggering a DMA read */
#ifndef __io_bw
#ifdef wmb
#define __io_bw() wmb()
#else
#define __io_bw() barrier()
#endif
#endif
/* serialize device access against a spin_unlock, usually handled there. */
#ifndef __io_aw
#define __io_aw() mmiowb_set_pending()
#endif
#ifndef __io_pbw
#define __io_pbw() __io_bw()
#endif
#ifndef __io_paw
#define __io_paw() __io_aw()
#endif
#ifndef __io_pbr
#define __io_pbr() __io_br()
#endif
#ifndef __io_par
#define __io_par(v) __io_ar(v)
#endif
/*
* "__DISABLE_TRACE_MMIO__" flag can be used to disable MMIO tracing for
* specific kernel drivers in case of excessive/unwanted logging.
*
* Usage: Add a #define flag at the beginning of the driver file.
* Ex: #define __DISABLE_TRACE_MMIO__
* #include <...>
* ...
*/
#if IS_ENABLED(CONFIG_TRACE_MMIO_ACCESS) && !(defined(__DISABLE_TRACE_MMIO__))
#include <linux/tracepoint-defs.h>
DECLARE_TRACEPOINT(rwmmio_write);
DECLARE_TRACEPOINT(rwmmio_post_write);
DECLARE_TRACEPOINT(rwmmio_read);
DECLARE_TRACEPOINT(rwmmio_post_read);
void log_write_mmio(u64 val, u8 width, volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0);
void log_post_write_mmio(u64 val, u8 width, volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0);
void log_read_mmio(u8 width, const volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0);
void log_post_read_mmio(u64 val, u8 width, const volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0);
#else
static inline void log_write_mmio(u64 val, u8 width, volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0) {}
static inline void log_post_write_mmio(u64 val, u8 width, volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0) {}
static inline void log_read_mmio(u8 width, const volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0) {}
static inline void log_post_read_mmio(u64 val, u8 width, const volatile void __iomem *addr,
unsigned long caller_addr, unsigned long caller_addr0) {}
#endif /* CONFIG_TRACE_MMIO_ACCESS */
/*
* __raw_{read,write}{b,w,l,q}() access memory in native endianness.
*
* On some architectures memory mapped IO needs to be accessed differently.
* On the simple architectures, we just read/write the memory location
* directly.
*/
#ifndef __raw_readb
#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
return *(const volatile u8 __force *)addr;
}
#endif
#ifndef __raw_readw
#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
return *(const volatile u16 __force *)addr;
}
#endif
#ifndef __raw_readl
#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
return *(const volatile u32 __force *)addr;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_readq
#define __raw_readq __raw_readq
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
return *(const volatile u64 __force *)addr;
}
#endif
#endif /* CONFIG_64BIT */
#ifndef __raw_writeb
#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 value, volatile void __iomem *addr)
{
*(volatile u8 __force *)addr = value;
}
#endif
#ifndef __raw_writew
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 value, volatile void __iomem *addr)
{
*(volatile u16 __force *)addr = value;
}
#endif
#ifndef __raw_writel
#define __raw_writel __raw_writel
static inline void __raw_writel(u32 value, volatile void __iomem *addr)
{
*(volatile u32 __force *)addr = value;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_writeq
#define __raw_writeq __raw_writeq
static inline void __raw_writeq(u64 value, volatile void __iomem *addr)
{
*(volatile u64 __force *)addr = value;
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}() access little endian memory and return result in
* native endianness.
*/
#ifndef readb
#define readb readb
static inline u8 readb(const volatile void __iomem *addr)
{
u8 val;
log_read_mmio(8, addr, _THIS_IP_, _RET_IP_);
__io_br();
val = __raw_readb(addr);
__io_ar(val);
log_post_read_mmio(val, 8, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifndef readw
#define readw readw
static inline u16 readw(const volatile void __iomem *addr)
{
u16 val;
log_read_mmio(16, addr, _THIS_IP_, _RET_IP_);
__io_br();
val = __le16_to_cpu((__le16 __force)__raw_readw(addr));
__io_ar(val);
log_post_read_mmio(val, 16, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifndef readl
#define readl readl
static inline u32 readl(const volatile void __iomem *addr)
{
u32 val;
log_read_mmio(32, addr, _THIS_IP_, _RET_IP_);
__io_br();
val = __le32_to_cpu((__le32 __force)__raw_readl(addr));
__io_ar(val);
log_post_read_mmio(val, 32, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifdef CONFIG_64BIT
#ifndef readq
#define readq readq
static inline u64 readq(const volatile void __iomem *addr)
{
u64 val;
log_read_mmio(64, addr, _THIS_IP_, _RET_IP_);
__io_br();
val = __le64_to_cpu((__le64 __force)__raw_readq(addr));
__io_ar(val);
log_post_read_mmio(val, 64, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writeb
#define writeb writeb
static inline void writeb(u8 value, volatile void __iomem *addr)
{
log_write_mmio(value, 8, addr, _THIS_IP_, _RET_IP_);
__io_bw();
__raw_writeb(value, addr);
__io_aw();
log_post_write_mmio(value, 8, addr, _THIS_IP_, _RET_IP_);
}
#endif
#ifndef writew
#define writew writew
static inline void writew(u16 value, volatile void __iomem *addr)
{
log_write_mmio(value, 16, addr, _THIS_IP_, _RET_IP_);
__io_bw();
__raw_writew((u16 __force)cpu_to_le16(value), addr);
__io_aw();
log_post_write_mmio(value, 16, addr, _THIS_IP_, _RET_IP_);
}
#endif
#ifndef writel
#define writel writel
static inline void writel(u32 value, volatile void __iomem *addr)
{
log_write_mmio(value, 32, addr, _THIS_IP_, _RET_IP_);
__io_bw();
__raw_writel((u32 __force)__cpu_to_le32(value), addr);
__io_aw();
log_post_write_mmio(value, 32, addr, _THIS_IP_, _RET_IP_);
}
#endif
#ifdef CONFIG_64BIT
#ifndef writeq
#define writeq writeq
static inline void writeq(u64 value, volatile void __iomem *addr)
{
log_write_mmio(value, 64, addr, _THIS_IP_, _RET_IP_);
__io_bw();
__raw_writeq((u64 __force)__cpu_to_le64(value), addr);
__io_aw();
log_post_write_mmio(value, 64, addr, _THIS_IP_, _RET_IP_);
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}_relaxed() are like the regular version, but
* are not guaranteed to provide ordering against spinlocks or memory
* accesses.
*/
#ifndef readb_relaxed
#define readb_relaxed readb_relaxed
static inline u8 readb_relaxed(const volatile void __iomem *addr)
{
u8 val;
log_read_mmio(8, addr, _THIS_IP_, _RET_IP_);
val = __raw_readb(addr);
log_post_read_mmio(val, 8, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifndef readw_relaxed
#define readw_relaxed readw_relaxed
static inline u16 readw_relaxed(const volatile void __iomem *addr)
{
u16 val;
log_read_mmio(16, addr, _THIS_IP_, _RET_IP_);
val = __le16_to_cpu((__le16 __force)__raw_readw(addr));
log_post_read_mmio(val, 16, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifndef readl_relaxed
#define readl_relaxed readl_relaxed
static inline u32 readl_relaxed(const volatile void __iomem *addr)
{
u32 val;
log_read_mmio(32, addr, _THIS_IP_, _RET_IP_);
val = __le32_to_cpu((__le32 __force)__raw_readl(addr));
log_post_read_mmio(val, 32, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#if defined(readq) && !defined(readq_relaxed)
#define readq_relaxed readq_relaxed
static inline u64 readq_relaxed(const volatile void __iomem *addr)
{
u64 val;
log_read_mmio(64, addr, _THIS_IP_, _RET_IP_);
val = __le64_to_cpu((__le64 __force)__raw_readq(addr));
log_post_read_mmio(val, 64, addr, _THIS_IP_, _RET_IP_);
return val;
}
#endif
#ifndef writeb_relaxed
#define writeb_relaxed writeb_relaxed
static inline void writeb_relaxed(u8 value, volatile void __iomem *addr)
{
log_write_mmio(value, 8, addr, _THIS_IP_, _RET_IP_);
__raw_writeb(value, addr);
log_post_write_mmio(value, 8, addr, _THIS_IP_, _RET_IP_);
}
#endif
#ifndef writew_relaxed
#define writew_relaxed writew_relaxed
static inline void writew_relaxed(u16 value, volatile void __iomem *addr)
{
log_write_mmio(value, 16, addr, _THIS_IP_, _RET_IP_);
__raw_writew((u16 __force)cpu_to_le16(value), addr);
log_post_write_mmio(value, 16, addr, _THIS_IP_, _RET_IP_);
}
#endif
#ifndef writel_relaxed
#define writel_relaxed writel_relaxed
static inline void writel_relaxed(u32 value, volatile void __iomem *addr)
{
log_write_mmio(value, 32, addr, _THIS_IP_, _RET_IP_);
__raw_writel((u32 __force)__cpu_to_le32(value), addr);
log_post_write_mmio(value, 32, addr, _THIS_IP_, _RET_IP_);
}
#endif
#if defined(writeq) && !defined(writeq_relaxed)
#define writeq_relaxed writeq_relaxed
static inline void writeq_relaxed(u64 value, volatile void __iomem *addr)
{
log_write_mmio(value, 64, addr, _THIS_IP_, _RET_IP_);
__raw_writeq((u64 __force)__cpu_to_le64(value), addr);
log_post_write_mmio(value, 64, addr, _THIS_IP_, _RET_IP_);
}
#endif
/*
* {read,write}s{b,w,l,q}() repeatedly access the same memory address in
* native endianness in 8-, 16-, 32- or 64-bit chunks (@count times).
*/
#ifndef readsb
#define readsb readsb
static inline void readsb(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u8 *buf = buffer;
do {
u8 x = __raw_readb(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsw
#define readsw readsw
static inline void readsw(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u16 *buf = buffer;
do {
u16 x = __raw_readw(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsl
#define readsl readsl
static inline void readsl(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u32 *buf = buffer;
do {
u32 x = __raw_readl(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef readsq
#define readsq readsq
static inline void readsq(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u64 *buf = buffer;
do {
u64 x = __raw_readq(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writesb
#define writesb writesb
static inline void writesb(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u8 *buf = buffer;
do {
__raw_writeb(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesw
#define writesw writesw
static inline void writesw(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u16 *buf = buffer;
do {
__raw_writew(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesl
#define writesl writesl
static inline void writesl(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u32 *buf = buffer;
do {
__raw_writel(*buf++, addr);
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef writesq
#define writesq writesq
static inline void writesq(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u64 *buf = buffer;
do {
__raw_writeq(*buf++, addr);
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef PCI_IOBASE
#define PCI_IOBASE ((void __iomem *)0)
#endif
#ifndef IO_SPACE_LIMIT
#define IO_SPACE_LIMIT 0xffff
#endif
/*
* {in,out}{b,w,l}() access little endian I/O. {in,out}{b,w,l}_p() can be
* implemented on hardware that needs an additional delay for I/O accesses to
* take effect.
*/
#if !defined(inb) && !defined(_inb)
#define _inb _inb
#ifdef CONFIG_HAS_IOPORT
static inline u8 _inb(unsigned long addr)
{
u8 val;
__io_pbr();
val = __raw_readb(PCI_IOBASE + addr);
__io_par(val);
return val;
}
#else
u8 _inb(unsigned long addr)
__compiletime_error("inb()) requires CONFIG_HAS_IOPORT");
#endif
#endif
#if !defined(inw) && !defined(_inw)
#define _inw _inw
#ifdef CONFIG_HAS_IOPORT
static inline u16 _inw(unsigned long addr)
{
u16 val;
__io_pbr();
val = __le16_to_cpu((__le16 __force)__raw_readw(PCI_IOBASE + addr));
__io_par(val);
return val;
}
#else
u16 _inw(unsigned long addr)
__compiletime_error("inw() requires CONFIG_HAS_IOPORT");
#endif
#endif
#if !defined(inl) && !defined(_inl)
#define _inl _inl
#ifdef CONFIG_HAS_IOPORT
static inline u32 _inl(unsigned long addr)
{
u32 val;
__io_pbr();
val = __le32_to_cpu((__le32 __force)__raw_readl(PCI_IOBASE + addr));
__io_par(val);
return val;
}
#else
u32 _inl(unsigned long addr)
__compiletime_error("inl() requires CONFIG_HAS_IOPORT");
#endif
#endif
#if !defined(outb) && !defined(_outb)
#define _outb _outb
#ifdef CONFIG_HAS_IOPORT
static inline void _outb(u8 value, unsigned long addr)
{
__io_pbw();
__raw_writeb(value, PCI_IOBASE + addr);
__io_paw();
}
#else
void _outb(u8 value, unsigned long addr)
__compiletime_error("outb() requires CONFIG_HAS_IOPORT");
#endif
#endif
#if !defined(outw) && !defined(_outw)
#define _outw _outw
#ifdef CONFIG_HAS_IOPORT
static inline void _outw(u16 value, unsigned long addr)
{
__io_pbw();
__raw_writew((u16 __force)cpu_to_le16(value), PCI_IOBASE + addr);
__io_paw();
}
#else
void _outw(u16 value, unsigned long addr)
__compiletime_error("outw() requires CONFIG_HAS_IOPORT");
#endif
#endif
#if !defined(outl) && !defined(_outl)
#define _outl _outl
#ifdef CONFIG_HAS_IOPORT
static inline void _outl(u32 value, unsigned long addr)
{
__io_pbw();
__raw_writel((u32 __force)cpu_to_le32(value), PCI_IOBASE + addr);
__io_paw();
}
#else
void _outl(u32 value, unsigned long addr)
__compiletime_error("outl() requires CONFIG_HAS_IOPORT");
#endif
#endif
#include <linux/logic_pio.h>
#ifndef inb
#define inb _inb
#endif
#ifndef inw
#define inw _inw
#endif
#ifndef inl
#define inl _inl
#endif
#ifndef outb
#define outb _outb
#endif
#ifndef outw
#define outw _outw
#endif
#ifndef outl
#define outl _outl
#endif
#ifndef inb_p
#define inb_p inb_p
static inline u8 inb_p(unsigned long addr)
{
return inb(addr);
}
#endif
#ifndef inw_p
#define inw_p inw_p
static inline u16 inw_p(unsigned long addr)
{
return inw(addr);
}
#endif
#ifndef inl_p
#define inl_p inl_p
static inline u32 inl_p(unsigned long addr)
{
return inl(addr);
}
#endif
#ifndef outb_p
#define outb_p outb_p
static inline void outb_p(u8 value, unsigned long addr)
{
outb(value, addr);
}
#endif
#ifndef outw_p
#define outw_p outw_p
static inline void outw_p(u16 value, unsigned long addr)
{
outw(value, addr);
}
#endif
#ifndef outl_p
#define outl_p outl_p
static inline void outl_p(u32 value, unsigned long addr)
{
outl(value, addr);
}
#endif
/*
* {in,out}s{b,w,l}{,_p}() are variants of the above that repeatedly access a
* single I/O port multiple times.
*/
#ifndef insb
#define insb insb
#ifdef CONFIG_HAS_IOPORT
static inline void insb(unsigned long addr, void *buffer, unsigned int count)
{
readsb(PCI_IOBASE + addr, buffer, count);
}
#else
void insb(unsigned long addr, void *buffer, unsigned int count)
__compiletime_error("insb() requires HAS_IOPORT");
#endif
#endif
#ifndef insw
#define insw insw
#ifdef CONFIG_HAS_IOPORT
static inline void insw(unsigned long addr, void *buffer, unsigned int count)
{
readsw(PCI_IOBASE + addr, buffer, count);
}
#else
void insw(unsigned long addr, void *buffer, unsigned int count)
__compiletime_error("insw() requires HAS_IOPORT");
#endif
#endif
#ifndef insl
#define insl insl
#ifdef CONFIG_HAS_IOPORT
static inline void insl(unsigned long addr, void *buffer, unsigned int count)
{
readsl(PCI_IOBASE + addr, buffer, count);
}
#else
void insl(unsigned long addr, void *buffer, unsigned int count)
__compiletime_error("insl() requires HAS_IOPORT");
#endif
#endif
#ifndef outsb
#define outsb outsb
#ifdef CONFIG_HAS_IOPORT
static inline void outsb(unsigned long addr, const void *buffer,
unsigned int count)
{
writesb(PCI_IOBASE + addr, buffer, count);
}
#else
void outsb(unsigned long addr, const void *buffer, unsigned int count)
__compiletime_error("outsb() requires HAS_IOPORT");
#endif
#endif
#ifndef outsw
#define outsw outsw
#ifdef CONFIG_HAS_IOPORT
static inline void outsw(unsigned long addr, const void *buffer,
unsigned int count)
{
writesw(PCI_IOBASE + addr, buffer, count);
}
#else
void outsw(unsigned long addr, const void *buffer, unsigned int count)
__compiletime_error("outsw() requires HAS_IOPORT");
#endif
#endif
#ifndef outsl
#define outsl outsl
#ifdef CONFIG_HAS_IOPORT
static inline void outsl(unsigned long addr, const void *buffer,
unsigned int count)
{
writesl(PCI_IOBASE + addr, buffer, count);
}
#else
void outsl(unsigned long addr, const void *buffer, unsigned int count)
__compiletime_error("outsl() requires HAS_IOPORT");
#endif
#endif
#ifndef insb_p
#define insb_p insb_p
static inline void insb_p(unsigned long addr, void *buffer, unsigned int count)
{
insb(addr, buffer, count);
}
#endif
#ifndef insw_p
#define insw_p insw_p
static inline void insw_p(unsigned long addr, void *buffer, unsigned int count)
{
insw(addr, buffer, count);
}
#endif
#ifndef insl_p
#define insl_p insl_p
static inline void insl_p(unsigned long addr, void *buffer, unsigned int count)
{
insl(addr, buffer, count);
}
#endif
#ifndef outsb_p
#define outsb_p outsb_p
static inline void outsb_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsb(addr, buffer, count);
}
#endif
#ifndef outsw_p
#define outsw_p outsw_p
static inline void outsw_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsw(addr, buffer, count);
}
#endif
#ifndef outsl_p
#define outsl_p outsl_p
static inline void outsl_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsl(addr, buffer, count);
}
#endif
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioread8
#define ioread8 ioread8
static inline u8 ioread8(const volatile void __iomem *addr)
{
return readb(addr);
}
#endif
#ifndef ioread16
#define ioread16 ioread16
static inline u16 ioread16(const volatile void __iomem *addr)
{
return readw(addr);
}
#endif
#ifndef ioread32
#define ioread32 ioread32
static inline u32 ioread32(const volatile void __iomem *addr)
{
return readl(addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64
#define ioread64 ioread64
static inline u64 ioread64(const volatile void __iomem *addr)
{
return readq(addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite8
#define iowrite8 iowrite8
static inline void iowrite8(u8 value, volatile void __iomem *addr)
{
writeb(value, addr);
}
#endif
#ifndef iowrite16
#define iowrite16 iowrite16
static inline void iowrite16(u16 value, volatile void __iomem *addr)
{
writew(value, addr);
}
#endif
#ifndef iowrite32
#define iowrite32 iowrite32
static inline void iowrite32(u32 value, volatile void __iomem *addr)
{
writel(value, addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64
#define iowrite64 iowrite64
static inline void iowrite64(u64 value, volatile void __iomem *addr)
{
writeq(value, addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef ioread16be
#define ioread16be ioread16be
static inline u16 ioread16be(const volatile void __iomem *addr)
{
return swab16(readw(addr));
}
#endif
#ifndef ioread32be
#define ioread32be ioread32be
static inline u32 ioread32be(const volatile void __iomem *addr)
{
return swab32(readl(addr));
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64be
#define ioread64be ioread64be
static inline u64 ioread64be(const volatile void __iomem *addr)
{
return swab64(readq(addr));
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite16be
#define iowrite16be iowrite16be
static inline void iowrite16be(u16 value, void volatile __iomem *addr)
{
writew(swab16(value), addr);
}
#endif
#ifndef iowrite32be
#define iowrite32be iowrite32be
static inline void iowrite32be(u32 value, volatile void __iomem *addr)
{
writel(swab32(value), addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64be
#define iowrite64be iowrite64be
static inline void iowrite64be(u64 value, volatile void __iomem *addr)
{
writeq(swab64(value), addr);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef ioread8_rep
#define ioread8_rep ioread8_rep
static inline void ioread8_rep(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
readsb(addr, buffer, count);
}
#endif
#ifndef ioread16_rep
#define ioread16_rep ioread16_rep
static inline void ioread16_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsw(addr, buffer, count);
}
#endif
#ifndef ioread32_rep
#define ioread32_rep ioread32_rep
static inline void ioread32_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsl(addr, buffer, count);
}
#endif
#ifdef CONFIG_64BIT
#ifndef ioread64_rep
#define ioread64_rep ioread64_rep
static inline void ioread64_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsq(addr, buffer, count);
}
#endif
#endif /* CONFIG_64BIT */
#ifndef iowrite8_rep
#define iowrite8_rep iowrite8_rep
static inline void iowrite8_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesb(addr, buffer, count);
}
#endif
#ifndef iowrite16_rep
#define iowrite16_rep iowrite16_rep
static inline void iowrite16_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesw(addr, buffer, count);
}
#endif
#ifndef iowrite32_rep
#define iowrite32_rep iowrite32_rep
static inline void iowrite32_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesl(addr, buffer, count);
}
#endif
#ifdef CONFIG_64BIT
#ifndef iowrite64_rep
#define iowrite64_rep iowrite64_rep
static inline void iowrite64_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesq(addr, buffer, count);
}
#endif
#endif /* CONFIG_64BIT */
#endif /* CONFIG_GENERIC_IOMAP */
#ifdef __KERNEL__
#define __io_virt(x) ((void __force *)(x))
/*
* Change virtual addresses to physical addresses and vv.
* These are pretty trivial
*/
#ifndef virt_to_phys
#define virt_to_phys virt_to_phys
static inline unsigned long virt_to_phys(volatile void *address)
{
return __pa((unsigned long)address);
}
#endif
#ifndef phys_to_virt
#define phys_to_virt phys_to_virt
static inline void *phys_to_virt(unsigned long address)
{
return __va(address);
}
#endif
/**
* DOC: ioremap() and ioremap_*() variants
*
* Architectures with an MMU are expected to provide ioremap() and iounmap()
* themselves or rely on GENERIC_IOREMAP. For NOMMU architectures we provide
* a default nop-op implementation that expect that the physical address used
* for MMIO are already marked as uncached, and can be used as kernel virtual
* addresses.
*
* ioremap_wc() and ioremap_wt() can provide more relaxed caching attributes
* for specific drivers if the architecture choses to implement them. If they
* are not implemented we fall back to plain ioremap. Conversely, ioremap_np()
* can provide stricter non-posted write semantics if the architecture
* implements them.
*/
#ifndef CONFIG_MMU
#ifndef ioremap
#define ioremap ioremap
static inline void __iomem *ioremap(phys_addr_t offset, size_t size)
{
return (void __iomem *)(unsigned long)offset;
}
#endif
#ifndef iounmap
#define iounmap iounmap
static inline void iounmap(volatile void __iomem *addr)
{
}
#endif
#elif defined(CONFIG_GENERIC_IOREMAP)
#include <linux/pgtable.h>
void __iomem *generic_ioremap_prot(phys_addr_t phys_addr, size_t size,
pgprot_t prot);
void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
unsigned long prot);
void iounmap(volatile void __iomem *addr);
void generic_iounmap(volatile void __iomem *addr);
#ifndef ioremap
#define ioremap ioremap
static inline void __iomem *ioremap(phys_addr_t addr, size_t size)
{
/* _PAGE_IOREMAP needs to be supplied by the architecture */
return ioremap_prot(addr, size, _PAGE_IOREMAP);
}
#endif
#endif /* !CONFIG_MMU || CONFIG_GENERIC_IOREMAP */
#ifndef ioremap_wc
#define ioremap_wc ioremap
#endif
#ifndef ioremap_wt
#define ioremap_wt ioremap
#endif
/*
* ioremap_uc is special in that we do require an explicit architecture
* implementation. In general you do not want to use this function in a
* driver and use plain ioremap, which is uncached by default. Similarly
* architectures should not implement it unless they have a very good
* reason.
*/
#ifndef ioremap_uc
#define ioremap_uc ioremap_uc
static inline void __iomem *ioremap_uc(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
/*
* ioremap_np needs an explicit architecture implementation, as it
* requests stronger semantics than regular ioremap(). Portable drivers
* should instead use one of the higher-level abstractions, like
* devm_ioremap_resource(), to choose the correct variant for any given
* device and bus. Portable drivers with a good reason to want non-posted
* write semantics should always provide an ioremap() fallback in case
* ioremap_np() is not available.
*/
#ifndef ioremap_np
#define ioremap_np ioremap_np
static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
#ifdef CONFIG_HAS_IOPORT_MAP
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioport_map
#define ioport_map ioport_map
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
port &= IO_SPACE_LIMIT;
return (port > MMIO_UPPER_LIMIT) ? NULL : PCI_IOBASE + port;
}
#define ARCH_HAS_GENERIC_IOPORT_MAP
#endif
#ifndef ioport_unmap
#define ioport_unmap ioport_unmap
static inline void ioport_unmap(void __iomem *p)
{
}
#endif
#else /* CONFIG_GENERIC_IOMAP */
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *p);
#endif /* CONFIG_GENERIC_IOMAP */
#endif /* CONFIG_HAS_IOPORT_MAP */
#ifndef CONFIG_GENERIC_IOMAP
#ifndef pci_iounmap
#define ARCH_WANTS_GENERIC_PCI_IOUNMAP
#endif
#endif
#ifndef xlate_dev_mem_ptr
#define xlate_dev_mem_ptr xlate_dev_mem_ptr
static inline void *xlate_dev_mem_ptr(phys_addr_t addr)
{
return __va(addr);
}
#endif
#ifndef unxlate_dev_mem_ptr
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
static inline void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
{
}
#endif
#ifndef memset_io
/**
* memset_io Set a range of I/O memory to a constant value
* @addr: The beginning of the I/O-memory range to set
* @val: The value to set the memory to
* @count: The number of bytes to set
*
* Set a range of I/O memory to a given value.
*/
void memset_io(volatile void __iomem *addr, int val, size_t count);
#endif
#ifndef memcpy_fromio
/**
* memcpy_fromio Copy a block of data from I/O memory
* @dst: The (RAM) destination for the copy
* @src: The (I/O memory) source for the data
* @count: The number of bytes to copy
*
* Copy a block of data from I/O memory.
*/
void memcpy_fromio(void *dst, const volatile void __iomem *src, size_t count);
#endif
#ifndef memcpy_toio
/**
* memcpy_toio Copy a block of data into I/O memory
* @dst: The (I/O memory) destination for the copy
* @src: The (RAM) source for the data
* @count: The number of bytes to copy
*
* Copy a block of data to I/O memory.
*/
void memcpy_toio(volatile void __iomem *dst, const void *src, size_t count);
#endif
extern int devmem_is_allowed(unsigned long pfn);
#endif /* __KERNEL__ */
#endif /* __ASM_GENERIC_IO_H */