mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:46:16 +00:00
f399051ec1
A shift-out-of-bounds issue was identified by UBSAN in the
tegra_qspi_fill_tx_fifo_from_client_txbuf() function.
UBSAN: shift-out-of-bounds in drivers/spi/spi-tegra210-quad.c:345:27
shift exponent 32 is too large for 32-bit type 'u32' (aka 'unsigned int')
Call trace:
tegra_qspi_start_cpu_based_transfer
The problem arises when shifting the contents of tx_buf left by 8 times
the value of i, which can exceed 4 and result in an exponent larger than
32 bits.
Resolve this by restrict the value of i to be less than 4, preventing
the shift operation from overflowing.
Signed-off-by: Breno Leitao <leitao@debian.org>
Fixes: 921fc1838f
("spi: tegra210-quad: Add support for Tegra210 QSPI controller")
Link: https://patch.msgid.link/20241004125400.1791089-1-leitao@debian.org
Signed-off-by: Mark Brown <broonie@kernel.org>
1735 lines
46 KiB
C
1735 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
//
|
|
// Copyright (C) 2020 NVIDIA CORPORATION.
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/of.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/property.h>
|
|
|
|
#define QSPI_COMMAND1 0x000
|
|
#define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
|
|
#define QSPI_PACKED BIT(5)
|
|
#define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7)
|
|
#define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7)
|
|
#define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0)
|
|
#define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1)
|
|
#define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2)
|
|
#define QSPI_SDR_DDR_SEL BIT(9)
|
|
#define QSPI_TX_EN BIT(11)
|
|
#define QSPI_RX_EN BIT(12)
|
|
#define QSPI_CS_SW_VAL BIT(20)
|
|
#define QSPI_CS_SW_HW BIT(21)
|
|
|
|
#define QSPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
|
|
#define QSPI_CS_POL_INACTIVE_MASK (0xF << 22)
|
|
#define QSPI_CS_SEL_0 (0 << 26)
|
|
#define QSPI_CS_SEL_1 (1 << 26)
|
|
#define QSPI_CS_SEL_2 (2 << 26)
|
|
#define QSPI_CS_SEL_3 (3 << 26)
|
|
#define QSPI_CS_SEL_MASK (3 << 26)
|
|
#define QSPI_CS_SEL(x) (((x) & 0x3) << 26)
|
|
|
|
#define QSPI_CONTROL_MODE_0 (0 << 28)
|
|
#define QSPI_CONTROL_MODE_3 (3 << 28)
|
|
#define QSPI_CONTROL_MODE_MASK (3 << 28)
|
|
#define QSPI_M_S BIT(30)
|
|
#define QSPI_PIO BIT(31)
|
|
|
|
#define QSPI_COMMAND2 0x004
|
|
#define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10)
|
|
#define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0)
|
|
|
|
#define QSPI_CS_TIMING1 0x008
|
|
#define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
|
|
|
|
#define QSPI_CS_TIMING2 0x00c
|
|
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0)
|
|
#define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5)
|
|
|
|
#define QSPI_TRANS_STATUS 0x010
|
|
#define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff)
|
|
#define QSPI_RDY BIT(30)
|
|
|
|
#define QSPI_FIFO_STATUS 0x014
|
|
#define QSPI_RX_FIFO_EMPTY BIT(0)
|
|
#define QSPI_RX_FIFO_FULL BIT(1)
|
|
#define QSPI_TX_FIFO_EMPTY BIT(2)
|
|
#define QSPI_TX_FIFO_FULL BIT(3)
|
|
#define QSPI_RX_FIFO_UNF BIT(4)
|
|
#define QSPI_RX_FIFO_OVF BIT(5)
|
|
#define QSPI_TX_FIFO_UNF BIT(6)
|
|
#define QSPI_TX_FIFO_OVF BIT(7)
|
|
#define QSPI_ERR BIT(8)
|
|
#define QSPI_TX_FIFO_FLUSH BIT(14)
|
|
#define QSPI_RX_FIFO_FLUSH BIT(15)
|
|
#define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f)
|
|
#define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f)
|
|
|
|
#define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \
|
|
QSPI_RX_FIFO_OVF | \
|
|
QSPI_TX_FIFO_UNF | \
|
|
QSPI_TX_FIFO_OVF)
|
|
#define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \
|
|
QSPI_TX_FIFO_EMPTY)
|
|
|
|
#define QSPI_TX_DATA 0x018
|
|
#define QSPI_RX_DATA 0x01c
|
|
|
|
#define QSPI_DMA_CTL 0x020
|
|
#define QSPI_TX_TRIG(n) (((n) & 0x3) << 15)
|
|
#define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0)
|
|
#define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1)
|
|
#define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2)
|
|
#define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3)
|
|
|
|
#define QSPI_RX_TRIG(n) (((n) & 0x3) << 19)
|
|
#define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0)
|
|
#define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1)
|
|
#define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2)
|
|
#define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3)
|
|
|
|
#define QSPI_DMA_EN BIT(31)
|
|
|
|
#define QSPI_DMA_BLK 0x024
|
|
#define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0)
|
|
|
|
#define QSPI_TX_FIFO 0x108
|
|
#define QSPI_RX_FIFO 0x188
|
|
|
|
#define QSPI_FIFO_DEPTH 64
|
|
|
|
#define QSPI_INTR_MASK 0x18c
|
|
#define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25)
|
|
#define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26)
|
|
#define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27)
|
|
#define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28)
|
|
#define QSPI_INTR_RDY_MASK BIT(29)
|
|
#define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \
|
|
QSPI_INTR_RX_FIFO_OVF_MASK | \
|
|
QSPI_INTR_TX_FIFO_UNF_MASK | \
|
|
QSPI_INTR_TX_FIFO_OVF_MASK)
|
|
|
|
#define QSPI_MISC_REG 0x194
|
|
#define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0)
|
|
#define QSPI_DUMMY_CYCLES_MAX 0xff
|
|
|
|
#define QSPI_CMB_SEQ_CMD 0x19c
|
|
#define QSPI_COMMAND_VALUE_SET(X) (((x) & 0xFF) << 0)
|
|
|
|
#define QSPI_CMB_SEQ_CMD_CFG 0x1a0
|
|
#define QSPI_COMMAND_X1_X2_X4(x) (((x) & 0x3) << 13)
|
|
#define QSPI_COMMAND_X1_X2_X4_MASK (0x03 << 13)
|
|
#define QSPI_COMMAND_SDR_DDR BIT(12)
|
|
#define QSPI_COMMAND_SIZE_SET(x) (((x) & 0xFF) << 0)
|
|
|
|
#define QSPI_GLOBAL_CONFIG 0X1a4
|
|
#define QSPI_CMB_SEQ_EN BIT(0)
|
|
#define QSPI_TPM_WAIT_POLL_EN BIT(1)
|
|
|
|
#define QSPI_CMB_SEQ_ADDR 0x1a8
|
|
#define QSPI_ADDRESS_VALUE_SET(X) (((x) & 0xFFFF) << 0)
|
|
|
|
#define QSPI_CMB_SEQ_ADDR_CFG 0x1ac
|
|
#define QSPI_ADDRESS_X1_X2_X4(x) (((x) & 0x3) << 13)
|
|
#define QSPI_ADDRESS_X1_X2_X4_MASK (0x03 << 13)
|
|
#define QSPI_ADDRESS_SDR_DDR BIT(12)
|
|
#define QSPI_ADDRESS_SIZE_SET(x) (((x) & 0xFF) << 0)
|
|
|
|
#define DATA_DIR_TX BIT(0)
|
|
#define DATA_DIR_RX BIT(1)
|
|
|
|
#define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
|
|
#define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024)
|
|
#define CMD_TRANSFER 0
|
|
#define ADDR_TRANSFER 1
|
|
#define DATA_TRANSFER 2
|
|
|
|
struct tegra_qspi_soc_data {
|
|
bool has_dma;
|
|
bool cmb_xfer_capable;
|
|
bool supports_tpm;
|
|
unsigned int cs_count;
|
|
};
|
|
|
|
struct tegra_qspi_client_data {
|
|
int tx_clk_tap_delay;
|
|
int rx_clk_tap_delay;
|
|
};
|
|
|
|
struct tegra_qspi {
|
|
struct device *dev;
|
|
struct spi_controller *host;
|
|
/* lock to protect data accessed by irq */
|
|
spinlock_t lock;
|
|
|
|
struct clk *clk;
|
|
void __iomem *base;
|
|
phys_addr_t phys;
|
|
unsigned int irq;
|
|
|
|
u32 cur_speed;
|
|
unsigned int cur_pos;
|
|
unsigned int words_per_32bit;
|
|
unsigned int bytes_per_word;
|
|
unsigned int curr_dma_words;
|
|
unsigned int cur_direction;
|
|
|
|
unsigned int cur_rx_pos;
|
|
unsigned int cur_tx_pos;
|
|
|
|
unsigned int dma_buf_size;
|
|
unsigned int max_buf_size;
|
|
bool is_curr_dma_xfer;
|
|
|
|
struct completion rx_dma_complete;
|
|
struct completion tx_dma_complete;
|
|
|
|
u32 tx_status;
|
|
u32 rx_status;
|
|
u32 status_reg;
|
|
bool is_packed;
|
|
bool use_dma;
|
|
|
|
u32 command1_reg;
|
|
u32 dma_control_reg;
|
|
u32 def_command1_reg;
|
|
u32 def_command2_reg;
|
|
u32 spi_cs_timing1;
|
|
u32 spi_cs_timing2;
|
|
u8 dummy_cycles;
|
|
|
|
struct completion xfer_completion;
|
|
struct spi_transfer *curr_xfer;
|
|
|
|
struct dma_chan *rx_dma_chan;
|
|
u32 *rx_dma_buf;
|
|
dma_addr_t rx_dma_phys;
|
|
struct dma_async_tx_descriptor *rx_dma_desc;
|
|
|
|
struct dma_chan *tx_dma_chan;
|
|
u32 *tx_dma_buf;
|
|
dma_addr_t tx_dma_phys;
|
|
struct dma_async_tx_descriptor *tx_dma_desc;
|
|
const struct tegra_qspi_soc_data *soc_data;
|
|
};
|
|
|
|
static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
|
|
{
|
|
return readl(tqspi->base + offset);
|
|
}
|
|
|
|
static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
|
|
{
|
|
writel(value, tqspi->base + offset);
|
|
|
|
/* read back register to make sure that register writes completed */
|
|
if (offset != QSPI_TX_FIFO)
|
|
readl(tqspi->base + QSPI_COMMAND1);
|
|
}
|
|
|
|
static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
|
|
{
|
|
u32 value;
|
|
|
|
/* write 1 to clear status register */
|
|
value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
|
|
tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
|
|
|
|
value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
|
|
if (!(value & QSPI_INTR_RDY_MASK)) {
|
|
value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
|
|
tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
|
|
}
|
|
|
|
/* clear fifo status error if any */
|
|
value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
|
|
if (value & QSPI_ERR)
|
|
tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
|
|
}
|
|
|
|
static unsigned int
|
|
tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
unsigned int max_word, max_len, total_fifo_words;
|
|
unsigned int remain_len = t->len - tqspi->cur_pos;
|
|
unsigned int bits_per_word = t->bits_per_word;
|
|
|
|
tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
|
|
|
|
/*
|
|
* Tegra QSPI controller supports packed or unpacked mode transfers.
|
|
* Packed mode is used for data transfers using 8, 16, or 32 bits per
|
|
* word with a minimum transfer of 1 word and for all other transfers
|
|
* unpacked mode will be used.
|
|
*/
|
|
|
|
if ((bits_per_word == 8 || bits_per_word == 16 ||
|
|
bits_per_word == 32) && t->len > 3) {
|
|
tqspi->is_packed = true;
|
|
tqspi->words_per_32bit = 32 / bits_per_word;
|
|
} else {
|
|
tqspi->is_packed = false;
|
|
tqspi->words_per_32bit = 1;
|
|
}
|
|
|
|
if (tqspi->is_packed) {
|
|
max_len = min(remain_len, tqspi->max_buf_size);
|
|
tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
|
|
total_fifo_words = (max_len + 3) / 4;
|
|
} else {
|
|
max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
|
|
max_word = min(max_word, tqspi->max_buf_size / 4);
|
|
tqspi->curr_dma_words = max_word;
|
|
total_fifo_words = max_word;
|
|
}
|
|
|
|
return total_fifo_words;
|
|
}
|
|
|
|
static unsigned int
|
|
tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
unsigned int written_words, fifo_words_left, count;
|
|
unsigned int len, tx_empty_count, max_n_32bit, i;
|
|
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
|
|
u32 fifo_status;
|
|
|
|
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
|
|
tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
|
|
|
|
if (tqspi->is_packed) {
|
|
fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
|
|
written_words = min(fifo_words_left, tqspi->curr_dma_words);
|
|
len = written_words * tqspi->bytes_per_word;
|
|
max_n_32bit = DIV_ROUND_UP(len, 4);
|
|
for (count = 0; count < max_n_32bit; count++) {
|
|
u32 x = 0;
|
|
|
|
for (i = 0; (i < 4) && len; i++, len--)
|
|
x |= (u32)(*tx_buf++) << (i * 8);
|
|
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
|
|
}
|
|
|
|
tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
|
|
} else {
|
|
unsigned int write_bytes;
|
|
u8 bytes_per_word = tqspi->bytes_per_word;
|
|
|
|
max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
|
|
written_words = max_n_32bit;
|
|
len = written_words * tqspi->bytes_per_word;
|
|
if (len > t->len - tqspi->cur_pos)
|
|
len = t->len - tqspi->cur_pos;
|
|
write_bytes = len;
|
|
for (count = 0; count < max_n_32bit; count++) {
|
|
u32 x = 0;
|
|
|
|
for (i = 0; len && (i < min(4, bytes_per_word)); i++, len--)
|
|
x |= (u32)(*tx_buf++) << (i * 8);
|
|
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
|
|
}
|
|
|
|
tqspi->cur_tx_pos += write_bytes;
|
|
}
|
|
|
|
return written_words;
|
|
}
|
|
|
|
static unsigned int
|
|
tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
|
|
unsigned int len, rx_full_count, count, i;
|
|
unsigned int read_words = 0;
|
|
u32 fifo_status, x;
|
|
|
|
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
|
|
rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
|
|
if (tqspi->is_packed) {
|
|
len = tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
for (count = 0; count < rx_full_count; count++) {
|
|
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
|
|
|
|
for (i = 0; len && (i < 4); i++, len--)
|
|
*rx_buf++ = (x >> i * 8) & 0xff;
|
|
}
|
|
|
|
read_words += tqspi->curr_dma_words;
|
|
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
} else {
|
|
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
|
|
u8 bytes_per_word = tqspi->bytes_per_word;
|
|
unsigned int read_bytes;
|
|
|
|
len = rx_full_count * bytes_per_word;
|
|
if (len > t->len - tqspi->cur_pos)
|
|
len = t->len - tqspi->cur_pos;
|
|
read_bytes = len;
|
|
for (count = 0; count < rx_full_count; count++) {
|
|
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
|
|
|
|
for (i = 0; len && (i < bytes_per_word); i++, len--)
|
|
*rx_buf++ = (x >> (i * 8)) & 0xff;
|
|
}
|
|
|
|
read_words += rx_full_count;
|
|
tqspi->cur_rx_pos += read_bytes;
|
|
}
|
|
|
|
return read_words;
|
|
}
|
|
|
|
static void
|
|
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
|
|
tqspi->dma_buf_size, DMA_TO_DEVICE);
|
|
|
|
/*
|
|
* In packed mode, each word in FIFO may contain multiple packets
|
|
* based on bits per word. So all bytes in each FIFO word are valid.
|
|
*
|
|
* In unpacked mode, each word in FIFO contains single packet and
|
|
* based on bits per word any remaining bits in FIFO word will be
|
|
* ignored by the hardware and are invalid bits.
|
|
*/
|
|
if (tqspi->is_packed) {
|
|
tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
} else {
|
|
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
|
|
unsigned int i, count, consume, write_bytes;
|
|
|
|
/*
|
|
* Fill tx_dma_buf to contain single packet in each word based
|
|
* on bits per word from SPI core tx_buf.
|
|
*/
|
|
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
if (consume > t->len - tqspi->cur_pos)
|
|
consume = t->len - tqspi->cur_pos;
|
|
write_bytes = consume;
|
|
for (count = 0; count < tqspi->curr_dma_words; count++) {
|
|
u32 x = 0;
|
|
|
|
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
|
|
x |= (u32)(*tx_buf++) << (i * 8);
|
|
tqspi->tx_dma_buf[count] = x;
|
|
}
|
|
|
|
tqspi->cur_tx_pos += write_bytes;
|
|
}
|
|
|
|
dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
|
|
tqspi->dma_buf_size, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void
|
|
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
|
|
tqspi->dma_buf_size, DMA_FROM_DEVICE);
|
|
|
|
if (tqspi->is_packed) {
|
|
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
} else {
|
|
unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
|
|
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
|
|
unsigned int i, count, consume, read_bytes;
|
|
|
|
/*
|
|
* Each FIFO word contains single data packet.
|
|
* Skip invalid bits in each FIFO word based on bits per word
|
|
* and align bytes while filling in SPI core rx_buf.
|
|
*/
|
|
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
|
|
if (consume > t->len - tqspi->cur_pos)
|
|
consume = t->len - tqspi->cur_pos;
|
|
read_bytes = consume;
|
|
for (count = 0; count < tqspi->curr_dma_words; count++) {
|
|
u32 x = tqspi->rx_dma_buf[count] & rx_mask;
|
|
|
|
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
|
|
*rx_buf++ = (x >> (i * 8)) & 0xff;
|
|
}
|
|
|
|
tqspi->cur_rx_pos += read_bytes;
|
|
}
|
|
|
|
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
|
|
tqspi->dma_buf_size, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void tegra_qspi_dma_complete(void *args)
|
|
{
|
|
struct completion *dma_complete = args;
|
|
|
|
complete(dma_complete);
|
|
}
|
|
|
|
static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
|
|
{
|
|
dma_addr_t tx_dma_phys;
|
|
|
|
reinit_completion(&tqspi->tx_dma_complete);
|
|
|
|
if (tqspi->is_packed)
|
|
tx_dma_phys = t->tx_dma;
|
|
else
|
|
tx_dma_phys = tqspi->tx_dma_phys;
|
|
|
|
tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
|
|
len, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
|
|
if (!tqspi->tx_dma_desc) {
|
|
dev_err(tqspi->dev, "Unable to get TX descriptor\n");
|
|
return -EIO;
|
|
}
|
|
|
|
tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
|
|
tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
|
|
dmaengine_submit(tqspi->tx_dma_desc);
|
|
dma_async_issue_pending(tqspi->tx_dma_chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
|
|
{
|
|
dma_addr_t rx_dma_phys;
|
|
|
|
reinit_completion(&tqspi->rx_dma_complete);
|
|
|
|
if (tqspi->is_packed)
|
|
rx_dma_phys = t->rx_dma;
|
|
else
|
|
rx_dma_phys = tqspi->rx_dma_phys;
|
|
|
|
tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
|
|
len, DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
|
|
if (!tqspi->rx_dma_desc) {
|
|
dev_err(tqspi->dev, "Unable to get RX descriptor\n");
|
|
return -EIO;
|
|
}
|
|
|
|
tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
|
|
tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
|
|
dmaengine_submit(tqspi->rx_dma_desc);
|
|
dma_async_issue_pending(tqspi->rx_dma_chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
|
|
{
|
|
void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
|
|
u32 val;
|
|
|
|
val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
|
|
if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
|
|
return 0;
|
|
|
|
val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
|
|
tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
|
|
|
|
if (!atomic)
|
|
return readl_relaxed_poll_timeout(addr, val,
|
|
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
|
|
1000, 1000000);
|
|
|
|
return readl_relaxed_poll_timeout_atomic(addr, val,
|
|
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
|
|
1000, 1000000);
|
|
}
|
|
|
|
static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
|
|
{
|
|
u32 intr_mask;
|
|
|
|
intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
|
|
intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
|
|
tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
|
|
}
|
|
|
|
static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
|
|
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
|
|
unsigned int len;
|
|
|
|
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
|
|
|
|
if (t->tx_buf) {
|
|
t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(tqspi->dev, t->tx_dma))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (t->rx_buf) {
|
|
t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
|
|
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
unsigned int len;
|
|
|
|
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
|
|
|
|
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
|
|
dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
|
|
{
|
|
struct dma_slave_config dma_sconfig = { 0 };
|
|
unsigned int len;
|
|
u8 dma_burst;
|
|
int ret = 0;
|
|
u32 val;
|
|
|
|
if (tqspi->is_packed) {
|
|
ret = tegra_qspi_dma_map_xfer(tqspi, t);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
|
|
tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
|
|
|
|
tegra_qspi_unmask_irq(tqspi);
|
|
|
|
if (tqspi->is_packed)
|
|
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
|
|
else
|
|
len = tqspi->curr_dma_words * 4;
|
|
|
|
/* set attention level based on length of transfer */
|
|
val = 0;
|
|
if (len & 0xf) {
|
|
val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
|
|
dma_burst = 1;
|
|
} else if (((len) >> 4) & 0x1) {
|
|
val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
|
|
dma_burst = 4;
|
|
} else {
|
|
val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
|
|
dma_burst = 8;
|
|
}
|
|
|
|
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
|
|
tqspi->dma_control_reg = val;
|
|
|
|
dma_sconfig.device_fc = true;
|
|
if (tqspi->cur_direction & DATA_DIR_TX) {
|
|
dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
|
|
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
dma_sconfig.dst_maxburst = dma_burst;
|
|
ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
|
|
ret = tegra_qspi_start_tx_dma(tqspi, t, len);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_RX) {
|
|
dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
|
|
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
dma_sconfig.src_maxburst = dma_burst;
|
|
ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
|
|
tqspi->dma_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
ret = tegra_qspi_start_rx_dma(tqspi, t, len);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
|
|
if (tqspi->cur_direction & DATA_DIR_TX)
|
|
dmaengine_terminate_all(tqspi->tx_dma_chan);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
|
|
|
|
tqspi->is_curr_dma_xfer = true;
|
|
tqspi->dma_control_reg = val;
|
|
val |= QSPI_DMA_EN;
|
|
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
|
|
{
|
|
u32 val;
|
|
unsigned int cur_words;
|
|
|
|
if (qspi->cur_direction & DATA_DIR_TX)
|
|
cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
|
|
else
|
|
cur_words = qspi->curr_dma_words;
|
|
|
|
val = QSPI_DMA_BLK_SET(cur_words - 1);
|
|
tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
|
|
|
|
tegra_qspi_unmask_irq(qspi);
|
|
|
|
qspi->is_curr_dma_xfer = false;
|
|
val = qspi->command1_reg;
|
|
val |= QSPI_PIO;
|
|
tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
|
|
{
|
|
if (!tqspi->soc_data->has_dma)
|
|
return;
|
|
|
|
if (tqspi->tx_dma_buf) {
|
|
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
|
|
tqspi->tx_dma_buf, tqspi->tx_dma_phys);
|
|
tqspi->tx_dma_buf = NULL;
|
|
}
|
|
|
|
if (tqspi->tx_dma_chan) {
|
|
dma_release_channel(tqspi->tx_dma_chan);
|
|
tqspi->tx_dma_chan = NULL;
|
|
}
|
|
|
|
if (tqspi->rx_dma_buf) {
|
|
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
|
|
tqspi->rx_dma_buf, tqspi->rx_dma_phys);
|
|
tqspi->rx_dma_buf = NULL;
|
|
}
|
|
|
|
if (tqspi->rx_dma_chan) {
|
|
dma_release_channel(tqspi->rx_dma_chan);
|
|
tqspi->rx_dma_chan = NULL;
|
|
}
|
|
}
|
|
|
|
static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
|
|
{
|
|
struct dma_chan *dma_chan;
|
|
dma_addr_t dma_phys;
|
|
u32 *dma_buf;
|
|
int err;
|
|
|
|
if (!tqspi->soc_data->has_dma)
|
|
return 0;
|
|
|
|
dma_chan = dma_request_chan(tqspi->dev, "rx");
|
|
if (IS_ERR(dma_chan)) {
|
|
err = PTR_ERR(dma_chan);
|
|
goto err_out;
|
|
}
|
|
|
|
tqspi->rx_dma_chan = dma_chan;
|
|
|
|
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
|
|
if (!dma_buf) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
tqspi->rx_dma_buf = dma_buf;
|
|
tqspi->rx_dma_phys = dma_phys;
|
|
|
|
dma_chan = dma_request_chan(tqspi->dev, "tx");
|
|
if (IS_ERR(dma_chan)) {
|
|
err = PTR_ERR(dma_chan);
|
|
goto err_out;
|
|
}
|
|
|
|
tqspi->tx_dma_chan = dma_chan;
|
|
|
|
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
|
|
if (!dma_buf) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
tqspi->tx_dma_buf = dma_buf;
|
|
tqspi->tx_dma_phys = dma_phys;
|
|
tqspi->use_dma = true;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
tegra_qspi_deinit_dma(tqspi);
|
|
|
|
if (err != -EPROBE_DEFER) {
|
|
dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
|
|
dev_err(tqspi->dev, "falling back to PIO\n");
|
|
return 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
|
|
bool is_first_of_msg)
|
|
{
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller);
|
|
struct tegra_qspi_client_data *cdata = spi->controller_data;
|
|
u32 command1, command2, speed = t->speed_hz;
|
|
u8 bits_per_word = t->bits_per_word;
|
|
u32 tx_tap = 0, rx_tap = 0;
|
|
int req_mode;
|
|
|
|
if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) {
|
|
clk_set_rate(tqspi->clk, speed);
|
|
tqspi->cur_speed = speed;
|
|
}
|
|
|
|
tqspi->cur_pos = 0;
|
|
tqspi->cur_rx_pos = 0;
|
|
tqspi->cur_tx_pos = 0;
|
|
tqspi->curr_xfer = t;
|
|
|
|
if (is_first_of_msg) {
|
|
tegra_qspi_mask_clear_irq(tqspi);
|
|
|
|
command1 = tqspi->def_command1_reg;
|
|
command1 |= QSPI_CS_SEL(spi_get_chipselect(spi, 0));
|
|
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
|
|
|
|
command1 &= ~QSPI_CONTROL_MODE_MASK;
|
|
req_mode = spi->mode & 0x3;
|
|
if (req_mode == SPI_MODE_3)
|
|
command1 |= QSPI_CONTROL_MODE_3;
|
|
else
|
|
command1 |= QSPI_CONTROL_MODE_0;
|
|
|
|
if (spi->mode & SPI_CS_HIGH)
|
|
command1 |= QSPI_CS_SW_VAL;
|
|
else
|
|
command1 &= ~QSPI_CS_SW_VAL;
|
|
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
|
|
|
|
if (cdata && cdata->tx_clk_tap_delay)
|
|
tx_tap = cdata->tx_clk_tap_delay;
|
|
|
|
if (cdata && cdata->rx_clk_tap_delay)
|
|
rx_tap = cdata->rx_clk_tap_delay;
|
|
|
|
command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
|
|
if (command2 != tqspi->def_command2_reg)
|
|
tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
|
|
|
|
} else {
|
|
command1 = tqspi->command1_reg;
|
|
command1 &= ~QSPI_BIT_LENGTH(~0);
|
|
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
|
|
}
|
|
|
|
command1 &= ~QSPI_SDR_DDR_SEL;
|
|
|
|
return command1;
|
|
}
|
|
|
|
static int tegra_qspi_start_transfer_one(struct spi_device *spi,
|
|
struct spi_transfer *t, u32 command1)
|
|
{
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller);
|
|
unsigned int total_fifo_words;
|
|
u8 bus_width = 0;
|
|
int ret;
|
|
|
|
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
|
|
|
|
command1 &= ~QSPI_PACKED;
|
|
if (tqspi->is_packed)
|
|
command1 |= QSPI_PACKED;
|
|
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
|
|
|
|
tqspi->cur_direction = 0;
|
|
|
|
command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
|
|
if (t->rx_buf) {
|
|
command1 |= QSPI_RX_EN;
|
|
tqspi->cur_direction |= DATA_DIR_RX;
|
|
bus_width = t->rx_nbits;
|
|
}
|
|
|
|
if (t->tx_buf) {
|
|
command1 |= QSPI_TX_EN;
|
|
tqspi->cur_direction |= DATA_DIR_TX;
|
|
bus_width = t->tx_nbits;
|
|
}
|
|
|
|
command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
|
|
|
|
if (bus_width == SPI_NBITS_QUAD)
|
|
command1 |= QSPI_INTERFACE_WIDTH_QUAD;
|
|
else if (bus_width == SPI_NBITS_DUAL)
|
|
command1 |= QSPI_INTERFACE_WIDTH_DUAL;
|
|
else
|
|
command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
|
|
|
|
tqspi->command1_reg = command1;
|
|
|
|
tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
|
|
|
|
ret = tegra_qspi_flush_fifos(tqspi, false);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
|
|
ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
|
|
else
|
|
ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
|
|
{
|
|
struct tegra_qspi_client_data *cdata;
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller);
|
|
|
|
cdata = devm_kzalloc(tqspi->dev, sizeof(*cdata), GFP_KERNEL);
|
|
if (!cdata)
|
|
return NULL;
|
|
|
|
device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay",
|
|
&cdata->tx_clk_tap_delay);
|
|
device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay",
|
|
&cdata->rx_clk_tap_delay);
|
|
|
|
return cdata;
|
|
}
|
|
|
|
static int tegra_qspi_setup(struct spi_device *spi)
|
|
{
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller);
|
|
struct tegra_qspi_client_data *cdata = spi->controller_data;
|
|
unsigned long flags;
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = pm_runtime_resume_and_get(tqspi->dev);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!cdata) {
|
|
cdata = tegra_qspi_parse_cdata_dt(spi);
|
|
spi->controller_data = cdata;
|
|
}
|
|
spin_lock_irqsave(&tqspi->lock, flags);
|
|
|
|
/* keep default cs state to inactive */
|
|
val = tqspi->def_command1_reg;
|
|
val |= QSPI_CS_SEL(spi_get_chipselect(spi, 0));
|
|
if (spi->mode & SPI_CS_HIGH)
|
|
val &= ~QSPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
|
|
else
|
|
val |= QSPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
|
|
|
|
tqspi->def_command1_reg = val;
|
|
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
|
|
|
|
spin_unlock_irqrestore(&tqspi->lock, flags);
|
|
|
|
pm_runtime_put(tqspi->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
|
|
{
|
|
dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
|
|
dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
|
|
tegra_qspi_readl(tqspi, QSPI_COMMAND1),
|
|
tegra_qspi_readl(tqspi, QSPI_COMMAND2));
|
|
dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
|
|
tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
|
|
tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
|
|
dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n",
|
|
tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
|
|
tegra_qspi_readl(tqspi, QSPI_MISC_REG));
|
|
dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
|
|
tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
|
|
tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
|
|
}
|
|
|
|
static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
|
|
{
|
|
dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
|
|
tegra_qspi_dump_regs(tqspi);
|
|
tegra_qspi_flush_fifos(tqspi, true);
|
|
if (device_reset(tqspi->dev) < 0)
|
|
dev_warn_once(tqspi->dev, "device reset failed\n");
|
|
}
|
|
|
|
static void tegra_qspi_transfer_end(struct spi_device *spi)
|
|
{
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(spi->controller);
|
|
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
|
|
|
|
if (cs_val)
|
|
tqspi->command1_reg |= QSPI_CS_SW_VAL;
|
|
else
|
|
tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
|
|
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
|
|
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
|
|
}
|
|
|
|
static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len)
|
|
{
|
|
u32 cmd_config = 0;
|
|
|
|
/* Extract Command configuration and value */
|
|
if (is_ddr)
|
|
cmd_config |= QSPI_COMMAND_SDR_DDR;
|
|
else
|
|
cmd_config &= ~QSPI_COMMAND_SDR_DDR;
|
|
|
|
cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width);
|
|
cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1);
|
|
|
|
return cmd_config;
|
|
}
|
|
|
|
static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len)
|
|
{
|
|
u32 addr_config = 0;
|
|
|
|
/* Extract Address configuration and value */
|
|
is_ddr = 0; //Only SDR mode supported
|
|
bus_width = 0; //X1 mode
|
|
|
|
if (is_ddr)
|
|
addr_config |= QSPI_ADDRESS_SDR_DDR;
|
|
else
|
|
addr_config &= ~QSPI_ADDRESS_SDR_DDR;
|
|
|
|
addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width);
|
|
addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1);
|
|
|
|
return addr_config;
|
|
}
|
|
|
|
static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi,
|
|
struct spi_message *msg)
|
|
{
|
|
bool is_first_msg = true;
|
|
struct spi_transfer *xfer;
|
|
struct spi_device *spi = msg->spi;
|
|
u8 transfer_phase = 0;
|
|
u32 cmd1 = 0, dma_ctl = 0;
|
|
int ret = 0;
|
|
u32 address_value = 0;
|
|
u32 cmd_config = 0, addr_config = 0;
|
|
u8 cmd_value = 0, val = 0;
|
|
|
|
/* Enable Combined sequence mode */
|
|
val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
|
|
if (spi->mode & SPI_TPM_HW_FLOW) {
|
|
if (tqspi->soc_data->supports_tpm)
|
|
val |= QSPI_TPM_WAIT_POLL_EN;
|
|
else
|
|
return -EIO;
|
|
}
|
|
val |= QSPI_CMB_SEQ_EN;
|
|
tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
|
|
/* Process individual transfer list */
|
|
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
|
|
switch (transfer_phase) {
|
|
case CMD_TRANSFER:
|
|
/* X1 SDR mode */
|
|
cmd_config = tegra_qspi_cmd_config(false, 0,
|
|
xfer->len);
|
|
cmd_value = *((const u8 *)(xfer->tx_buf));
|
|
break;
|
|
case ADDR_TRANSFER:
|
|
/* X1 SDR mode */
|
|
addr_config = tegra_qspi_addr_config(false, 0,
|
|
xfer->len);
|
|
address_value = *((const u32 *)(xfer->tx_buf));
|
|
break;
|
|
case DATA_TRANSFER:
|
|
/* Program Command, Address value in register */
|
|
tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD);
|
|
tegra_qspi_writel(tqspi, address_value,
|
|
QSPI_CMB_SEQ_ADDR);
|
|
/* Program Command and Address config in register */
|
|
tegra_qspi_writel(tqspi, cmd_config,
|
|
QSPI_CMB_SEQ_CMD_CFG);
|
|
tegra_qspi_writel(tqspi, addr_config,
|
|
QSPI_CMB_SEQ_ADDR_CFG);
|
|
|
|
reinit_completion(&tqspi->xfer_completion);
|
|
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer,
|
|
is_first_msg);
|
|
ret = tegra_qspi_start_transfer_one(spi, xfer,
|
|
cmd1);
|
|
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "Failed to start transfer-one: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
is_first_msg = false;
|
|
ret = wait_for_completion_timeout
|
|
(&tqspi->xfer_completion,
|
|
QSPI_DMA_TIMEOUT);
|
|
|
|
if (WARN_ON(ret == 0)) {
|
|
dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n",
|
|
ret);
|
|
if (tqspi->is_curr_dma_xfer &&
|
|
(tqspi->cur_direction & DATA_DIR_TX))
|
|
dmaengine_terminate_all
|
|
(tqspi->tx_dma_chan);
|
|
|
|
if (tqspi->is_curr_dma_xfer &&
|
|
(tqspi->cur_direction & DATA_DIR_RX))
|
|
dmaengine_terminate_all
|
|
(tqspi->rx_dma_chan);
|
|
|
|
/* Abort transfer by resetting pio/dma bit */
|
|
if (!tqspi->is_curr_dma_xfer) {
|
|
cmd1 = tegra_qspi_readl
|
|
(tqspi,
|
|
QSPI_COMMAND1);
|
|
cmd1 &= ~QSPI_PIO;
|
|
tegra_qspi_writel
|
|
(tqspi, cmd1,
|
|
QSPI_COMMAND1);
|
|
} else {
|
|
dma_ctl = tegra_qspi_readl
|
|
(tqspi,
|
|
QSPI_DMA_CTL);
|
|
dma_ctl &= ~QSPI_DMA_EN;
|
|
tegra_qspi_writel(tqspi, dma_ctl,
|
|
QSPI_DMA_CTL);
|
|
}
|
|
|
|
/* Reset controller if timeout happens */
|
|
if (device_reset(tqspi->dev) < 0)
|
|
dev_warn_once(tqspi->dev,
|
|
"device reset failed\n");
|
|
ret = -EIO;
|
|
goto exit;
|
|
}
|
|
|
|
if (tqspi->tx_status || tqspi->rx_status) {
|
|
dev_err(tqspi->dev, "QSPI Transfer failed\n");
|
|
tqspi->tx_status = 0;
|
|
tqspi->rx_status = 0;
|
|
ret = -EIO;
|
|
goto exit;
|
|
}
|
|
if (!xfer->cs_change) {
|
|
tegra_qspi_transfer_end(spi);
|
|
spi_transfer_delay_exec(xfer);
|
|
}
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
msg->actual_length += xfer->len;
|
|
transfer_phase++;
|
|
}
|
|
ret = 0;
|
|
|
|
exit:
|
|
msg->status = ret;
|
|
if (ret < 0) {
|
|
tegra_qspi_transfer_end(spi);
|
|
spi_transfer_delay_exec(xfer);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi,
|
|
struct spi_message *msg)
|
|
{
|
|
struct spi_device *spi = msg->spi;
|
|
struct spi_transfer *transfer;
|
|
bool is_first_msg = true;
|
|
int ret = 0, val = 0;
|
|
|
|
msg->status = 0;
|
|
msg->actual_length = 0;
|
|
tqspi->tx_status = 0;
|
|
tqspi->rx_status = 0;
|
|
|
|
/* Disable Combined sequence mode */
|
|
val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
|
|
val &= ~QSPI_CMB_SEQ_EN;
|
|
if (tqspi->soc_data->supports_tpm)
|
|
val &= ~QSPI_TPM_WAIT_POLL_EN;
|
|
tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
|
|
list_for_each_entry(transfer, &msg->transfers, transfer_list) {
|
|
struct spi_transfer *xfer = transfer;
|
|
u8 dummy_bytes = 0;
|
|
u32 cmd1;
|
|
|
|
tqspi->dummy_cycles = 0;
|
|
/*
|
|
* Tegra QSPI hardware supports dummy bytes transfer after actual transfer
|
|
* bytes based on programmed dummy clock cycles in the QSPI_MISC register.
|
|
* So, check if the next transfer is dummy data transfer and program dummy
|
|
* clock cycles along with the current transfer and skip next transfer.
|
|
*/
|
|
if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
|
|
struct spi_transfer *next_xfer;
|
|
|
|
next_xfer = list_next_entry(xfer, transfer_list);
|
|
if (next_xfer->dummy_data) {
|
|
u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
|
|
|
|
if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
|
|
tqspi->dummy_cycles = dummy_cycles;
|
|
dummy_bytes = next_xfer->len;
|
|
transfer = next_xfer;
|
|
}
|
|
}
|
|
}
|
|
|
|
reinit_completion(&tqspi->xfer_completion);
|
|
|
|
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
|
|
|
|
ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
|
|
if (ret < 0) {
|
|
dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
|
|
goto complete_xfer;
|
|
}
|
|
|
|
ret = wait_for_completion_timeout(&tqspi->xfer_completion,
|
|
QSPI_DMA_TIMEOUT);
|
|
if (WARN_ON(ret == 0)) {
|
|
dev_err(tqspi->dev, "transfer timeout\n");
|
|
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
|
|
dmaengine_terminate_all(tqspi->tx_dma_chan);
|
|
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
|
|
dmaengine_terminate_all(tqspi->rx_dma_chan);
|
|
tegra_qspi_handle_error(tqspi);
|
|
ret = -EIO;
|
|
goto complete_xfer;
|
|
}
|
|
|
|
if (tqspi->tx_status || tqspi->rx_status) {
|
|
tegra_qspi_handle_error(tqspi);
|
|
ret = -EIO;
|
|
goto complete_xfer;
|
|
}
|
|
|
|
msg->actual_length += xfer->len + dummy_bytes;
|
|
|
|
complete_xfer:
|
|
if (ret < 0) {
|
|
tegra_qspi_transfer_end(spi);
|
|
spi_transfer_delay_exec(xfer);
|
|
goto exit;
|
|
}
|
|
|
|
if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
|
|
/* de-activate CS after last transfer only when cs_change is not set */
|
|
if (!xfer->cs_change) {
|
|
tegra_qspi_transfer_end(spi);
|
|
spi_transfer_delay_exec(xfer);
|
|
}
|
|
} else if (xfer->cs_change) {
|
|
/* de-activated CS between the transfers only when cs_change is set */
|
|
tegra_qspi_transfer_end(spi);
|
|
spi_transfer_delay_exec(xfer);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
exit:
|
|
msg->status = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi,
|
|
struct spi_message *msg)
|
|
{
|
|
int transfer_count = 0;
|
|
struct spi_transfer *xfer;
|
|
|
|
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
|
|
transfer_count++;
|
|
}
|
|
if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3)
|
|
return false;
|
|
xfer = list_first_entry(&msg->transfers, typeof(*xfer),
|
|
transfer_list);
|
|
if (xfer->len > 2)
|
|
return false;
|
|
xfer = list_next_entry(xfer, transfer_list);
|
|
if (xfer->len > 4 || xfer->len < 3)
|
|
return false;
|
|
xfer = list_next_entry(xfer, transfer_list);
|
|
if (!tqspi->soc_data->has_dma && xfer->len > (QSPI_FIFO_DEPTH << 2))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int tegra_qspi_transfer_one_message(struct spi_controller *host,
|
|
struct spi_message *msg)
|
|
{
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
if (tegra_qspi_validate_cmb_seq(tqspi, msg))
|
|
ret = tegra_qspi_combined_seq_xfer(tqspi, msg);
|
|
else
|
|
ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg);
|
|
|
|
spi_finalize_current_message(host);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
|
|
{
|
|
struct spi_transfer *t = tqspi->curr_xfer;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tqspi->lock, flags);
|
|
|
|
if (tqspi->tx_status || tqspi->rx_status) {
|
|
tegra_qspi_handle_error(tqspi);
|
|
complete(&tqspi->xfer_completion);
|
|
goto exit;
|
|
}
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_RX)
|
|
tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_TX)
|
|
tqspi->cur_pos = tqspi->cur_tx_pos;
|
|
else
|
|
tqspi->cur_pos = tqspi->cur_rx_pos;
|
|
|
|
if (tqspi->cur_pos == t->len) {
|
|
complete(&tqspi->xfer_completion);
|
|
goto exit;
|
|
}
|
|
|
|
tegra_qspi_calculate_curr_xfer_param(tqspi, t);
|
|
tegra_qspi_start_cpu_based_transfer(tqspi, t);
|
|
exit:
|
|
spin_unlock_irqrestore(&tqspi->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
|
|
{
|
|
struct spi_transfer *t = tqspi->curr_xfer;
|
|
unsigned int total_fifo_words;
|
|
unsigned long flags;
|
|
long wait_status;
|
|
int err = 0;
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_TX) {
|
|
if (tqspi->tx_status) {
|
|
dmaengine_terminate_all(tqspi->tx_dma_chan);
|
|
err += 1;
|
|
} else {
|
|
wait_status = wait_for_completion_interruptible_timeout(
|
|
&tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
|
|
if (wait_status <= 0) {
|
|
dmaengine_terminate_all(tqspi->tx_dma_chan);
|
|
dev_err(tqspi->dev, "failed TX DMA transfer\n");
|
|
err += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_RX) {
|
|
if (tqspi->rx_status) {
|
|
dmaengine_terminate_all(tqspi->rx_dma_chan);
|
|
err += 2;
|
|
} else {
|
|
wait_status = wait_for_completion_interruptible_timeout(
|
|
&tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
|
|
if (wait_status <= 0) {
|
|
dmaengine_terminate_all(tqspi->rx_dma_chan);
|
|
dev_err(tqspi->dev, "failed RX DMA transfer\n");
|
|
err += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&tqspi->lock, flags);
|
|
|
|
if (err) {
|
|
tegra_qspi_dma_unmap_xfer(tqspi, t);
|
|
tegra_qspi_handle_error(tqspi);
|
|
complete(&tqspi->xfer_completion);
|
|
goto exit;
|
|
}
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_RX)
|
|
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_TX)
|
|
tqspi->cur_pos = tqspi->cur_tx_pos;
|
|
else
|
|
tqspi->cur_pos = tqspi->cur_rx_pos;
|
|
|
|
if (tqspi->cur_pos == t->len) {
|
|
tegra_qspi_dma_unmap_xfer(tqspi, t);
|
|
complete(&tqspi->xfer_completion);
|
|
goto exit;
|
|
}
|
|
|
|
tegra_qspi_dma_unmap_xfer(tqspi, t);
|
|
|
|
/* continue transfer in current message */
|
|
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
|
|
if (total_fifo_words > QSPI_FIFO_DEPTH)
|
|
err = tegra_qspi_start_dma_based_transfer(tqspi, t);
|
|
else
|
|
err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
|
|
|
|
exit:
|
|
spin_unlock_irqrestore(&tqspi->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
|
|
{
|
|
struct tegra_qspi *tqspi = context_data;
|
|
|
|
tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_TX)
|
|
tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
|
|
|
|
if (tqspi->cur_direction & DATA_DIR_RX)
|
|
tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
|
|
|
|
tegra_qspi_mask_clear_irq(tqspi);
|
|
|
|
if (!tqspi->is_curr_dma_xfer)
|
|
return handle_cpu_based_xfer(tqspi);
|
|
|
|
return handle_dma_based_xfer(tqspi);
|
|
}
|
|
|
|
static struct tegra_qspi_soc_data tegra210_qspi_soc_data = {
|
|
.has_dma = true,
|
|
.cmb_xfer_capable = false,
|
|
.supports_tpm = false,
|
|
.cs_count = 1,
|
|
};
|
|
|
|
static struct tegra_qspi_soc_data tegra186_qspi_soc_data = {
|
|
.has_dma = true,
|
|
.cmb_xfer_capable = true,
|
|
.supports_tpm = false,
|
|
.cs_count = 1,
|
|
};
|
|
|
|
static struct tegra_qspi_soc_data tegra234_qspi_soc_data = {
|
|
.has_dma = false,
|
|
.cmb_xfer_capable = true,
|
|
.supports_tpm = true,
|
|
.cs_count = 1,
|
|
};
|
|
|
|
static struct tegra_qspi_soc_data tegra241_qspi_soc_data = {
|
|
.has_dma = false,
|
|
.cmb_xfer_capable = true,
|
|
.supports_tpm = true,
|
|
.cs_count = 4,
|
|
};
|
|
|
|
static const struct of_device_id tegra_qspi_of_match[] = {
|
|
{
|
|
.compatible = "nvidia,tegra210-qspi",
|
|
.data = &tegra210_qspi_soc_data,
|
|
}, {
|
|
.compatible = "nvidia,tegra186-qspi",
|
|
.data = &tegra186_qspi_soc_data,
|
|
}, {
|
|
.compatible = "nvidia,tegra194-qspi",
|
|
.data = &tegra186_qspi_soc_data,
|
|
}, {
|
|
.compatible = "nvidia,tegra234-qspi",
|
|
.data = &tegra234_qspi_soc_data,
|
|
}, {
|
|
.compatible = "nvidia,tegra241-qspi",
|
|
.data = &tegra241_qspi_soc_data,
|
|
},
|
|
{}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static const struct acpi_device_id tegra_qspi_acpi_match[] = {
|
|
{
|
|
.id = "NVDA1213",
|
|
.driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data,
|
|
}, {
|
|
.id = "NVDA1313",
|
|
.driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data,
|
|
}, {
|
|
.id = "NVDA1413",
|
|
.driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data,
|
|
}, {
|
|
.id = "NVDA1513",
|
|
.driver_data = (kernel_ulong_t)&tegra241_qspi_soc_data,
|
|
},
|
|
{}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match);
|
|
#endif
|
|
|
|
static int tegra_qspi_probe(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host;
|
|
struct tegra_qspi *tqspi;
|
|
struct resource *r;
|
|
int ret, qspi_irq;
|
|
int bus_num;
|
|
|
|
host = devm_spi_alloc_host(&pdev->dev, sizeof(*tqspi));
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
tqspi = spi_controller_get_devdata(host);
|
|
|
|
host->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
|
|
SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
|
|
host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
|
|
host->flags = SPI_CONTROLLER_HALF_DUPLEX;
|
|
host->setup = tegra_qspi_setup;
|
|
host->transfer_one_message = tegra_qspi_transfer_one_message;
|
|
host->num_chipselect = 1;
|
|
host->auto_runtime_pm = true;
|
|
|
|
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
|
|
if (bus_num >= 0)
|
|
host->bus_num = bus_num;
|
|
|
|
tqspi->host = host;
|
|
tqspi->dev = &pdev->dev;
|
|
spin_lock_init(&tqspi->lock);
|
|
|
|
tqspi->soc_data = device_get_match_data(&pdev->dev);
|
|
host->num_chipselect = tqspi->soc_data->cs_count;
|
|
tqspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
|
|
if (IS_ERR(tqspi->base))
|
|
return PTR_ERR(tqspi->base);
|
|
|
|
tqspi->phys = r->start;
|
|
qspi_irq = platform_get_irq(pdev, 0);
|
|
if (qspi_irq < 0)
|
|
return qspi_irq;
|
|
tqspi->irq = qspi_irq;
|
|
|
|
if (!has_acpi_companion(tqspi->dev)) {
|
|
tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
|
|
if (IS_ERR(tqspi->clk)) {
|
|
ret = PTR_ERR(tqspi->clk);
|
|
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
}
|
|
|
|
tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
|
|
tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
|
|
|
|
ret = tegra_qspi_init_dma(tqspi);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (tqspi->use_dma)
|
|
tqspi->max_buf_size = tqspi->dma_buf_size;
|
|
|
|
init_completion(&tqspi->tx_dma_complete);
|
|
init_completion(&tqspi->rx_dma_complete);
|
|
init_completion(&tqspi->xfer_completion);
|
|
|
|
pm_runtime_enable(&pdev->dev);
|
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
|
|
goto exit_pm_disable;
|
|
}
|
|
|
|
if (device_reset(tqspi->dev) < 0)
|
|
dev_warn_once(tqspi->dev, "device reset failed\n");
|
|
|
|
tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL;
|
|
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
|
|
tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
|
|
tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
|
|
tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
|
|
|
|
pm_runtime_put(&pdev->dev);
|
|
|
|
ret = request_threaded_irq(tqspi->irq, NULL,
|
|
tegra_qspi_isr_thread, IRQF_ONESHOT,
|
|
dev_name(&pdev->dev), tqspi);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
|
|
goto exit_pm_disable;
|
|
}
|
|
|
|
host->dev.of_node = pdev->dev.of_node;
|
|
ret = spi_register_controller(host);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to register host: %d\n", ret);
|
|
goto exit_free_irq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_free_irq:
|
|
free_irq(qspi_irq, tqspi);
|
|
exit_pm_disable:
|
|
pm_runtime_force_suspend(&pdev->dev);
|
|
tegra_qspi_deinit_dma(tqspi);
|
|
return ret;
|
|
}
|
|
|
|
static void tegra_qspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *host = platform_get_drvdata(pdev);
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(host);
|
|
|
|
spi_unregister_controller(host);
|
|
free_irq(tqspi->irq, tqspi);
|
|
pm_runtime_force_suspend(&pdev->dev);
|
|
tegra_qspi_deinit_dma(tqspi);
|
|
}
|
|
|
|
static int __maybe_unused tegra_qspi_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
|
|
return spi_controller_suspend(host);
|
|
}
|
|
|
|
static int __maybe_unused tegra_qspi_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
ret = pm_runtime_resume_and_get(dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to get runtime PM: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
|
|
tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
|
|
pm_runtime_put(dev);
|
|
|
|
return spi_controller_resume(host);
|
|
}
|
|
|
|
static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(host);
|
|
|
|
/* Runtime pm disabled with ACPI */
|
|
if (has_acpi_companion(tqspi->dev))
|
|
return 0;
|
|
/* flush all write which are in PPSB queue by reading back */
|
|
tegra_qspi_readl(tqspi, QSPI_COMMAND1);
|
|
|
|
clk_disable_unprepare(tqspi->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
|
|
{
|
|
struct spi_controller *host = dev_get_drvdata(dev);
|
|
struct tegra_qspi *tqspi = spi_controller_get_devdata(host);
|
|
int ret;
|
|
|
|
/* Runtime pm disabled with ACPI */
|
|
if (has_acpi_companion(tqspi->dev))
|
|
return 0;
|
|
ret = clk_prepare_enable(tqspi->clk);
|
|
if (ret < 0)
|
|
dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pm_ops tegra_qspi_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
|
|
SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
|
|
};
|
|
|
|
static struct platform_driver tegra_qspi_driver = {
|
|
.driver = {
|
|
.name = "tegra-qspi",
|
|
.pm = &tegra_qspi_pm_ops,
|
|
.of_match_table = tegra_qspi_of_match,
|
|
.acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match),
|
|
},
|
|
.probe = tegra_qspi_probe,
|
|
.remove = tegra_qspi_remove,
|
|
};
|
|
module_platform_driver(tegra_qspi_driver);
|
|
|
|
MODULE_ALIAS("platform:qspi-tegra");
|
|
MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
|
|
MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
|
|
MODULE_LICENSE("GPL v2");
|