linux/drivers/spi/spi-realtek-rtl-snand.c
Chris Packham 25d2847158
spi: spi-mem: rtl-snand: Correctly handle DMA transfers
The RTL9300 has some limitations on the maximum DMA transfers possible.
For reads this is 2080 bytes (520*4) for writes this is 520 bytes. Deal
with this by splitting transfers into appropriately sized parts.

Fixes: 42d20a6a61 ("spi: spi-mem: Add Realtek SPI-NAND controller")
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Link: https://patch.msgid.link/20241030194920.3202282-1-chris.packham@alliedtelesis.co.nz
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-11-01 14:48:53 +00:00

420 lines
9.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define SNAFCFR 0x00
#define SNAFCFR_DMA_IE BIT(20)
#define SNAFCCR 0x04
#define SNAFWCMR 0x08
#define SNAFRCMR 0x0c
#define SNAFRDR 0x10
#define SNAFWDR 0x14
#define SNAFDTR 0x18
#define SNAFDRSAR 0x1c
#define SNAFDIR 0x20
#define SNAFDIR_DMA_IP BIT(0)
#define SNAFDLR 0x24
#define SNAFSR 0x40
#define SNAFSR_NFCOS BIT(3)
#define SNAFSR_NFDRS BIT(2)
#define SNAFSR_NFDWS BIT(1)
#define CMR_LEN(len) ((len) - 1)
#define CMR_WID(width) (((width) >> 1) << 28)
struct rtl_snand {
struct device *dev;
struct regmap *regmap;
struct completion comp;
};
static irqreturn_t rtl_snand_irq(int irq, void *data)
{
struct rtl_snand *snand = data;
u32 val = 0;
regmap_read(snand->regmap, SNAFSR, &val);
if (val & (SNAFSR_NFCOS | SNAFSR_NFDRS | SNAFSR_NFDWS))
return IRQ_NONE;
regmap_write(snand->regmap, SNAFDIR, SNAFDIR_DMA_IP);
complete(&snand->comp);
return IRQ_HANDLED;
}
static bool rtl_snand_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
return false;
return true;
}
static void rtl_snand_set_cs(struct rtl_snand *snand, int cs, bool active)
{
u32 val;
if (active)
val = ~(1 << (4 * cs));
else
val = ~0;
regmap_write(snand->regmap, SNAFCCR, val);
}
static int rtl_snand_wait_ready(struct rtl_snand *snand)
{
u32 val;
return regmap_read_poll_timeout(snand->regmap, SNAFSR, val, !(val & SNAFSR_NFCOS),
0, 2 * USEC_PER_MSEC);
}
static int rtl_snand_xfer_head(struct rtl_snand *snand, int cs, const struct spi_mem_op *op)
{
int ret;
u32 val, len = 0;
rtl_snand_set_cs(snand, cs, true);
val = op->cmd.opcode << 24;
len = 1;
if (op->addr.nbytes && op->addr.buswidth == 1) {
val |= op->addr.val << ((3 - op->addr.nbytes) * 8);
len += op->addr.nbytes;
}
ret = rtl_snand_wait_ready(snand);
if (ret)
return ret;
ret = regmap_write(snand->regmap, SNAFWCMR, CMR_LEN(len));
if (ret)
return ret;
ret = regmap_write(snand->regmap, SNAFWDR, val);
if (ret)
return ret;
ret = rtl_snand_wait_ready(snand);
if (ret)
return ret;
if (op->addr.buswidth > 1) {
val = op->addr.val << ((3 - op->addr.nbytes) * 8);
len = op->addr.nbytes;
ret = regmap_write(snand->regmap, SNAFWCMR,
CMR_WID(op->addr.buswidth) | CMR_LEN(len));
if (ret)
return ret;
ret = regmap_write(snand->regmap, SNAFWDR, val);
if (ret)
return ret;
ret = rtl_snand_wait_ready(snand);
if (ret)
return ret;
}
if (op->dummy.nbytes) {
val = 0;
ret = regmap_write(snand->regmap, SNAFWCMR,
CMR_WID(op->dummy.buswidth) | CMR_LEN(op->dummy.nbytes));
if (ret)
return ret;
ret = regmap_write(snand->regmap, SNAFWDR, val);
if (ret)
return ret;
ret = rtl_snand_wait_ready(snand);
if (ret)
return ret;
}
return 0;
}
static void rtl_snand_xfer_tail(struct rtl_snand *snand, int cs)
{
rtl_snand_set_cs(snand, cs, false);
}
static int rtl_snand_xfer(struct rtl_snand *snand, int cs, const struct spi_mem_op *op)
{
unsigned int pos, nbytes;
int ret;
u32 val, len = 0;
ret = rtl_snand_xfer_head(snand, cs, op);
if (ret)
goto out_deselect;
if (op->data.dir == SPI_MEM_DATA_IN) {
pos = 0;
len = op->data.nbytes;
while (pos < len) {
nbytes = len - pos;
if (nbytes > 4)
nbytes = 4;
ret = rtl_snand_wait_ready(snand);
if (ret)
goto out_deselect;
ret = regmap_write(snand->regmap, SNAFRCMR,
CMR_WID(op->data.buswidth) | CMR_LEN(nbytes));
if (ret)
goto out_deselect;
ret = rtl_snand_wait_ready(snand);
if (ret)
goto out_deselect;
ret = regmap_read(snand->regmap, SNAFRDR, &val);
if (ret)
goto out_deselect;
memcpy(op->data.buf.in + pos, &val, nbytes);
pos += nbytes;
}
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
pos = 0;
len = op->data.nbytes;
while (pos < len) {
nbytes = len - pos;
if (nbytes > 4)
nbytes = 4;
memcpy(&val, op->data.buf.out + pos, nbytes);
pos += nbytes;
ret = regmap_write(snand->regmap, SNAFWCMR, CMR_LEN(nbytes));
if (ret)
goto out_deselect;
ret = regmap_write(snand->regmap, SNAFWDR, val);
if (ret)
goto out_deselect;
ret = rtl_snand_wait_ready(snand);
if (ret)
goto out_deselect;
}
}
out_deselect:
rtl_snand_xfer_tail(snand, cs);
if (ret)
dev_err(snand->dev, "transfer failed %d\n", ret);
return ret;
}
static int rtl_snand_dma_xfer(struct rtl_snand *snand, int cs, const struct spi_mem_op *op)
{
unsigned int pos, nbytes;
int ret;
dma_addr_t buf_dma;
enum dma_data_direction dir;
u32 trig, len, maxlen;
ret = rtl_snand_xfer_head(snand, cs, op);
if (ret)
goto out_deselect;
if (op->data.dir == SPI_MEM_DATA_IN) {
maxlen = 2080;
dir = DMA_FROM_DEVICE;
trig = 0;
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
maxlen = 520;
dir = DMA_TO_DEVICE;
trig = 1;
} else {
ret = -EOPNOTSUPP;
goto out_deselect;
}
buf_dma = dma_map_single(snand->dev, op->data.buf.in, op->data.nbytes, dir);
ret = dma_mapping_error(snand->dev, buf_dma);
if (ret)
goto out_deselect;
ret = regmap_write(snand->regmap, SNAFDIR, SNAFDIR_DMA_IP);
if (ret)
goto out_unmap;
ret = regmap_update_bits(snand->regmap, SNAFCFR, SNAFCFR_DMA_IE, SNAFCFR_DMA_IE);
if (ret)
goto out_unmap;
pos = 0;
len = op->data.nbytes;
while (pos < len) {
nbytes = len - pos;
if (nbytes > maxlen)
nbytes = maxlen;
reinit_completion(&snand->comp);
ret = regmap_write(snand->regmap, SNAFDRSAR, buf_dma + pos);
if (ret)
goto out_disable_int;
pos += nbytes;
ret = regmap_write(snand->regmap, SNAFDLR,
CMR_WID(op->data.buswidth) | nbytes);
if (ret)
goto out_disable_int;
ret = regmap_write(snand->regmap, SNAFDTR, trig);
if (ret)
goto out_disable_int;
if (!wait_for_completion_timeout(&snand->comp, usecs_to_jiffies(20000)))
ret = -ETIMEDOUT;
if (ret)
goto out_disable_int;
}
out_disable_int:
regmap_update_bits(snand->regmap, SNAFCFR, SNAFCFR_DMA_IE, 0);
out_unmap:
dma_unmap_single(snand->dev, buf_dma, op->data.nbytes, dir);
out_deselect:
rtl_snand_xfer_tail(snand, cs);
if (ret)
dev_err(snand->dev, "transfer failed %d\n", ret);
return ret;
}
static bool rtl_snand_dma_op(const struct spi_mem_op *op)
{
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
case SPI_MEM_DATA_OUT:
return op->data.nbytes > 32;
default:
return false;
}
}
static int rtl_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct rtl_snand *snand = spi_controller_get_devdata(mem->spi->controller);
int cs = spi_get_chipselect(mem->spi, 0);
dev_dbg(snand->dev, "cs %d op cmd %02x %d:%d, dummy %d:%d, addr %08llx@%d:%d, data %d:%d\n",
cs, op->cmd.opcode,
op->cmd.buswidth, op->cmd.nbytes, op->dummy.buswidth,
op->dummy.nbytes, op->addr.val, op->addr.buswidth,
op->addr.nbytes, op->data.buswidth, op->data.nbytes);
if (rtl_snand_dma_op(op))
return rtl_snand_dma_xfer(snand, cs, op);
else
return rtl_snand_xfer(snand, cs, op);
}
static const struct spi_controller_mem_ops rtl_snand_mem_ops = {
.supports_op = rtl_snand_supports_op,
.exec_op = rtl_snand_exec_op,
};
static const struct of_device_id rtl_snand_match[] = {
{ .compatible = "realtek,rtl9301-snand" },
{ .compatible = "realtek,rtl9302b-snand" },
{ .compatible = "realtek,rtl9302c-snand" },
{ .compatible = "realtek,rtl9303-snand" },
{},
};
MODULE_DEVICE_TABLE(of, rtl_snand_match);
static int rtl_snand_probe(struct platform_device *pdev)
{
struct rtl_snand *snand;
struct device *dev = &pdev->dev;
struct spi_controller *ctrl;
void __iomem *base;
const struct regmap_config rc = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.cache_type = REGCACHE_NONE,
};
int irq, ret;
ctrl = devm_spi_alloc_host(dev, sizeof(*snand));
if (!ctrl)
return -ENOMEM;
snand = spi_controller_get_devdata(ctrl);
snand->dev = dev;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
snand->regmap = devm_regmap_init_mmio(dev, base, &rc);
if (IS_ERR(snand->regmap))
return PTR_ERR(snand->regmap);
init_completion(&snand->comp);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = dma_set_mask(snand->dev, DMA_BIT_MASK(32));
if (ret)
return dev_err_probe(dev, ret, "failed to set DMA mask\n");
ret = devm_request_irq(dev, irq, rtl_snand_irq, 0, "rtl-snand", snand);
if (ret)
return dev_err_probe(dev, ret, "failed to request irq\n");
ctrl->num_chipselect = 2;
ctrl->mem_ops = &rtl_snand_mem_ops;
ctrl->bits_per_word_mask = SPI_BPW_MASK(8);
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
device_set_node(&ctrl->dev, dev_fwnode(dev));
return devm_spi_register_controller(dev, ctrl);
}
static struct platform_driver rtl_snand_driver = {
.driver = {
.name = "realtek-rtl-snand",
.of_match_table = rtl_snand_match,
},
.probe = rtl_snand_probe,
};
module_platform_driver(rtl_snand_driver);
MODULE_DESCRIPTION("Realtek SPI-NAND Flash Controller Driver");
MODULE_LICENSE("GPL");