mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:46:16 +00:00
5a4c1f0207
The sdw_initialize_slave() function stores 'slave->prop' as local 'prop' variable, so use it in all applicable places to make code a bit simpler. Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org> Reviewed-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com> Link: https://lore.kernel.org/r/20240620091046.12426-1-krzysztof.kozlowski@linaro.org Signed-off-by: Vinod Koul <vkoul@kernel.org>
2018 lines
49 KiB
C
2018 lines
49 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
// Copyright(c) 2015-17 Intel Corporation.
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/soundwire/sdw_registers.h>
|
|
#include <linux/soundwire/sdw.h>
|
|
#include <linux/soundwire/sdw_type.h>
|
|
#include "bus.h"
|
|
#include "irq.h"
|
|
#include "sysfs_local.h"
|
|
|
|
static DEFINE_IDA(sdw_bus_ida);
|
|
|
|
static int sdw_get_id(struct sdw_bus *bus)
|
|
{
|
|
int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
|
|
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
bus->id = rc;
|
|
|
|
if (bus->controller_id == -1)
|
|
bus->controller_id = rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdw_bus_master_add() - add a bus Master instance
|
|
* @bus: bus instance
|
|
* @parent: parent device
|
|
* @fwnode: firmware node handle
|
|
*
|
|
* Initializes the bus instance, read properties and create child
|
|
* devices.
|
|
*/
|
|
int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
|
|
struct fwnode_handle *fwnode)
|
|
{
|
|
struct sdw_master_prop *prop = NULL;
|
|
int ret;
|
|
|
|
if (!parent) {
|
|
pr_err("SoundWire parent device is not set\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = sdw_get_id(bus);
|
|
if (ret < 0) {
|
|
dev_err(parent, "Failed to get bus id\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = sdw_master_device_add(bus, parent, fwnode);
|
|
if (ret < 0) {
|
|
dev_err(parent, "Failed to add master device at link %d\n",
|
|
bus->link_id);
|
|
return ret;
|
|
}
|
|
|
|
if (!bus->ops) {
|
|
dev_err(bus->dev, "SoundWire Bus ops are not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!bus->compute_params) {
|
|
dev_err(bus->dev,
|
|
"Bandwidth allocation not configured, compute_params no set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Give each bus_lock and msg_lock a unique key so that lockdep won't
|
|
* trigger a deadlock warning when the locks of several buses are
|
|
* grabbed during configuration of a multi-bus stream.
|
|
*/
|
|
lockdep_register_key(&bus->msg_lock_key);
|
|
__mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
|
|
|
|
lockdep_register_key(&bus->bus_lock_key);
|
|
__mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
|
|
|
|
INIT_LIST_HEAD(&bus->slaves);
|
|
INIT_LIST_HEAD(&bus->m_rt_list);
|
|
|
|
/*
|
|
* Initialize multi_link flag
|
|
*/
|
|
bus->multi_link = false;
|
|
if (bus->ops->read_prop) {
|
|
ret = bus->ops->read_prop(bus);
|
|
if (ret < 0) {
|
|
dev_err(bus->dev,
|
|
"Bus read properties failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
sdw_bus_debugfs_init(bus);
|
|
|
|
/*
|
|
* Device numbers in SoundWire are 0 through 15. Enumeration device
|
|
* number (0), Broadcast device number (15), Group numbers (12 and
|
|
* 13) and Master device number (14) are not used for assignment so
|
|
* mask these and other higher bits.
|
|
*/
|
|
|
|
/* Set higher order bits */
|
|
*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
|
|
|
|
/* Set enumuration device number and broadcast device number */
|
|
set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
|
|
set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
|
|
|
|
/* Set group device numbers and master device number */
|
|
set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
|
|
set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
|
|
set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
|
|
|
|
/*
|
|
* SDW is an enumerable bus, but devices can be powered off. So,
|
|
* they won't be able to report as present.
|
|
*
|
|
* Create Slave devices based on Slaves described in
|
|
* the respective firmware (ACPI/DT)
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
|
|
ret = sdw_acpi_find_slaves(bus);
|
|
else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
|
|
ret = sdw_of_find_slaves(bus);
|
|
else
|
|
ret = -ENOTSUPP; /* No ACPI/DT so error out */
|
|
|
|
if (ret < 0) {
|
|
dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize clock values based on Master properties. The max
|
|
* frequency is read from max_clk_freq property. Current assumption
|
|
* is that the bus will start at highest clock frequency when
|
|
* powered on.
|
|
*
|
|
* Default active bank will be 0 as out of reset the Slaves have
|
|
* to start with bank 0 (Table 40 of Spec)
|
|
*/
|
|
prop = &bus->prop;
|
|
bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
|
|
bus->params.curr_dr_freq = bus->params.max_dr_freq;
|
|
bus->params.curr_bank = SDW_BANK0;
|
|
bus->params.next_bank = SDW_BANK1;
|
|
|
|
ret = sdw_irq_create(bus, fwnode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sdw_bus_master_add);
|
|
|
|
static int sdw_delete_slave(struct device *dev, void *data)
|
|
{
|
|
struct sdw_slave *slave = dev_to_sdw_dev(dev);
|
|
struct sdw_bus *bus = slave->bus;
|
|
|
|
pm_runtime_disable(dev);
|
|
|
|
sdw_slave_debugfs_exit(slave);
|
|
|
|
mutex_lock(&bus->bus_lock);
|
|
|
|
if (slave->dev_num) { /* clear dev_num if assigned */
|
|
clear_bit(slave->dev_num, bus->assigned);
|
|
if (bus->ops && bus->ops->put_device_num)
|
|
bus->ops->put_device_num(bus, slave);
|
|
}
|
|
list_del_init(&slave->node);
|
|
mutex_unlock(&bus->bus_lock);
|
|
|
|
device_unregister(dev);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdw_bus_master_delete() - delete the bus master instance
|
|
* @bus: bus to be deleted
|
|
*
|
|
* Remove the instance, delete the child devices.
|
|
*/
|
|
void sdw_bus_master_delete(struct sdw_bus *bus)
|
|
{
|
|
device_for_each_child(bus->dev, NULL, sdw_delete_slave);
|
|
|
|
sdw_irq_delete(bus);
|
|
|
|
sdw_master_device_del(bus);
|
|
|
|
sdw_bus_debugfs_exit(bus);
|
|
lockdep_unregister_key(&bus->bus_lock_key);
|
|
lockdep_unregister_key(&bus->msg_lock_key);
|
|
ida_free(&sdw_bus_ida, bus->id);
|
|
}
|
|
EXPORT_SYMBOL(sdw_bus_master_delete);
|
|
|
|
/*
|
|
* SDW IO Calls
|
|
*/
|
|
|
|
static inline int find_response_code(enum sdw_command_response resp)
|
|
{
|
|
switch (resp) {
|
|
case SDW_CMD_OK:
|
|
return 0;
|
|
|
|
case SDW_CMD_IGNORED:
|
|
return -ENODATA;
|
|
|
|
case SDW_CMD_TIMEOUT:
|
|
return -ETIMEDOUT;
|
|
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
|
|
{
|
|
int retry = bus->prop.err_threshold;
|
|
enum sdw_command_response resp;
|
|
int ret = 0, i;
|
|
|
|
for (i = 0; i <= retry; i++) {
|
|
resp = bus->ops->xfer_msg(bus, msg);
|
|
ret = find_response_code(resp);
|
|
|
|
/* if cmd is ok or ignored return */
|
|
if (ret == 0 || ret == -ENODATA)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int do_transfer_defer(struct sdw_bus *bus,
|
|
struct sdw_msg *msg)
|
|
{
|
|
struct sdw_defer *defer = &bus->defer_msg;
|
|
int retry = bus->prop.err_threshold;
|
|
enum sdw_command_response resp;
|
|
int ret = 0, i;
|
|
|
|
defer->msg = msg;
|
|
defer->length = msg->len;
|
|
init_completion(&defer->complete);
|
|
|
|
for (i = 0; i <= retry; i++) {
|
|
resp = bus->ops->xfer_msg_defer(bus);
|
|
ret = find_response_code(resp);
|
|
/* if cmd is ok or ignored return */
|
|
if (ret == 0 || ret == -ENODATA)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
|
|
{
|
|
int ret;
|
|
|
|
ret = do_transfer(bus, msg);
|
|
if (ret != 0 && ret != -ENODATA)
|
|
dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
|
|
msg->dev_num, ret,
|
|
(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
|
|
msg->addr, msg->len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdw_transfer() - Synchronous transfer message to a SDW Slave device
|
|
* @bus: SDW bus
|
|
* @msg: SDW message to be xfered
|
|
*/
|
|
int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&bus->msg_lock);
|
|
|
|
ret = sdw_transfer_unlocked(bus, msg);
|
|
|
|
mutex_unlock(&bus->msg_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
|
|
* @bus: SDW bus
|
|
* @sync_delay: Delay before reading status
|
|
*/
|
|
void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
|
|
{
|
|
u32 status;
|
|
|
|
if (!bus->ops->read_ping_status)
|
|
return;
|
|
|
|
/*
|
|
* wait for peripheral to sync if desired. 10-15ms should be more than
|
|
* enough in most cases.
|
|
*/
|
|
if (sync_delay)
|
|
usleep_range(10000, 15000);
|
|
|
|
mutex_lock(&bus->msg_lock);
|
|
|
|
status = bus->ops->read_ping_status(bus);
|
|
|
|
mutex_unlock(&bus->msg_lock);
|
|
|
|
if (!status)
|
|
dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
|
|
else
|
|
dev_dbg(bus->dev, "PING status: %#x\n", status);
|
|
}
|
|
EXPORT_SYMBOL(sdw_show_ping_status);
|
|
|
|
/**
|
|
* sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
|
|
* @bus: SDW bus
|
|
* @msg: SDW message to be xfered
|
|
*
|
|
* Caller needs to hold the msg_lock lock while calling this
|
|
*/
|
|
int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
|
|
{
|
|
int ret;
|
|
|
|
if (!bus->ops->xfer_msg_defer)
|
|
return -ENOTSUPP;
|
|
|
|
ret = do_transfer_defer(bus, msg);
|
|
if (ret != 0 && ret != -ENODATA)
|
|
dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
|
|
msg->dev_num, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
|
|
u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
|
|
{
|
|
memset(msg, 0, sizeof(*msg));
|
|
msg->addr = addr; /* addr is 16 bit and truncated here */
|
|
msg->len = count;
|
|
msg->dev_num = dev_num;
|
|
msg->flags = flags;
|
|
msg->buf = buf;
|
|
|
|
if (addr < SDW_REG_NO_PAGE) /* no paging area */
|
|
return 0;
|
|
|
|
if (addr >= SDW_REG_MAX) { /* illegal addr */
|
|
pr_err("SDW: Invalid address %x passed\n", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
|
|
if (slave && !slave->prop.paging_support)
|
|
return 0;
|
|
/* no need for else as that will fall-through to paging */
|
|
}
|
|
|
|
/* paging mandatory */
|
|
if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
|
|
pr_err("SDW: Invalid device for paging :%d\n", dev_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!slave) {
|
|
pr_err("SDW: No slave for paging addr\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!slave->prop.paging_support) {
|
|
dev_err(&slave->dev,
|
|
"address %x needs paging but no support\n", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
|
|
msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
|
|
msg->addr |= BIT(15);
|
|
msg->page = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read/Write IO functions.
|
|
*/
|
|
|
|
static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
|
|
size_t count, u8 *val)
|
|
{
|
|
struct sdw_msg msg;
|
|
size_t size;
|
|
int ret;
|
|
|
|
while (count) {
|
|
// Only handle bytes up to next page boundary
|
|
size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
|
|
|
|
ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = sdw_transfer(slave->bus, &msg);
|
|
if (ret < 0 && !slave->is_mockup_device)
|
|
return ret;
|
|
|
|
addr += size;
|
|
val += size;
|
|
count -= size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @count: length
|
|
* @val: Buffer for values to be read
|
|
*
|
|
* Note that if the message crosses a page boundary each page will be
|
|
* transferred under a separate invocation of the msg_lock.
|
|
*/
|
|
int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
|
|
{
|
|
return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
|
|
}
|
|
EXPORT_SYMBOL(sdw_nread_no_pm);
|
|
|
|
/**
|
|
* sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @count: length
|
|
* @val: Buffer for values to be written
|
|
*
|
|
* Note that if the message crosses a page boundary each page will be
|
|
* transferred under a separate invocation of the msg_lock.
|
|
*/
|
|
int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
|
|
{
|
|
return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
|
|
}
|
|
EXPORT_SYMBOL(sdw_nwrite_no_pm);
|
|
|
|
/**
|
|
* sdw_write_no_pm() - Write a SDW Slave register with no PM
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @value: Register value
|
|
*/
|
|
int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
|
|
{
|
|
return sdw_nwrite_no_pm(slave, addr, 1, &value);
|
|
}
|
|
EXPORT_SYMBOL(sdw_write_no_pm);
|
|
|
|
static int
|
|
sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
|
|
{
|
|
struct sdw_msg msg;
|
|
u8 buf;
|
|
int ret;
|
|
|
|
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
|
|
SDW_MSG_FLAG_READ, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = sdw_transfer(bus, &msg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return buf;
|
|
}
|
|
|
|
static int
|
|
sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
|
|
{
|
|
struct sdw_msg msg;
|
|
int ret;
|
|
|
|
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
|
|
SDW_MSG_FLAG_WRITE, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return sdw_transfer(bus, &msg);
|
|
}
|
|
|
|
int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
|
|
{
|
|
struct sdw_msg msg;
|
|
u8 buf;
|
|
int ret;
|
|
|
|
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
|
|
SDW_MSG_FLAG_READ, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = sdw_transfer_unlocked(bus, &msg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
|
|
|
|
int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
|
|
{
|
|
struct sdw_msg msg;
|
|
int ret;
|
|
|
|
ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
|
|
SDW_MSG_FLAG_WRITE, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return sdw_transfer_unlocked(bus, &msg);
|
|
}
|
|
EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
|
|
|
|
/**
|
|
* sdw_read_no_pm() - Read a SDW Slave register with no PM
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
*/
|
|
int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
|
|
{
|
|
u8 buf;
|
|
int ret;
|
|
|
|
ret = sdw_nread_no_pm(slave, addr, 1, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
else
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(sdw_read_no_pm);
|
|
|
|
int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
|
|
{
|
|
int tmp;
|
|
|
|
tmp = sdw_read_no_pm(slave, addr);
|
|
if (tmp < 0)
|
|
return tmp;
|
|
|
|
tmp = (tmp & ~mask) | val;
|
|
return sdw_write_no_pm(slave, addr, tmp);
|
|
}
|
|
EXPORT_SYMBOL(sdw_update_no_pm);
|
|
|
|
/* Read-Modify-Write Slave register */
|
|
int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
|
|
{
|
|
int tmp;
|
|
|
|
tmp = sdw_read(slave, addr);
|
|
if (tmp < 0)
|
|
return tmp;
|
|
|
|
tmp = (tmp & ~mask) | val;
|
|
return sdw_write(slave, addr, tmp);
|
|
}
|
|
EXPORT_SYMBOL(sdw_update);
|
|
|
|
/**
|
|
* sdw_nread() - Read "n" contiguous SDW Slave registers
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @count: length
|
|
* @val: Buffer for values to be read
|
|
*
|
|
* This version of the function will take a PM reference to the slave
|
|
* device.
|
|
* Note that if the message crosses a page boundary each page will be
|
|
* transferred under a separate invocation of the msg_lock.
|
|
*/
|
|
int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(&slave->dev);
|
|
if (ret < 0 && ret != -EACCES) {
|
|
pm_runtime_put_noidle(&slave->dev);
|
|
return ret;
|
|
}
|
|
|
|
ret = sdw_nread_no_pm(slave, addr, count, val);
|
|
|
|
pm_runtime_mark_last_busy(&slave->dev);
|
|
pm_runtime_put(&slave->dev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sdw_nread);
|
|
|
|
/**
|
|
* sdw_nwrite() - Write "n" contiguous SDW Slave registers
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @count: length
|
|
* @val: Buffer for values to be written
|
|
*
|
|
* This version of the function will take a PM reference to the slave
|
|
* device.
|
|
* Note that if the message crosses a page boundary each page will be
|
|
* transferred under a separate invocation of the msg_lock.
|
|
*/
|
|
int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(&slave->dev);
|
|
if (ret < 0 && ret != -EACCES) {
|
|
pm_runtime_put_noidle(&slave->dev);
|
|
return ret;
|
|
}
|
|
|
|
ret = sdw_nwrite_no_pm(slave, addr, count, val);
|
|
|
|
pm_runtime_mark_last_busy(&slave->dev);
|
|
pm_runtime_put(&slave->dev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sdw_nwrite);
|
|
|
|
/**
|
|
* sdw_read() - Read a SDW Slave register
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
*
|
|
* This version of the function will take a PM reference to the slave
|
|
* device.
|
|
*/
|
|
int sdw_read(struct sdw_slave *slave, u32 addr)
|
|
{
|
|
u8 buf;
|
|
int ret;
|
|
|
|
ret = sdw_nread(slave, addr, 1, &buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return buf;
|
|
}
|
|
EXPORT_SYMBOL(sdw_read);
|
|
|
|
/**
|
|
* sdw_write() - Write a SDW Slave register
|
|
* @slave: SDW Slave
|
|
* @addr: Register address
|
|
* @value: Register value
|
|
*
|
|
* This version of the function will take a PM reference to the slave
|
|
* device.
|
|
*/
|
|
int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
|
|
{
|
|
return sdw_nwrite(slave, addr, 1, &value);
|
|
}
|
|
EXPORT_SYMBOL(sdw_write);
|
|
|
|
/*
|
|
* SDW alert handling
|
|
*/
|
|
|
|
/* called with bus_lock held */
|
|
static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
|
|
{
|
|
struct sdw_slave *slave;
|
|
|
|
list_for_each_entry(slave, &bus->slaves, node) {
|
|
if (slave->dev_num == i)
|
|
return slave;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
|
|
{
|
|
if (slave->id.mfg_id != id.mfg_id ||
|
|
slave->id.part_id != id.part_id ||
|
|
slave->id.class_id != id.class_id ||
|
|
(slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
|
|
slave->id.unique_id != id.unique_id))
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sdw_compare_devid);
|
|
|
|
/* called with bus_lock held */
|
|
static int sdw_get_device_num(struct sdw_slave *slave)
|
|
{
|
|
struct sdw_bus *bus = slave->bus;
|
|
int bit;
|
|
|
|
if (bus->ops && bus->ops->get_device_num) {
|
|
bit = bus->ops->get_device_num(bus, slave);
|
|
if (bit < 0)
|
|
goto err;
|
|
} else {
|
|
bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
|
|
if (bit == SDW_MAX_DEVICES) {
|
|
bit = -ENODEV;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do not update dev_num in Slave data structure here,
|
|
* Update once program dev_num is successful
|
|
*/
|
|
set_bit(bit, bus->assigned);
|
|
|
|
err:
|
|
return bit;
|
|
}
|
|
|
|
static int sdw_assign_device_num(struct sdw_slave *slave)
|
|
{
|
|
struct sdw_bus *bus = slave->bus;
|
|
int ret, dev_num;
|
|
bool new_device = false;
|
|
|
|
/* check first if device number is assigned, if so reuse that */
|
|
if (!slave->dev_num) {
|
|
if (!slave->dev_num_sticky) {
|
|
mutex_lock(&slave->bus->bus_lock);
|
|
dev_num = sdw_get_device_num(slave);
|
|
mutex_unlock(&slave->bus->bus_lock);
|
|
if (dev_num < 0) {
|
|
dev_err(bus->dev, "Get dev_num failed: %d\n",
|
|
dev_num);
|
|
return dev_num;
|
|
}
|
|
slave->dev_num = dev_num;
|
|
slave->dev_num_sticky = dev_num;
|
|
new_device = true;
|
|
} else {
|
|
slave->dev_num = slave->dev_num_sticky;
|
|
}
|
|
}
|
|
|
|
if (!new_device)
|
|
dev_dbg(bus->dev,
|
|
"Slave already registered, reusing dev_num:%d\n",
|
|
slave->dev_num);
|
|
|
|
/* Clear the slave->dev_num to transfer message on device 0 */
|
|
dev_num = slave->dev_num;
|
|
slave->dev_num = 0;
|
|
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
|
|
if (ret < 0) {
|
|
dev_err(bus->dev, "Program device_num %d failed: %d\n",
|
|
dev_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* After xfer of msg, restore dev_num */
|
|
slave->dev_num = slave->dev_num_sticky;
|
|
|
|
if (bus->ops && bus->ops->new_peripheral_assigned)
|
|
bus->ops->new_peripheral_assigned(bus, slave, dev_num);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sdw_extract_slave_id(struct sdw_bus *bus,
|
|
u64 addr, struct sdw_slave_id *id)
|
|
{
|
|
dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
|
|
|
|
id->sdw_version = SDW_VERSION(addr);
|
|
id->unique_id = SDW_UNIQUE_ID(addr);
|
|
id->mfg_id = SDW_MFG_ID(addr);
|
|
id->part_id = SDW_PART_ID(addr);
|
|
id->class_id = SDW_CLASS_ID(addr);
|
|
|
|
dev_dbg(bus->dev,
|
|
"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
|
|
id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
|
|
}
|
|
EXPORT_SYMBOL(sdw_extract_slave_id);
|
|
|
|
static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
|
|
{
|
|
u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
|
|
struct sdw_slave *slave, *_s;
|
|
struct sdw_slave_id id;
|
|
struct sdw_msg msg;
|
|
bool found;
|
|
int count = 0, ret;
|
|
u64 addr;
|
|
|
|
*programmed = false;
|
|
|
|
/* No Slave, so use raw xfer api */
|
|
ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
|
|
SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
do {
|
|
ret = sdw_transfer(bus, &msg);
|
|
if (ret == -ENODATA) { /* end of device id reads */
|
|
dev_dbg(bus->dev, "No more devices to enumerate\n");
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (ret < 0) {
|
|
dev_err(bus->dev, "DEVID read fail:%d\n", ret);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Construct the addr and extract. Cast the higher shift
|
|
* bits to avoid truncation due to size limit.
|
|
*/
|
|
addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
|
|
((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
|
|
((u64)buf[0] << 40);
|
|
|
|
sdw_extract_slave_id(bus, addr, &id);
|
|
|
|
found = false;
|
|
/* Now compare with entries */
|
|
list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
|
|
if (sdw_compare_devid(slave, id) == 0) {
|
|
found = true;
|
|
|
|
/*
|
|
* To prevent skipping state-machine stages don't
|
|
* program a device until we've seen it UNATTACH.
|
|
* Must return here because no other device on #0
|
|
* can be detected until this one has been
|
|
* assigned a device ID.
|
|
*/
|
|
if (slave->status != SDW_SLAVE_UNATTACHED)
|
|
return 0;
|
|
|
|
/*
|
|
* Assign a new dev_num to this Slave and
|
|
* not mark it present. It will be marked
|
|
* present after it reports ATTACHED on new
|
|
* dev_num
|
|
*/
|
|
ret = sdw_assign_device_num(slave);
|
|
if (ret < 0) {
|
|
dev_err(bus->dev,
|
|
"Assign dev_num failed:%d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
*programmed = true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
/* TODO: Park this device in Group 13 */
|
|
|
|
/*
|
|
* add Slave device even if there is no platform
|
|
* firmware description. There will be no driver probe
|
|
* but the user/integration will be able to see the
|
|
* device, enumeration status and device number in sysfs
|
|
*/
|
|
sdw_slave_add(bus, &id, NULL);
|
|
|
|
dev_err(bus->dev, "Slave Entry not found\n");
|
|
}
|
|
|
|
count++;
|
|
|
|
/*
|
|
* Check till error out or retry (count) exhausts.
|
|
* Device can drop off and rejoin during enumeration
|
|
* so count till twice the bound.
|
|
*/
|
|
|
|
} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sdw_modify_slave_status(struct sdw_slave *slave,
|
|
enum sdw_slave_status status)
|
|
{
|
|
struct sdw_bus *bus = slave->bus;
|
|
|
|
mutex_lock(&bus->bus_lock);
|
|
|
|
dev_vdbg(bus->dev,
|
|
"changing status slave %d status %d new status %d\n",
|
|
slave->dev_num, slave->status, status);
|
|
|
|
if (status == SDW_SLAVE_UNATTACHED) {
|
|
dev_dbg(&slave->dev,
|
|
"initializing enumeration and init completion for Slave %d\n",
|
|
slave->dev_num);
|
|
|
|
reinit_completion(&slave->enumeration_complete);
|
|
reinit_completion(&slave->initialization_complete);
|
|
|
|
} else if ((status == SDW_SLAVE_ATTACHED) &&
|
|
(slave->status == SDW_SLAVE_UNATTACHED)) {
|
|
dev_dbg(&slave->dev,
|
|
"signaling enumeration completion for Slave %d\n",
|
|
slave->dev_num);
|
|
|
|
complete_all(&slave->enumeration_complete);
|
|
}
|
|
slave->status = status;
|
|
mutex_unlock(&bus->bus_lock);
|
|
}
|
|
|
|
static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
|
|
enum sdw_clk_stop_mode mode,
|
|
enum sdw_clk_stop_type type)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&slave->sdw_dev_lock);
|
|
|
|
if (slave->probed) {
|
|
struct device *dev = &slave->dev;
|
|
struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
|
|
|
|
if (drv->ops && drv->ops->clk_stop)
|
|
ret = drv->ops->clk_stop(slave, mode, type);
|
|
}
|
|
|
|
mutex_unlock(&slave->sdw_dev_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
|
|
enum sdw_clk_stop_mode mode,
|
|
bool prepare)
|
|
{
|
|
bool wake_en;
|
|
u32 val = 0;
|
|
int ret;
|
|
|
|
wake_en = slave->prop.wake_capable;
|
|
|
|
if (prepare) {
|
|
val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
|
|
|
|
if (mode == SDW_CLK_STOP_MODE1)
|
|
val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
|
|
|
|
if (wake_en)
|
|
val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
|
|
} else {
|
|
ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
|
|
if (ret < 0) {
|
|
if (ret != -ENODATA)
|
|
dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
val = ret;
|
|
val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
|
|
}
|
|
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
|
|
|
|
if (ret < 0 && ret != -ENODATA)
|
|
dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare)
|
|
{
|
|
int retry = bus->clk_stop_timeout;
|
|
int val;
|
|
|
|
do {
|
|
val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
|
|
if (val < 0) {
|
|
if (val != -ENODATA)
|
|
dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
|
|
return val;
|
|
}
|
|
val &= SDW_SCP_STAT_CLK_STP_NF;
|
|
if (!val) {
|
|
dev_dbg(bus->dev, "clock stop %s done slave:%d\n",
|
|
prepare ? "prepare" : "deprepare",
|
|
dev_num);
|
|
return 0;
|
|
}
|
|
|
|
usleep_range(1000, 1500);
|
|
retry--;
|
|
} while (retry);
|
|
|
|
dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n",
|
|
prepare ? "prepare" : "deprepare",
|
|
dev_num);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
|
|
*
|
|
* @bus: SDW bus instance
|
|
*
|
|
* Query Slave for clock stop mode and prepare for that mode.
|
|
*/
|
|
int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
|
|
{
|
|
bool simple_clk_stop = true;
|
|
struct sdw_slave *slave;
|
|
bool is_slave = false;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* In order to save on transition time, prepare
|
|
* each Slave and then wait for all Slave(s) to be
|
|
* prepared for clock stop.
|
|
* If one of the Slave devices has lost sync and
|
|
* replies with Command Ignored/-ENODATA, we continue
|
|
* the loop
|
|
*/
|
|
list_for_each_entry(slave, &bus->slaves, node) {
|
|
if (!slave->dev_num)
|
|
continue;
|
|
|
|
if (slave->status != SDW_SLAVE_ATTACHED &&
|
|
slave->status != SDW_SLAVE_ALERT)
|
|
continue;
|
|
|
|
/* Identify if Slave(s) are available on Bus */
|
|
is_slave = true;
|
|
|
|
ret = sdw_slave_clk_stop_callback(slave,
|
|
SDW_CLK_STOP_MODE0,
|
|
SDW_CLK_PRE_PREPARE);
|
|
if (ret < 0 && ret != -ENODATA) {
|
|
dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Only prepare a Slave device if needed */
|
|
if (!slave->prop.simple_clk_stop_capable) {
|
|
simple_clk_stop = false;
|
|
|
|
ret = sdw_slave_clk_stop_prepare(slave,
|
|
SDW_CLK_STOP_MODE0,
|
|
true);
|
|
if (ret < 0 && ret != -ENODATA) {
|
|
dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Skip remaining clock stop preparation if no Slave is attached */
|
|
if (!is_slave)
|
|
return 0;
|
|
|
|
/*
|
|
* Don't wait for all Slaves to be ready if they follow the simple
|
|
* state machine
|
|
*/
|
|
if (!simple_clk_stop) {
|
|
ret = sdw_bus_wait_for_clk_prep_deprep(bus,
|
|
SDW_BROADCAST_DEV_NUM, true);
|
|
/*
|
|
* if there are no Slave devices present and the reply is
|
|
* Command_Ignored/-ENODATA, we don't need to continue with the
|
|
* flow and can just return here. The error code is not modified
|
|
* and its handling left as an exercise for the caller.
|
|
*/
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Inform slaves that prep is done */
|
|
list_for_each_entry(slave, &bus->slaves, node) {
|
|
if (!slave->dev_num)
|
|
continue;
|
|
|
|
if (slave->status != SDW_SLAVE_ATTACHED &&
|
|
slave->status != SDW_SLAVE_ALERT)
|
|
continue;
|
|
|
|
ret = sdw_slave_clk_stop_callback(slave,
|
|
SDW_CLK_STOP_MODE0,
|
|
SDW_CLK_POST_PREPARE);
|
|
|
|
if (ret < 0 && ret != -ENODATA) {
|
|
dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
|
|
|
|
/**
|
|
* sdw_bus_clk_stop: stop bus clock
|
|
*
|
|
* @bus: SDW bus instance
|
|
*
|
|
* After preparing the Slaves for clock stop, stop the clock by broadcasting
|
|
* write to SCP_CTRL register.
|
|
*/
|
|
int sdw_bus_clk_stop(struct sdw_bus *bus)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* broadcast clock stop now, attached Slaves will ACK this,
|
|
* unattached will ignore
|
|
*/
|
|
ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
|
|
SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
|
|
if (ret < 0) {
|
|
if (ret != -ENODATA)
|
|
dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sdw_bus_clk_stop);
|
|
|
|
/**
|
|
* sdw_bus_exit_clk_stop: Exit clock stop mode
|
|
*
|
|
* @bus: SDW bus instance
|
|
*
|
|
* This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
|
|
* exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
|
|
* back.
|
|
*/
|
|
int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
|
|
{
|
|
bool simple_clk_stop = true;
|
|
struct sdw_slave *slave;
|
|
bool is_slave = false;
|
|
int ret;
|
|
|
|
/*
|
|
* In order to save on transition time, de-prepare
|
|
* each Slave and then wait for all Slave(s) to be
|
|
* de-prepared after clock resume.
|
|
*/
|
|
list_for_each_entry(slave, &bus->slaves, node) {
|
|
if (!slave->dev_num)
|
|
continue;
|
|
|
|
if (slave->status != SDW_SLAVE_ATTACHED &&
|
|
slave->status != SDW_SLAVE_ALERT)
|
|
continue;
|
|
|
|
/* Identify if Slave(s) are available on Bus */
|
|
is_slave = true;
|
|
|
|
ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
|
|
SDW_CLK_PRE_DEPREPARE);
|
|
if (ret < 0)
|
|
dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
|
|
|
|
/* Only de-prepare a Slave device if needed */
|
|
if (!slave->prop.simple_clk_stop_capable) {
|
|
simple_clk_stop = false;
|
|
|
|
ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
|
|
false);
|
|
|
|
if (ret < 0)
|
|
dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
|
|
}
|
|
}
|
|
|
|
/* Skip remaining clock stop de-preparation if no Slave is attached */
|
|
if (!is_slave)
|
|
return 0;
|
|
|
|
/*
|
|
* Don't wait for all Slaves to be ready if they follow the simple
|
|
* state machine
|
|
*/
|
|
if (!simple_clk_stop) {
|
|
ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false);
|
|
if (ret < 0)
|
|
dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
|
|
}
|
|
|
|
list_for_each_entry(slave, &bus->slaves, node) {
|
|
if (!slave->dev_num)
|
|
continue;
|
|
|
|
if (slave->status != SDW_SLAVE_ATTACHED &&
|
|
slave->status != SDW_SLAVE_ALERT)
|
|
continue;
|
|
|
|
ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
|
|
SDW_CLK_POST_DEPREPARE);
|
|
if (ret < 0)
|
|
dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
|
|
|
|
int sdw_configure_dpn_intr(struct sdw_slave *slave,
|
|
int port, bool enable, int mask)
|
|
{
|
|
u32 addr;
|
|
int ret;
|
|
u8 val = 0;
|
|
|
|
if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
|
|
dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
|
|
enable ? "on" : "off");
|
|
mask |= SDW_DPN_INT_TEST_FAIL;
|
|
}
|
|
|
|
addr = SDW_DPN_INTMASK(port);
|
|
|
|
/* Set/Clear port ready interrupt mask */
|
|
if (enable) {
|
|
val |= mask;
|
|
val |= SDW_DPN_INT_PORT_READY;
|
|
} else {
|
|
val &= ~(mask);
|
|
val &= ~SDW_DPN_INT_PORT_READY;
|
|
}
|
|
|
|
ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"SDW_DPN_INTMASK write failed:%d\n", val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_slave_set_frequency(struct sdw_slave *slave)
|
|
{
|
|
u32 mclk_freq = slave->bus->prop.mclk_freq;
|
|
u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
|
|
unsigned int scale;
|
|
u8 scale_index;
|
|
u8 base;
|
|
int ret;
|
|
|
|
/*
|
|
* frequency base and scale registers are required for SDCA
|
|
* devices. They may also be used for 1.2+/non-SDCA devices.
|
|
* Driver can set the property, we will need a DisCo property
|
|
* to discover this case from platform firmware.
|
|
*/
|
|
if (!slave->id.class_id && !slave->prop.clock_reg_supported)
|
|
return 0;
|
|
|
|
if (!mclk_freq) {
|
|
dev_err(&slave->dev,
|
|
"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* map base frequency using Table 89 of SoundWire 1.2 spec.
|
|
* The order of the tests just follows the specification, this
|
|
* is not a selection between possible values or a search for
|
|
* the best value but just a mapping. Only one case per platform
|
|
* is relevant.
|
|
* Some BIOS have inconsistent values for mclk_freq but a
|
|
* correct root so we force the mclk_freq to avoid variations.
|
|
*/
|
|
if (!(19200000 % mclk_freq)) {
|
|
mclk_freq = 19200000;
|
|
base = SDW_SCP_BASE_CLOCK_19200000_HZ;
|
|
} else if (!(22579200 % mclk_freq)) {
|
|
mclk_freq = 22579200;
|
|
base = SDW_SCP_BASE_CLOCK_22579200_HZ;
|
|
} else if (!(24576000 % mclk_freq)) {
|
|
mclk_freq = 24576000;
|
|
base = SDW_SCP_BASE_CLOCK_24576000_HZ;
|
|
} else if (!(32000000 % mclk_freq)) {
|
|
mclk_freq = 32000000;
|
|
base = SDW_SCP_BASE_CLOCK_32000000_HZ;
|
|
} else if (!(96000000 % mclk_freq)) {
|
|
mclk_freq = 24000000;
|
|
base = SDW_SCP_BASE_CLOCK_24000000_HZ;
|
|
} else {
|
|
dev_err(&slave->dev,
|
|
"Unsupported clock base, mclk %d\n",
|
|
mclk_freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mclk_freq % curr_freq) {
|
|
dev_err(&slave->dev,
|
|
"mclk %d is not multiple of bus curr_freq %d\n",
|
|
mclk_freq, curr_freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
scale = mclk_freq / curr_freq;
|
|
|
|
/*
|
|
* map scale to Table 90 of SoundWire 1.2 spec - and check
|
|
* that the scale is a power of two and maximum 64
|
|
*/
|
|
scale_index = ilog2(scale);
|
|
|
|
if (BIT(scale_index) != scale || scale_index > 6) {
|
|
dev_err(&slave->dev,
|
|
"No match found for scale %d, bus mclk %d curr_freq %d\n",
|
|
scale, mclk_freq, curr_freq);
|
|
return -EINVAL;
|
|
}
|
|
scale_index++;
|
|
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* initialize scale for both banks */
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
|
|
|
|
dev_dbg(&slave->dev,
|
|
"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
|
|
base, scale_index, mclk_freq, curr_freq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_initialize_slave(struct sdw_slave *slave)
|
|
{
|
|
struct sdw_slave_prop *prop = &slave->prop;
|
|
int status;
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = sdw_slave_set_frequency(slave);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
|
|
/* Clear bus clash interrupt before enabling interrupt mask */
|
|
status = sdw_read_no_pm(slave, SDW_SCP_INT1);
|
|
if (status < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
|
|
return status;
|
|
}
|
|
if (status & SDW_SCP_INT1_BUS_CLASH) {
|
|
dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
|
|
!(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
|
|
/* Clear parity interrupt before enabling interrupt mask */
|
|
status = sdw_read_no_pm(slave, SDW_SCP_INT1);
|
|
if (status < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
|
|
return status;
|
|
}
|
|
if (status & SDW_SCP_INT1_PARITY) {
|
|
dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set SCP_INT1_MASK register, typically bus clash and
|
|
* implementation-defined interrupt mask. The Parity detection
|
|
* may not always be correct on startup so its use is
|
|
* device-dependent, it might e.g. only be enabled in
|
|
* steady-state after a couple of frames.
|
|
*/
|
|
val = prop->scp_int1_mask;
|
|
|
|
/* Enable SCP interrupts */
|
|
ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INTMASK1 write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* No need to continue if DP0 is not present */
|
|
if (!prop->dp0_prop)
|
|
return 0;
|
|
|
|
/* Enable DP0 interrupts */
|
|
val = prop->dp0_prop->imp_def_interrupts;
|
|
val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
|
|
|
|
ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INTMASK read failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
|
|
{
|
|
u8 clear, impl_int_mask;
|
|
int status, status2, ret, count = 0;
|
|
|
|
status = sdw_read_no_pm(slave, SDW_DP0_INT);
|
|
if (status < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INT read failed:%d\n", status);
|
|
return status;
|
|
}
|
|
|
|
do {
|
|
clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE);
|
|
|
|
if (status & SDW_DP0_INT_TEST_FAIL) {
|
|
dev_err(&slave->dev, "Test fail for port 0\n");
|
|
clear |= SDW_DP0_INT_TEST_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Assumption: PORT_READY interrupt will be received only for
|
|
* ports implementing Channel Prepare state machine (CP_SM)
|
|
*/
|
|
|
|
if (status & SDW_DP0_INT_PORT_READY) {
|
|
complete(&slave->port_ready[0]);
|
|
clear |= SDW_DP0_INT_PORT_READY;
|
|
}
|
|
|
|
if (status & SDW_DP0_INT_BRA_FAILURE) {
|
|
dev_err(&slave->dev, "BRA failed\n");
|
|
clear |= SDW_DP0_INT_BRA_FAILURE;
|
|
}
|
|
|
|
impl_int_mask = SDW_DP0_INT_IMPDEF1 |
|
|
SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
|
|
|
|
if (status & impl_int_mask) {
|
|
clear |= impl_int_mask;
|
|
*slave_status = clear;
|
|
}
|
|
|
|
/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
|
|
ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INT write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Read DP0 interrupt again */
|
|
status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
|
|
if (status2 < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INT read failed:%d\n", status2);
|
|
return status2;
|
|
}
|
|
/* filter to limit loop to interrupts identified in the first status read */
|
|
status &= status2;
|
|
|
|
count++;
|
|
|
|
/* we can get alerts while processing so keep retrying */
|
|
} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
|
|
|
|
if (count == SDW_READ_INTR_CLEAR_RETRY)
|
|
dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_handle_port_interrupt(struct sdw_slave *slave,
|
|
int port, u8 *slave_status)
|
|
{
|
|
u8 clear, impl_int_mask;
|
|
int status, status2, ret, count = 0;
|
|
u32 addr;
|
|
|
|
if (port == 0)
|
|
return sdw_handle_dp0_interrupt(slave, slave_status);
|
|
|
|
addr = SDW_DPN_INT(port);
|
|
status = sdw_read_no_pm(slave, addr);
|
|
if (status < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DPN_INT read failed:%d\n", status);
|
|
|
|
return status;
|
|
}
|
|
|
|
do {
|
|
clear = status & ~SDW_DPN_INTERRUPTS;
|
|
|
|
if (status & SDW_DPN_INT_TEST_FAIL) {
|
|
dev_err(&slave->dev, "Test fail for port:%d\n", port);
|
|
clear |= SDW_DPN_INT_TEST_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Assumption: PORT_READY interrupt will be received only
|
|
* for ports implementing CP_SM.
|
|
*/
|
|
if (status & SDW_DPN_INT_PORT_READY) {
|
|
complete(&slave->port_ready[port]);
|
|
clear |= SDW_DPN_INT_PORT_READY;
|
|
}
|
|
|
|
impl_int_mask = SDW_DPN_INT_IMPDEF1 |
|
|
SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
|
|
|
|
if (status & impl_int_mask) {
|
|
clear |= impl_int_mask;
|
|
*slave_status = clear;
|
|
}
|
|
|
|
/* clear the interrupt but don't touch reserved fields */
|
|
ret = sdw_write_no_pm(slave, addr, clear);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DPN_INT write failed:%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Read DPN interrupt again */
|
|
status2 = sdw_read_no_pm(slave, addr);
|
|
if (status2 < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DPN_INT read failed:%d\n", status2);
|
|
return status2;
|
|
}
|
|
/* filter to limit loop to interrupts identified in the first status read */
|
|
status &= status2;
|
|
|
|
count++;
|
|
|
|
/* we can get alerts while processing so keep retrying */
|
|
} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
|
|
|
|
if (count == SDW_READ_INTR_CLEAR_RETRY)
|
|
dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_handle_slave_alerts(struct sdw_slave *slave)
|
|
{
|
|
struct sdw_slave_intr_status slave_intr;
|
|
u8 clear = 0, bit, port_status[15] = {0};
|
|
int port_num, stat, ret, count = 0;
|
|
unsigned long port;
|
|
bool slave_notify;
|
|
u8 sdca_cascade = 0;
|
|
u8 buf, buf2[2];
|
|
bool parity_check;
|
|
bool parity_quirk;
|
|
|
|
sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
|
|
|
|
ret = pm_runtime_get_sync(&slave->dev);
|
|
if (ret < 0 && ret != -EACCES) {
|
|
dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
|
|
pm_runtime_put_noidle(&slave->dev);
|
|
return ret;
|
|
}
|
|
|
|
/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
|
|
ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
buf = ret;
|
|
|
|
ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT2/3 read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
|
|
if (slave->id.class_id) {
|
|
ret = sdw_read_no_pm(slave, SDW_DP0_INT);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INT read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
|
|
}
|
|
|
|
do {
|
|
slave_notify = false;
|
|
|
|
/*
|
|
* Check parity, bus clash and Slave (impl defined)
|
|
* interrupt
|
|
*/
|
|
if (buf & SDW_SCP_INT1_PARITY) {
|
|
parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
|
|
parity_quirk = !slave->first_interrupt_done &&
|
|
(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
|
|
|
|
if (parity_check && !parity_quirk)
|
|
dev_err(&slave->dev, "Parity error detected\n");
|
|
clear |= SDW_SCP_INT1_PARITY;
|
|
}
|
|
|
|
if (buf & SDW_SCP_INT1_BUS_CLASH) {
|
|
if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
|
|
dev_err(&slave->dev, "Bus clash detected\n");
|
|
clear |= SDW_SCP_INT1_BUS_CLASH;
|
|
}
|
|
|
|
/*
|
|
* When bus clash or parity errors are detected, such errors
|
|
* are unlikely to be recoverable errors.
|
|
* TODO: In such scenario, reset bus. Make this configurable
|
|
* via sysfs property with bus reset being the default.
|
|
*/
|
|
|
|
if (buf & SDW_SCP_INT1_IMPL_DEF) {
|
|
if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
|
|
dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
|
|
slave_notify = true;
|
|
}
|
|
clear |= SDW_SCP_INT1_IMPL_DEF;
|
|
}
|
|
|
|
/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
|
|
if (sdca_cascade)
|
|
slave_notify = true;
|
|
|
|
/* Check port 0 - 3 interrupts */
|
|
port = buf & SDW_SCP_INT1_PORT0_3;
|
|
|
|
/* To get port number corresponding to bits, shift it */
|
|
port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
|
|
for_each_set_bit(bit, &port, 8) {
|
|
sdw_handle_port_interrupt(slave, bit,
|
|
&port_status[bit]);
|
|
}
|
|
|
|
/* Check if cascade 2 interrupt is present */
|
|
if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
|
|
port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
|
|
for_each_set_bit(bit, &port, 8) {
|
|
/* scp2 ports start from 4 */
|
|
port_num = bit + 4;
|
|
sdw_handle_port_interrupt(slave,
|
|
port_num,
|
|
&port_status[port_num]);
|
|
}
|
|
}
|
|
|
|
/* now check last cascade */
|
|
if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
|
|
port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
|
|
for_each_set_bit(bit, &port, 8) {
|
|
/* scp3 ports start from 11 */
|
|
port_num = bit + 11;
|
|
sdw_handle_port_interrupt(slave,
|
|
port_num,
|
|
&port_status[port_num]);
|
|
}
|
|
}
|
|
|
|
/* Update the Slave driver */
|
|
if (slave_notify) {
|
|
mutex_lock(&slave->sdw_dev_lock);
|
|
|
|
if (slave->probed) {
|
|
struct device *dev = &slave->dev;
|
|
struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
|
|
|
|
if (slave->prop.use_domain_irq && slave->irq)
|
|
handle_nested_irq(slave->irq);
|
|
|
|
if (drv->ops && drv->ops->interrupt_callback) {
|
|
slave_intr.sdca_cascade = sdca_cascade;
|
|
slave_intr.control_port = clear;
|
|
memcpy(slave_intr.port, &port_status,
|
|
sizeof(slave_intr.port));
|
|
|
|
drv->ops->interrupt_callback(slave, &slave_intr);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&slave->sdw_dev_lock);
|
|
}
|
|
|
|
/* Ack interrupt */
|
|
ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 write failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
|
|
/* at this point all initial interrupt sources were handled */
|
|
slave->first_interrupt_done = true;
|
|
|
|
/*
|
|
* Read status again to ensure no new interrupts arrived
|
|
* while servicing interrupts.
|
|
*/
|
|
ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT1 recheck read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
buf = ret;
|
|
|
|
ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
|
|
if (slave->id.class_id) {
|
|
ret = sdw_read_no_pm(slave, SDW_DP0_INT);
|
|
if (ret < 0) {
|
|
dev_err(&slave->dev,
|
|
"SDW_DP0_INT recheck read failed:%d\n", ret);
|
|
goto io_err;
|
|
}
|
|
sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
|
|
}
|
|
|
|
/*
|
|
* Make sure no interrupts are pending
|
|
*/
|
|
stat = buf || buf2[0] || buf2[1] || sdca_cascade;
|
|
|
|
/*
|
|
* Exit loop if Slave is continuously in ALERT state even
|
|
* after servicing the interrupt multiple times.
|
|
*/
|
|
count++;
|
|
|
|
/* we can get alerts while processing so keep retrying */
|
|
} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
|
|
|
|
if (count == SDW_READ_INTR_CLEAR_RETRY)
|
|
dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
|
|
|
|
io_err:
|
|
pm_runtime_mark_last_busy(&slave->dev);
|
|
pm_runtime_put_autosuspend(&slave->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sdw_update_slave_status(struct sdw_slave *slave,
|
|
enum sdw_slave_status status)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&slave->sdw_dev_lock);
|
|
|
|
if (slave->probed) {
|
|
struct device *dev = &slave->dev;
|
|
struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
|
|
|
|
if (drv->ops && drv->ops->update_status)
|
|
ret = drv->ops->update_status(slave, status);
|
|
}
|
|
|
|
mutex_unlock(&slave->sdw_dev_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdw_handle_slave_status() - Handle Slave status
|
|
* @bus: SDW bus instance
|
|
* @status: Status for all Slave(s)
|
|
*/
|
|
int sdw_handle_slave_status(struct sdw_bus *bus,
|
|
enum sdw_slave_status status[])
|
|
{
|
|
enum sdw_slave_status prev_status;
|
|
struct sdw_slave *slave;
|
|
bool attached_initializing, id_programmed;
|
|
int i, ret = 0;
|
|
|
|
/* first check if any Slaves fell off the bus */
|
|
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
|
|
mutex_lock(&bus->bus_lock);
|
|
if (test_bit(i, bus->assigned) == false) {
|
|
mutex_unlock(&bus->bus_lock);
|
|
continue;
|
|
}
|
|
mutex_unlock(&bus->bus_lock);
|
|
|
|
slave = sdw_get_slave(bus, i);
|
|
if (!slave)
|
|
continue;
|
|
|
|
if (status[i] == SDW_SLAVE_UNATTACHED &&
|
|
slave->status != SDW_SLAVE_UNATTACHED) {
|
|
dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
|
|
i, slave->status);
|
|
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
|
|
|
|
/* Ensure driver knows that peripheral unattached */
|
|
ret = sdw_update_slave_status(slave, status[i]);
|
|
if (ret < 0)
|
|
dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
|
|
}
|
|
}
|
|
|
|
if (status[0] == SDW_SLAVE_ATTACHED) {
|
|
dev_dbg(bus->dev, "Slave attached, programming device number\n");
|
|
|
|
/*
|
|
* Programming a device number will have side effects,
|
|
* so we deal with other devices at a later time.
|
|
* This relies on those devices reporting ATTACHED, which will
|
|
* trigger another call to this function. This will only
|
|
* happen if at least one device ID was programmed.
|
|
* Error returns from sdw_program_device_num() are currently
|
|
* ignored because there's no useful recovery that can be done.
|
|
* Returning the error here could result in the current status
|
|
* of other devices not being handled, because if no device IDs
|
|
* were programmed there's nothing to guarantee a status change
|
|
* to trigger another call to this function.
|
|
*/
|
|
sdw_program_device_num(bus, &id_programmed);
|
|
if (id_programmed)
|
|
return 0;
|
|
}
|
|
|
|
/* Continue to check other slave statuses */
|
|
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
|
|
mutex_lock(&bus->bus_lock);
|
|
if (test_bit(i, bus->assigned) == false) {
|
|
mutex_unlock(&bus->bus_lock);
|
|
continue;
|
|
}
|
|
mutex_unlock(&bus->bus_lock);
|
|
|
|
slave = sdw_get_slave(bus, i);
|
|
if (!slave)
|
|
continue;
|
|
|
|
attached_initializing = false;
|
|
|
|
switch (status[i]) {
|
|
case SDW_SLAVE_UNATTACHED:
|
|
if (slave->status == SDW_SLAVE_UNATTACHED)
|
|
break;
|
|
|
|
dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
|
|
i, slave->status);
|
|
|
|
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
|
|
break;
|
|
|
|
case SDW_SLAVE_ALERT:
|
|
ret = sdw_handle_slave_alerts(slave);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"Slave %d alert handling failed: %d\n",
|
|
i, ret);
|
|
break;
|
|
|
|
case SDW_SLAVE_ATTACHED:
|
|
if (slave->status == SDW_SLAVE_ATTACHED)
|
|
break;
|
|
|
|
prev_status = slave->status;
|
|
sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
|
|
|
|
if (prev_status == SDW_SLAVE_ALERT)
|
|
break;
|
|
|
|
attached_initializing = true;
|
|
|
|
ret = sdw_initialize_slave(slave);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"Slave %d initialization failed: %d\n",
|
|
i, ret);
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_err(&slave->dev, "Invalid slave %d status:%d\n",
|
|
i, status[i]);
|
|
break;
|
|
}
|
|
|
|
ret = sdw_update_slave_status(slave, status[i]);
|
|
if (ret < 0)
|
|
dev_err(&slave->dev,
|
|
"Update Slave status failed:%d\n", ret);
|
|
if (attached_initializing) {
|
|
dev_dbg(&slave->dev,
|
|
"signaling initialization completion for Slave %d\n",
|
|
slave->dev_num);
|
|
|
|
complete_all(&slave->initialization_complete);
|
|
|
|
/*
|
|
* If the manager became pm_runtime active, the peripherals will be
|
|
* restarted and attach, but their pm_runtime status may remain
|
|
* suspended. If the 'update_slave_status' callback initiates
|
|
* any sort of deferred processing, this processing would not be
|
|
* cancelled on pm_runtime suspend.
|
|
* To avoid such zombie states, we queue a request to resume.
|
|
* This would be a no-op in case the peripheral was being resumed
|
|
* by e.g. the ALSA/ASoC framework.
|
|
*/
|
|
pm_request_resume(&slave->dev);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sdw_handle_slave_status);
|
|
|
|
void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
|
|
{
|
|
struct sdw_slave *slave;
|
|
int i;
|
|
|
|
/* Check all non-zero devices */
|
|
for (i = 1; i <= SDW_MAX_DEVICES; i++) {
|
|
mutex_lock(&bus->bus_lock);
|
|
if (test_bit(i, bus->assigned) == false) {
|
|
mutex_unlock(&bus->bus_lock);
|
|
continue;
|
|
}
|
|
mutex_unlock(&bus->bus_lock);
|
|
|
|
slave = sdw_get_slave(bus, i);
|
|
if (!slave)
|
|
continue;
|
|
|
|
if (slave->status != SDW_SLAVE_UNATTACHED) {
|
|
sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
|
|
slave->first_interrupt_done = false;
|
|
sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
|
|
}
|
|
|
|
/* keep track of request, used in pm_runtime resume */
|
|
slave->unattach_request = request;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(sdw_clear_slave_status);
|