linux/drivers/ptp/ptp_fc3.c
Colin Ian King 5c87206cdb ptp: fc3: remove redundant check on variable ret
The check on ret has already been performed a few statements earlier
and ret has not been re-assigned and so the re-checking is redundant.
Clean up the code by removing the redundant check.

Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Link: https://patch.msgid.link/20241031135042.3250614-1-colin.i.king@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-11-03 12:54:42 -08:00

1010 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* PTP hardware clock driver for the FemtoClock3 family of timing and
* synchronization devices.
*
* Copyright (C) 2023 Integrated Device Technology, Inc., a Renesas Company.
*/
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include <linux/string.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <linux/mfd/rsmu.h>
#include <linux/mfd/idtRC38xxx_reg.h>
#include <linux/unaligned.h>
#include "ptp_private.h"
#include "ptp_fc3.h"
MODULE_DESCRIPTION("Driver for IDT FemtoClock3(TM) family");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
/*
* The name of the firmware file to be loaded
* over-rides any automatic selection
*/
static char *firmware;
module_param(firmware, charp, 0);
static s64 ns2counters(struct idtfc3 *idtfc3, s64 nsec, u32 *sub_ns)
{
s64 sync;
s32 rem;
if (likely(nsec >= 0)) {
sync = div_u64_rem(nsec, idtfc3->ns_per_sync, &rem);
*sub_ns = rem;
} else {
sync = -div_u64_rem(-nsec - 1, idtfc3->ns_per_sync, &rem) - 1;
*sub_ns = idtfc3->ns_per_sync - rem - 1;
}
return sync * idtfc3->ns_per_sync;
}
static s64 tdc_meas2offset(struct idtfc3 *idtfc3, u64 meas_read)
{
s64 coarse, fine;
fine = sign_extend64(FIELD_GET(FINE_MEAS_MASK, meas_read), 12);
coarse = sign_extend64(FIELD_GET(COARSE_MEAS_MASK, meas_read), (39 - 13));
fine = div64_s64(fine * NSEC_PER_SEC, idtfc3->tdc_apll_freq * 62LL);
coarse = div64_s64(coarse * NSEC_PER_SEC, idtfc3->time_ref_freq);
return coarse + fine;
}
static s64 tdc_offset2phase(struct idtfc3 *idtfc3, s64 offset_ns)
{
if (offset_ns > idtfc3->ns_per_sync / 2)
offset_ns -= idtfc3->ns_per_sync;
return offset_ns * idtfc3->tdc_offset_sign;
}
static int idtfc3_set_lpf_mode(struct idtfc3 *idtfc3, u8 mode)
{
int err;
if (mode >= LPF_INVALID)
return -EINVAL;
if (idtfc3->lpf_mode == mode)
return 0;
err = regmap_bulk_write(idtfc3->regmap, LPF_MODE_CNFG, &mode, sizeof(mode));
if (err)
return err;
idtfc3->lpf_mode = mode;
return 0;
}
static int idtfc3_enable_lpf(struct idtfc3 *idtfc3, bool enable)
{
u8 val;
int err;
err = regmap_bulk_read(idtfc3->regmap, LPF_CTRL, &val, sizeof(val));
if (err)
return err;
if (enable == true)
val |= LPF_EN;
else
val &= ~LPF_EN;
return regmap_bulk_write(idtfc3->regmap, LPF_CTRL, &val, sizeof(val));
}
static int idtfc3_get_time_ref_freq(struct idtfc3 *idtfc3)
{
int err;
u8 buf[4];
u8 time_ref_div;
u8 time_clk_div;
err = regmap_bulk_read(idtfc3->regmap, TIME_CLOCK_MEAS_DIV_CNFG, buf, sizeof(buf));
if (err)
return err;
time_ref_div = FIELD_GET(TIME_REF_DIV_MASK, get_unaligned_le32(buf)) + 1;
err = regmap_bulk_read(idtfc3->regmap, TIME_CLOCK_COUNT, buf, 1);
if (err)
return err;
time_clk_div = (buf[0] & TIME_CLOCK_COUNT_MASK) + 1;
idtfc3->time_ref_freq = idtfc3->hw_param.time_clk_freq *
time_clk_div / time_ref_div;
return 0;
}
static int idtfc3_get_tdc_offset_sign(struct idtfc3 *idtfc3)
{
int err;
u8 buf[4];
u32 val;
u8 sig1, sig2;
err = regmap_bulk_read(idtfc3->regmap, TIME_CLOCK_TDC_FANOUT_CNFG, buf, sizeof(buf));
if (err)
return err;
val = get_unaligned_le32(buf);
if ((val & TIME_SYNC_TO_TDC_EN) != TIME_SYNC_TO_TDC_EN) {
dev_err(idtfc3->dev, "TIME_SYNC_TO_TDC_EN is off !!!");
return -EINVAL;
}
sig1 = FIELD_GET(SIG1_MUX_SEL_MASK, val);
sig2 = FIELD_GET(SIG2_MUX_SEL_MASK, val);
if ((sig1 == sig2) || ((sig1 != TIME_SYNC) && (sig2 != TIME_SYNC))) {
dev_err(idtfc3->dev, "Invalid tdc_mux_sel sig1=%d sig2=%d", sig1, sig2);
return -EINVAL;
} else if (sig1 == TIME_SYNC) {
idtfc3->tdc_offset_sign = 1;
} else if (sig2 == TIME_SYNC) {
idtfc3->tdc_offset_sign = -1;
}
return 0;
}
static int idtfc3_lpf_bw(struct idtfc3 *idtfc3, u8 shift, u8 mult)
{
u8 val = FIELD_PREP(LPF_BW_SHIFT, shift) | FIELD_PREP(LPF_BW_MULT, mult);
return regmap_bulk_write(idtfc3->regmap, LPF_BW_CNFG, &val, sizeof(val));
}
static int idtfc3_enable_tdc(struct idtfc3 *idtfc3, bool enable, u8 meas_mode)
{
int err;
u8 val = 0;
/* Disable TDC first */
err = regmap_bulk_write(idtfc3->regmap, TIME_CLOCK_MEAS_CTRL, &val, sizeof(val));
if (err)
return err;
if (enable == false)
return idtfc3_lpf_bw(idtfc3, LPF_BW_SHIFT_DEFAULT, LPF_BW_MULT_DEFAULT);
if (meas_mode >= MEAS_MODE_INVALID)
return -EINVAL;
/* Change TDC meas mode */
err = regmap_bulk_write(idtfc3->regmap, TIME_CLOCK_MEAS_CNFG,
&meas_mode, sizeof(meas_mode));
if (err)
return err;
/* Enable TDC */
val = TDC_MEAS_EN;
if (meas_mode == CONTINUOUS)
val |= TDC_MEAS_START;
err = regmap_bulk_write(idtfc3->regmap, TIME_CLOCK_MEAS_CTRL, &val, sizeof(val));
if (err)
return err;
return idtfc3_lpf_bw(idtfc3, LPF_BW_SHIFT_1PPS, LPF_BW_MULT_DEFAULT);
}
static bool get_tdc_meas(struct idtfc3 *idtfc3, s64 *offset_ns)
{
bool valid = false;
u8 buf[9];
u8 val;
int err;
while (true) {
err = regmap_bulk_read(idtfc3->regmap, TDC_FIFO_STS,
&val, sizeof(val));
if (err)
return false;
if (val & FIFO_EMPTY)
break;
err = regmap_bulk_read(idtfc3->regmap, TDC_FIFO_READ_REQ,
&buf, sizeof(buf));
if (err)
return false;
valid = true;
}
if (valid)
*offset_ns = tdc_meas2offset(idtfc3, get_unaligned_le64(&buf[1]));
return valid;
}
static int check_tdc_fifo_overrun(struct idtfc3 *idtfc3)
{
u8 val;
int err;
/* Check if FIFO is overrun */
err = regmap_bulk_read(idtfc3->regmap, TDC_FIFO_STS, &val, sizeof(val));
if (err)
return err;
if (!(val & FIFO_FULL))
return 0;
dev_warn(idtfc3->dev, "TDC FIFO overrun !!!");
err = idtfc3_enable_tdc(idtfc3, true, CONTINUOUS);
if (err)
return err;
return 0;
}
static int get_tdc_meas_continuous(struct idtfc3 *idtfc3)
{
int err;
s64 offset_ns;
struct ptp_clock_event event;
err = check_tdc_fifo_overrun(idtfc3);
if (err)
return err;
if (get_tdc_meas(idtfc3, &offset_ns) && offset_ns >= 0) {
event.index = 0;
event.offset = tdc_offset2phase(idtfc3, offset_ns);
event.type = PTP_CLOCK_EXTOFF;
ptp_clock_event(idtfc3->ptp_clock, &event);
}
return 0;
}
static int idtfc3_read_subcounter(struct idtfc3 *idtfc3)
{
u8 buf[5] = {0};
int err;
err = regmap_bulk_read(idtfc3->regmap, TOD_COUNTER_READ_REQ,
&buf, sizeof(buf));
if (err)
return err;
/* sync_counter_value is [31:82] and sub_sync_counter_value is [0:30] */
return get_unaligned_le32(&buf[1]) & SUB_SYNC_COUNTER_MASK;
}
static int idtfc3_tod_update_is_done(struct idtfc3 *idtfc3)
{
int err;
u8 req;
err = read_poll_timeout_atomic(regmap_bulk_read, err, !req, USEC_PER_MSEC,
idtfc3->tc_write_timeout, true, idtfc3->regmap,
TOD_SYNC_LOAD_REQ_CTRL, &req, 1);
if (err)
dev_err(idtfc3->dev, "TOD counter write timeout !!!");
return err;
}
static int idtfc3_write_subcounter(struct idtfc3 *idtfc3, u32 counter)
{
u8 buf[18] = {0};
int err;
/* sync_counter_value is [31:82] and sub_sync_counter_value is [0:30] */
put_unaligned_le32(counter & SUB_SYNC_COUNTER_MASK, &buf[0]);
buf[16] = SUB_SYNC_LOAD_ENABLE | SYNC_LOAD_ENABLE;
buf[17] = SYNC_LOAD_REQ;
err = regmap_bulk_write(idtfc3->regmap, TOD_SYNC_LOAD_VAL_CTRL,
&buf, sizeof(buf));
if (err)
return err;
return idtfc3_tod_update_is_done(idtfc3);
}
static int idtfc3_timecounter_update(struct idtfc3 *idtfc3, u32 counter, s64 ns)
{
int err;
err = idtfc3_write_subcounter(idtfc3, counter);
if (err)
return err;
/* Update time counter */
idtfc3->ns = ns;
idtfc3->last_counter = counter;
return 0;
}
static int idtfc3_timecounter_read(struct idtfc3 *idtfc3)
{
int now, delta;
now = idtfc3_read_subcounter(idtfc3);
if (now < 0)
return now;
/* calculate the delta since the last idtfc3_timecounter_read(): */
if (now >= idtfc3->last_counter)
delta = now - idtfc3->last_counter;
else
delta = idtfc3->sub_sync_count - idtfc3->last_counter + now;
/* Update time counter */
idtfc3->ns += delta * idtfc3->ns_per_counter;
idtfc3->last_counter = now;
return 0;
}
static int _idtfc3_gettime(struct idtfc3 *idtfc3, struct timespec64 *ts)
{
int err;
err = idtfc3_timecounter_read(idtfc3);
if (err)
return err;
*ts = ns_to_timespec64(idtfc3->ns);
return 0;
}
static int idtfc3_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err;
mutex_lock(idtfc3->lock);
err = _idtfc3_gettime(idtfc3, ts);
mutex_unlock(idtfc3->lock);
return err;
}
static int _idtfc3_settime(struct idtfc3 *idtfc3, const struct timespec64 *ts)
{
s64 offset_ns, now_ns;
u32 counter, sub_ns;
int now;
if (timespec64_valid(ts) == false) {
dev_err(idtfc3->dev, "%s: invalid timespec", __func__);
return -EINVAL;
}
now = idtfc3_read_subcounter(idtfc3);
if (now < 0)
return now;
offset_ns = (idtfc3->sub_sync_count - now) * idtfc3->ns_per_counter;
now_ns = timespec64_to_ns(ts);
(void)ns2counters(idtfc3, offset_ns + now_ns, &sub_ns);
counter = sub_ns / idtfc3->ns_per_counter;
return idtfc3_timecounter_update(idtfc3, counter, now_ns);
}
static int idtfc3_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err;
mutex_lock(idtfc3->lock);
err = _idtfc3_settime(idtfc3, ts);
mutex_unlock(idtfc3->lock);
return err;
}
static int _idtfc3_adjtime(struct idtfc3 *idtfc3, s64 delta)
{
/*
* The TOD counter can be synchronously loaded with any value,
* to be loaded on the next Time Sync pulse
*/
s64 sync_ns;
u32 sub_ns;
u32 counter;
if (idtfc3->ns + delta < 0) {
dev_err(idtfc3->dev, "%lld ns adj is too large", delta);
return -EINVAL;
}
sync_ns = ns2counters(idtfc3, delta + idtfc3->ns_per_sync, &sub_ns);
counter = sub_ns / idtfc3->ns_per_counter;
return idtfc3_timecounter_update(idtfc3, counter, idtfc3->ns + sync_ns +
counter * idtfc3->ns_per_counter);
}
static int idtfc3_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err;
mutex_lock(idtfc3->lock);
err = _idtfc3_adjtime(idtfc3, delta);
mutex_unlock(idtfc3->lock);
return err;
}
static int _idtfc3_adjphase(struct idtfc3 *idtfc3, s32 delta)
{
u8 buf[8] = {0};
int err;
s64 pcw;
err = idtfc3_set_lpf_mode(idtfc3, LPF_WP);
if (err)
return err;
/*
* Phase Control Word unit is: 10^9 / (TDC_APLL_FREQ * 124)
*
* delta * TDC_APLL_FREQ * 124
* PCW = ---------------------------
* 10^9
*
*/
pcw = div_s64((s64)delta * idtfc3->tdc_apll_freq * 124, NSEC_PER_SEC);
put_unaligned_le64(pcw, buf);
return regmap_bulk_write(idtfc3->regmap, LPF_WR_PHASE_CTRL, buf, sizeof(buf));
}
static int idtfc3_adjphase(struct ptp_clock_info *ptp, s32 delta)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err;
mutex_lock(idtfc3->lock);
err = _idtfc3_adjphase(idtfc3, delta);
mutex_unlock(idtfc3->lock);
return err;
}
static int _idtfc3_adjfine(struct idtfc3 *idtfc3, long scaled_ppm)
{
u8 buf[8] = {0};
int err;
s64 fcw;
err = idtfc3_set_lpf_mode(idtfc3, LPF_WF);
if (err)
return err;
/*
* Frequency Control Word unit is: 2^-44 * 10^6 ppm
*
* adjfreq:
* ppb * 2^44
* FCW = ----------
* 10^9
*
* adjfine:
* ppm_16 * 2^28
* FCW = -------------
* 10^6
*/
fcw = scaled_ppm * BIT(28);
fcw = div_s64(fcw, 1000000);
put_unaligned_le64(fcw, buf);
return regmap_bulk_write(idtfc3->regmap, LPF_WR_FREQ_CTRL, buf, sizeof(buf));
}
static int idtfc3_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err;
mutex_lock(idtfc3->lock);
err = _idtfc3_adjfine(idtfc3, scaled_ppm);
mutex_unlock(idtfc3->lock);
return err;
}
static int idtfc3_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
int err = -EOPNOTSUPP;
mutex_lock(idtfc3->lock);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (!on)
err = 0;
/* Only accept a 1-PPS aligned to the second. */
else if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
err = -ERANGE;
else
err = 0;
break;
case PTP_CLK_REQ_EXTTS:
if (on) {
/* Only accept requests for external phase offset */
if ((rq->extts.flags & PTP_EXT_OFFSET) != (PTP_EXT_OFFSET))
err = -EOPNOTSUPP;
else
err = idtfc3_enable_tdc(idtfc3, true, CONTINUOUS);
} else {
err = idtfc3_enable_tdc(idtfc3, false, MEAS_MODE_INVALID);
}
break;
default:
break;
}
mutex_unlock(idtfc3->lock);
if (err)
dev_err(idtfc3->dev, "Failed in %s with err %d!", __func__, err);
return err;
}
static long idtfc3_aux_work(struct ptp_clock_info *ptp)
{
struct idtfc3 *idtfc3 = container_of(ptp, struct idtfc3, caps);
static int tdc_get;
mutex_lock(idtfc3->lock);
tdc_get %= TDC_GET_PERIOD;
if ((tdc_get == 0) || (tdc_get == TDC_GET_PERIOD / 2))
idtfc3_timecounter_read(idtfc3);
get_tdc_meas_continuous(idtfc3);
tdc_get++;
mutex_unlock(idtfc3->lock);
return idtfc3->tc_update_period;
}
static const struct ptp_clock_info idtfc3_caps = {
.owner = THIS_MODULE,
.max_adj = MAX_FFO_PPB,
.n_per_out = 1,
.n_ext_ts = 1,
.adjphase = &idtfc3_adjphase,
.adjfine = &idtfc3_adjfine,
.adjtime = &idtfc3_adjtime,
.gettime64 = &idtfc3_gettime,
.settime64 = &idtfc3_settime,
.enable = &idtfc3_enable,
.do_aux_work = &idtfc3_aux_work,
};
static int idtfc3_hw_calibrate(struct idtfc3 *idtfc3)
{
int err = 0;
u8 val;
mdelay(10);
/*
* Toggle TDC_DAC_RECAL_REQ:
* (1) set tdc_en to 1
* (2) set tdc_dac_recal_req to 0
* (3) set tdc_dac_recal_req to 1
*/
val = TDC_EN;
err = regmap_bulk_write(idtfc3->regmap, TDC_CTRL,
&val, sizeof(val));
if (err)
return err;
val = TDC_EN | TDC_DAC_RECAL_REQ;
err = regmap_bulk_write(idtfc3->regmap, TDC_CTRL,
&val, sizeof(val));
if (err)
return err;
mdelay(10);
/*
* Toggle APLL_REINIT:
* (1) set apll_reinit to 0
* (2) set apll_reinit to 1
*/
val = 0;
err = regmap_bulk_write(idtfc3->regmap, SOFT_RESET_CTRL,
&val, sizeof(val));
if (err)
return err;
val = APLL_REINIT;
err = regmap_bulk_write(idtfc3->regmap, SOFT_RESET_CTRL,
&val, sizeof(val));
if (err)
return err;
mdelay(10);
return err;
}
static int idtfc3_init_timecounter(struct idtfc3 *idtfc3)
{
int err;
u32 period_ms;
period_ms = idtfc3->sub_sync_count * MSEC_PER_SEC /
idtfc3->hw_param.time_clk_freq;
idtfc3->tc_update_period = msecs_to_jiffies(period_ms / TDC_GET_PERIOD);
idtfc3->tc_write_timeout = period_ms * USEC_PER_MSEC;
err = idtfc3_timecounter_update(idtfc3, 0, 0);
if (err)
return err;
err = idtfc3_timecounter_read(idtfc3);
if (err)
return err;
ptp_schedule_worker(idtfc3->ptp_clock, idtfc3->tc_update_period);
return 0;
}
static int idtfc3_get_tdc_apll_freq(struct idtfc3 *idtfc3)
{
int err;
u8 tdc_fb_div_int;
u8 tdc_ref_div;
struct idtfc3_hw_param *param = &idtfc3->hw_param;
err = regmap_bulk_read(idtfc3->regmap, TDC_REF_DIV_CNFG,
&tdc_ref_div, sizeof(tdc_ref_div));
if (err)
return err;
err = regmap_bulk_read(idtfc3->regmap, TDC_FB_DIV_INT_CNFG,
&tdc_fb_div_int, sizeof(tdc_fb_div_int));
if (err)
return err;
tdc_fb_div_int &= TDC_FB_DIV_INT_MASK;
tdc_ref_div &= TDC_REF_DIV_CONFIG_MASK;
idtfc3->tdc_apll_freq = div_u64(param->xtal_freq * (u64)tdc_fb_div_int,
1 << tdc_ref_div);
return 0;
}
static int idtfc3_get_fod(struct idtfc3 *idtfc3)
{
int err;
u8 fod;
err = regmap_bulk_read(idtfc3->regmap, TIME_CLOCK_SRC, &fod, sizeof(fod));
if (err)
return err;
switch (fod) {
case 0:
idtfc3->fod_n = FOD_0;
break;
case 1:
idtfc3->fod_n = FOD_1;
break;
case 2:
idtfc3->fod_n = FOD_2;
break;
default:
return -EINVAL;
}
return 0;
}
static int idtfc3_get_sync_count(struct idtfc3 *idtfc3)
{
int err;
u8 buf[4];
err = regmap_bulk_read(idtfc3->regmap, SUB_SYNC_GEN_CNFG, buf, sizeof(buf));
if (err)
return err;
idtfc3->sub_sync_count = (get_unaligned_le32(buf) & SUB_SYNC_COUNTER_MASK) + 1;
idtfc3->ns_per_counter = NSEC_PER_SEC / idtfc3->hw_param.time_clk_freq;
idtfc3->ns_per_sync = idtfc3->sub_sync_count * idtfc3->ns_per_counter;
return 0;
}
static int idtfc3_setup_hw_param(struct idtfc3 *idtfc3)
{
int err;
err = idtfc3_get_fod(idtfc3);
if (err)
return err;
err = idtfc3_get_sync_count(idtfc3);
if (err)
return err;
err = idtfc3_get_time_ref_freq(idtfc3);
if (err)
return err;
return idtfc3_get_tdc_apll_freq(idtfc3);
}
static int idtfc3_configure_hw(struct idtfc3 *idtfc3)
{
int err = 0;
err = idtfc3_hw_calibrate(idtfc3);
if (err)
return err;
err = idtfc3_enable_lpf(idtfc3, true);
if (err)
return err;
err = idtfc3_enable_tdc(idtfc3, false, MEAS_MODE_INVALID);
if (err)
return err;
err = idtfc3_get_tdc_offset_sign(idtfc3);
if (err)
return err;
return idtfc3_setup_hw_param(idtfc3);
}
static int idtfc3_set_overhead(struct idtfc3 *idtfc3)
{
s64 current_ns = 0;
s64 lowest_ns = 0;
int err;
u8 i;
ktime_t start;
ktime_t stop;
ktime_t diff;
char buf[18] = {0};
for (i = 0; i < 5; i++) {
start = ktime_get_raw();
err = regmap_bulk_write(idtfc3->regmap, TOD_SYNC_LOAD_VAL_CTRL,
&buf, sizeof(buf));
if (err)
return err;
stop = ktime_get_raw();
diff = ktime_sub(stop, start);
current_ns = ktime_to_ns(diff);
if (i == 0) {
lowest_ns = current_ns;
} else {
if (current_ns < lowest_ns)
lowest_ns = current_ns;
}
}
idtfc3->tod_write_overhead = lowest_ns;
return err;
}
static int idtfc3_enable_ptp(struct idtfc3 *idtfc3)
{
int err;
idtfc3->caps = idtfc3_caps;
snprintf(idtfc3->caps.name, sizeof(idtfc3->caps.name), "IDT FC3W");
idtfc3->ptp_clock = ptp_clock_register(&idtfc3->caps, NULL);
if (IS_ERR(idtfc3->ptp_clock)) {
err = PTR_ERR(idtfc3->ptp_clock);
idtfc3->ptp_clock = NULL;
return err;
}
err = idtfc3_set_overhead(idtfc3);
if (err)
return err;
err = idtfc3_init_timecounter(idtfc3);
if (err)
return err;
dev_info(idtfc3->dev, "TIME_SYNC_CHANNEL registered as ptp%d",
idtfc3->ptp_clock->index);
return 0;
}
static int idtfc3_load_firmware(struct idtfc3 *idtfc3)
{
char fname[128] = FW_FILENAME;
const struct firmware *fw;
struct idtfc3_fwrc *rec;
u16 addr;
u8 val;
int err;
s32 len;
idtfc3_default_hw_param(&idtfc3->hw_param);
if (firmware) /* module parameter */
snprintf(fname, sizeof(fname), "%s", firmware);
dev_info(idtfc3->dev, "requesting firmware '%s'\n", fname);
err = request_firmware(&fw, fname, idtfc3->dev);
if (err) {
dev_err(idtfc3->dev,
"requesting firmware failed with err %d!\n", err);
return err;
}
dev_dbg(idtfc3->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idtfc3_fwrc *)fw->data;
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(idtfc3->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
val = rec->value;
addr = rec->hiaddr << 8 | rec->loaddr;
rec++;
err = idtfc3_set_hw_param(&idtfc3->hw_param, addr, val);
}
if (err != -EINVAL) {
err = 0;
/* Max register */
if (addr >= 0xE88)
continue;
err = regmap_bulk_write(idtfc3->regmap, addr,
&val, sizeof(val));
}
if (err)
goto out;
}
err = idtfc3_configure_hw(idtfc3);
out:
release_firmware(fw);
return err;
}
static int idtfc3_read_device_id(struct idtfc3 *idtfc3, u16 *device_id)
{
int err;
u8 buf[2] = {0};
err = regmap_bulk_read(idtfc3->regmap, DEVICE_ID,
&buf, sizeof(buf));
if (err) {
dev_err(idtfc3->dev, "%s failed with %d", __func__, err);
return err;
}
*device_id = get_unaligned_le16(buf);
return 0;
}
static int idtfc3_check_device_compatibility(struct idtfc3 *idtfc3)
{
int err;
u16 device_id;
err = idtfc3_read_device_id(idtfc3, &device_id);
if (err)
return err;
if ((device_id & DEVICE_ID_MASK) == 0) {
dev_err(idtfc3->dev, "invalid device");
return -EINVAL;
}
return 0;
}
static int idtfc3_probe(struct platform_device *pdev)
{
struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent);
struct idtfc3 *idtfc3;
int err;
idtfc3 = devm_kzalloc(&pdev->dev, sizeof(struct idtfc3), GFP_KERNEL);
if (!idtfc3)
return -ENOMEM;
idtfc3->dev = &pdev->dev;
idtfc3->mfd = pdev->dev.parent;
idtfc3->lock = &ddata->lock;
idtfc3->regmap = ddata->regmap;
mutex_lock(idtfc3->lock);
err = idtfc3_check_device_compatibility(idtfc3);
if (err) {
mutex_unlock(idtfc3->lock);
return err;
}
err = idtfc3_load_firmware(idtfc3);
if (err) {
if (err == -ENOENT) {
mutex_unlock(idtfc3->lock);
return -EPROBE_DEFER;
}
dev_warn(idtfc3->dev, "loading firmware failed with %d", err);
}
err = idtfc3_enable_ptp(idtfc3);
if (err) {
dev_err(idtfc3->dev, "idtfc3_enable_ptp failed with %d", err);
mutex_unlock(idtfc3->lock);
return err;
}
mutex_unlock(idtfc3->lock);
platform_set_drvdata(pdev, idtfc3);
return 0;
}
static void idtfc3_remove(struct platform_device *pdev)
{
struct idtfc3 *idtfc3 = platform_get_drvdata(pdev);
ptp_clock_unregister(idtfc3->ptp_clock);
}
static struct platform_driver idtfc3_driver = {
.driver = {
.name = "rc38xxx-phc",
},
.probe = idtfc3_probe,
.remove_new = idtfc3_remove,
};
module_platform_driver(idtfc3_driver);