linux/drivers/net/wwan/t7xx/t7xx_cldma.c
Bjørn Mork 7d5a7dd5a3 net: wwan: t7xx: Split 64bit accesses to fix alignment issues
Some of the registers are aligned on a 32bit boundary, causing
alignment faults on 64bit platforms.

 Unable to handle kernel paging request at virtual address ffffffc084a1d004
 Mem abort info:
 ESR = 0x0000000096000061
 EC = 0x25: DABT (current EL), IL = 32 bits
 SET = 0, FnV = 0
 EA = 0, S1PTW = 0
 FSC = 0x21: alignment fault
 Data abort info:
 ISV = 0, ISS = 0x00000061, ISS2 = 0x00000000
 CM = 0, WnR = 1, TnD = 0, TagAccess = 0
 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000046ad6000
 [ffffffc084a1d004] pgd=100000013ffff003, p4d=100000013ffff003, pud=100000013ffff003, pmd=0068000020a00711
 Internal error: Oops: 0000000096000061 [#1] SMP
 Modules linked in: mtk_t7xx(+) qcserial pppoe ppp_async option nft_fib_inet nf_flow_table_inet mt7921u(O) mt7921s(O) mt7921e(O) mt7921_common(O) iwlmvm(O) iwldvm(O) usb_wwan rndis_host qmi_wwan pppox ppp_generic nft_reject_ipv6 nft_reject_ipv4 nft_reject_inet nft_reject nft_redir nft_quota nft_numgen nft_nat nft_masq nft_log nft_limit nft_hash nft_flow_offload nft_fib_ipv6 nft_fib_ipv4 nft_fib nft_ct nft_chain_nat nf_tables nf_nat nf_flow_table nf_conntrack mt7996e(O) mt792x_usb(O) mt792x_lib(O) mt7915e(O) mt76_usb(O) mt76_sdio(O) mt76_connac_lib(O) mt76(O) mac80211(O) iwlwifi(O) huawei_cdc_ncm cfg80211(O) cdc_ncm cdc_ether wwan usbserial usbnet slhc sfp rtc_pcf8563 nfnetlink nf_reject_ipv6 nf_reject_ipv4 nf_log_syslog nf_defrag_ipv6 nf_defrag_ipv4 mt6577_auxadc mdio_i2c libcrc32c compat(O) cdc_wdm cdc_acm at24 crypto_safexcel pwm_fan i2c_gpio i2c_smbus industrialio i2c_algo_bit i2c_mux_reg i2c_mux_pca954x i2c_mux_pca9541 i2c_mux_gpio i2c_mux dummy oid_registry tun sha512_arm64 sha1_ce sha1_generic seqiv
 md5 geniv des_generic libdes cbc authencesn authenc leds_gpio xhci_plat_hcd xhci_pci xhci_mtk_hcd xhci_hcd nvme nvme_core gpio_button_hotplug(O) dm_mirror dm_region_hash dm_log dm_crypt dm_mod dax usbcore usb_common ptp aquantia pps_core mii tpm encrypted_keys trusted
 CPU: 3 PID: 5266 Comm: kworker/u9:1 Tainted: G O 6.6.22 #0
 Hardware name: Bananapi BPI-R4 (DT)
 Workqueue: md_hk_wq t7xx_fsm_uninit [mtk_t7xx]
 pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx]
 lr : t7xx_cldma_start+0xac/0x13c [mtk_t7xx]
 sp : ffffffc085d63d30
 x29: ffffffc085d63d30 x28: 0000000000000000 x27: 0000000000000000
 x26: 0000000000000000 x25: ffffff80c804f2c0 x24: ffffff80ca196c05
 x23: 0000000000000000 x22: ffffff80c814b9b8 x21: ffffff80c814b128
 x20: 0000000000000001 x19: ffffff80c814b080 x18: 0000000000000014
 x17: 0000000055c9806b x16: 000000007c5296d0 x15: 000000000f6bca68
 x14: 00000000dbdbdce4 x13: 000000001aeaf72a x12: 0000000000000001
 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
 x8 : ffffff80ca1ef6b4 x7 : ffffff80c814b818 x6 : 0000000000000018
 x5 : 0000000000000870 x4 : 0000000000000000 x3 : 0000000000000000
 x2 : 000000010a947000 x1 : ffffffc084a1d004 x0 : ffffffc084a1d004
 Call trace:
 t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx]
 t7xx_fsm_uninit+0x578/0x5ec [mtk_t7xx]
 process_one_work+0x154/0x2a0
 worker_thread+0x2ac/0x488
 kthread+0xe0/0xec
 ret_from_fork+0x10/0x20
 Code: f9400800 91001000 8b214001 d50332bf (f9000022)
 ---[ end trace 0000000000000000 ]---

The inclusion of io-64-nonatomic-lo-hi.h indicates that all 64bit
accesses can be replaced by pairs of nonatomic 32bit access.  Fix
alignment by forcing all accesses to be 32bit on 64bit platforms.

Link: https://forum.openwrt.org/t/fibocom-fm350-gl-support/142682/72
Fixes: 39d439047f ("net: wwan: t7xx: Add control DMA interface")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Tested-by: Liviu Dudau <liviu@dudau.co.uk>
Link: https://lore.kernel.org/r/20240322144000.1683822-1-bjorn@mork.no
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-03-25 19:51:57 -07:00

282 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, MediaTek Inc.
* Copyright (c) 2021-2022, Intel Corporation.
*
* Authors:
* Haijun Liu <haijun.liu@mediatek.com>
* Moises Veleta <moises.veleta@intel.com>
* Ricardo Martinez <ricardo.martinez@linux.intel.com>
*
* Contributors:
* Amir Hanania <amir.hanania@intel.com>
* Andy Shevchenko <andriy.shevchenko@linux.intel.com>
* Eliot Lee <eliot.lee@intel.com>
* Sreehari Kancharla <sreehari.kancharla@intel.com>
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/types.h>
#include "t7xx_cldma.h"
#define ADDR_SIZE 8
void t7xx_cldma_clear_ip_busy(struct t7xx_cldma_hw *hw_info)
{
u32 val;
val = ioread32(hw_info->ap_pdn_base + REG_CLDMA_IP_BUSY);
val |= IP_BUSY_WAKEUP;
iowrite32(val, hw_info->ap_pdn_base + REG_CLDMA_IP_BUSY);
}
/**
* t7xx_cldma_hw_restore() - Restore CLDMA HW registers.
* @hw_info: Pointer to struct t7xx_cldma_hw.
*
* Restore HW after resume. Writes uplink configuration for CLDMA HW.
*/
void t7xx_cldma_hw_restore(struct t7xx_cldma_hw *hw_info)
{
u32 ul_cfg;
ul_cfg = ioread32(hw_info->ap_pdn_base + REG_CLDMA_UL_CFG);
ul_cfg &= ~UL_CFG_BIT_MODE_MASK;
if (hw_info->hw_mode == MODE_BIT_64)
ul_cfg |= UL_CFG_BIT_MODE_64;
else if (hw_info->hw_mode == MODE_BIT_40)
ul_cfg |= UL_CFG_BIT_MODE_40;
else if (hw_info->hw_mode == MODE_BIT_36)
ul_cfg |= UL_CFG_BIT_MODE_36;
iowrite32(ul_cfg, hw_info->ap_pdn_base + REG_CLDMA_UL_CFG);
/* Disable TX and RX invalid address check */
iowrite32(UL_MEM_CHECK_DIS, hw_info->ap_pdn_base + REG_CLDMA_UL_MEM);
iowrite32(DL_MEM_CHECK_DIS, hw_info->ap_pdn_base + REG_CLDMA_DL_MEM);
}
void t7xx_cldma_hw_start_queue(struct t7xx_cldma_hw *hw_info, unsigned int qno,
enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_pdn_base + REG_CLDMA_DL_START_CMD :
hw_info->ap_pdn_base + REG_CLDMA_UL_START_CMD;
val = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
iowrite32(val, reg);
}
void t7xx_cldma_hw_start(struct t7xx_cldma_hw *hw_info)
{
/* Enable the TX & RX interrupts */
iowrite32(TXRX_STATUS_BITMASK, hw_info->ap_pdn_base + REG_CLDMA_L2TIMCR0);
iowrite32(TXRX_STATUS_BITMASK, hw_info->ap_ao_base + REG_CLDMA_L2RIMCR0);
/* Enable the empty queue interrupt */
iowrite32(EMPTY_STATUS_BITMASK, hw_info->ap_pdn_base + REG_CLDMA_L2TIMCR0);
iowrite32(EMPTY_STATUS_BITMASK, hw_info->ap_ao_base + REG_CLDMA_L2RIMCR0);
}
void t7xx_cldma_hw_reset(void __iomem *ao_base)
{
u32 val;
val = ioread32(ao_base + REG_INFRA_RST2_SET);
val |= RST2_PMIC_SW_RST_SET;
iowrite32(val, ao_base + REG_INFRA_RST2_SET);
val = ioread32(ao_base + REG_INFRA_RST4_SET);
val |= RST4_CLDMA1_SW_RST_SET;
iowrite32(val, ao_base + REG_INFRA_RST4_SET);
udelay(1);
val = ioread32(ao_base + REG_INFRA_RST4_CLR);
val |= RST4_CLDMA1_SW_RST_CLR;
iowrite32(val, ao_base + REG_INFRA_RST4_CLR);
val = ioread32(ao_base + REG_INFRA_RST2_CLR);
val |= RST2_PMIC_SW_RST_CLR;
iowrite32(val, ao_base + REG_INFRA_RST2_CLR);
}
bool t7xx_cldma_tx_addr_is_set(struct t7xx_cldma_hw *hw_info, unsigned int qno)
{
u32 offset = REG_CLDMA_UL_START_ADDRL_0 + qno * ADDR_SIZE;
return ioread64_lo_hi(hw_info->ap_pdn_base + offset);
}
void t7xx_cldma_hw_set_start_addr(struct t7xx_cldma_hw *hw_info, unsigned int qno, u64 address,
enum mtk_txrx tx_rx)
{
u32 offset = qno * ADDR_SIZE;
void __iomem *reg;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_DL_START_ADDRL_0 :
hw_info->ap_pdn_base + REG_CLDMA_UL_START_ADDRL_0;
iowrite64_lo_hi(address, reg + offset);
}
void t7xx_cldma_hw_resume_queue(struct t7xx_cldma_hw *hw_info, unsigned int qno,
enum mtk_txrx tx_rx)
{
void __iomem *base = hw_info->ap_pdn_base;
if (tx_rx == MTK_RX)
iowrite32(BIT(qno), base + REG_CLDMA_DL_RESUME_CMD);
else
iowrite32(BIT(qno), base + REG_CLDMA_UL_RESUME_CMD);
}
unsigned int t7xx_cldma_hw_queue_status(struct t7xx_cldma_hw *hw_info, unsigned int qno,
enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 mask, val;
mask = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_DL_STATUS :
hw_info->ap_pdn_base + REG_CLDMA_UL_STATUS;
val = ioread32(reg);
return val & mask;
}
void t7xx_cldma_hw_tx_done(struct t7xx_cldma_hw *hw_info, unsigned int bitmask)
{
unsigned int ch_id;
ch_id = ioread32(hw_info->ap_pdn_base + REG_CLDMA_L2TISAR0);
ch_id &= bitmask;
/* Clear the ch IDs in the TX interrupt status register */
iowrite32(ch_id, hw_info->ap_pdn_base + REG_CLDMA_L2TISAR0);
ioread32(hw_info->ap_pdn_base + REG_CLDMA_L2TISAR0);
}
void t7xx_cldma_hw_rx_done(struct t7xx_cldma_hw *hw_info, unsigned int bitmask)
{
unsigned int ch_id;
ch_id = ioread32(hw_info->ap_pdn_base + REG_CLDMA_L2RISAR0);
ch_id &= bitmask;
/* Clear the ch IDs in the RX interrupt status register */
iowrite32(ch_id, hw_info->ap_pdn_base + REG_CLDMA_L2RISAR0);
ioread32(hw_info->ap_pdn_base + REG_CLDMA_L2RISAR0);
}
unsigned int t7xx_cldma_hw_int_status(struct t7xx_cldma_hw *hw_info, unsigned int bitmask,
enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_pdn_base + REG_CLDMA_L2RISAR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TISAR0;
val = ioread32(reg);
return val & bitmask;
}
void t7xx_cldma_hw_irq_dis_txrx(struct t7xx_cldma_hw *hw_info, unsigned int qno,
enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_L2RIMSR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TIMSR0;
val = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
iowrite32(val, reg);
}
void t7xx_cldma_hw_irq_dis_eq(struct t7xx_cldma_hw *hw_info, unsigned int qno, enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_L2RIMSR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TIMSR0;
val = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
iowrite32(val << EQ_STA_BIT_OFFSET, reg);
}
void t7xx_cldma_hw_irq_en_txrx(struct t7xx_cldma_hw *hw_info, unsigned int qno,
enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_L2RIMCR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TIMCR0;
val = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
iowrite32(val, reg);
}
void t7xx_cldma_hw_irq_en_eq(struct t7xx_cldma_hw *hw_info, unsigned int qno, enum mtk_txrx tx_rx)
{
void __iomem *reg;
u32 val;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_L2RIMCR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TIMCR0;
val = qno == CLDMA_ALL_Q ? CLDMA_ALL_Q : BIT(qno);
iowrite32(val << EQ_STA_BIT_OFFSET, reg);
}
/**
* t7xx_cldma_hw_init() - Initialize CLDMA HW.
* @hw_info: Pointer to struct t7xx_cldma_hw.
*
* Write uplink and downlink configuration to CLDMA HW.
*/
void t7xx_cldma_hw_init(struct t7xx_cldma_hw *hw_info)
{
u32 ul_cfg, dl_cfg;
ul_cfg = ioread32(hw_info->ap_pdn_base + REG_CLDMA_UL_CFG);
dl_cfg = ioread32(hw_info->ap_ao_base + REG_CLDMA_DL_CFG);
/* Configure the DRAM address mode */
ul_cfg &= ~UL_CFG_BIT_MODE_MASK;
dl_cfg &= ~DL_CFG_BIT_MODE_MASK;
if (hw_info->hw_mode == MODE_BIT_64) {
ul_cfg |= UL_CFG_BIT_MODE_64;
dl_cfg |= DL_CFG_BIT_MODE_64;
} else if (hw_info->hw_mode == MODE_BIT_40) {
ul_cfg |= UL_CFG_BIT_MODE_40;
dl_cfg |= DL_CFG_BIT_MODE_40;
} else if (hw_info->hw_mode == MODE_BIT_36) {
ul_cfg |= UL_CFG_BIT_MODE_36;
dl_cfg |= DL_CFG_BIT_MODE_36;
}
iowrite32(ul_cfg, hw_info->ap_pdn_base + REG_CLDMA_UL_CFG);
dl_cfg |= DL_CFG_UP_HW_LAST;
iowrite32(dl_cfg, hw_info->ap_ao_base + REG_CLDMA_DL_CFG);
iowrite32(0, hw_info->ap_ao_base + REG_CLDMA_INT_MASK);
iowrite32(BUSY_MASK_MD, hw_info->ap_ao_base + REG_CLDMA_BUSY_MASK);
iowrite32(UL_MEM_CHECK_DIS, hw_info->ap_pdn_base + REG_CLDMA_UL_MEM);
iowrite32(DL_MEM_CHECK_DIS, hw_info->ap_pdn_base + REG_CLDMA_DL_MEM);
}
void t7xx_cldma_hw_stop_all_qs(struct t7xx_cldma_hw *hw_info, enum mtk_txrx tx_rx)
{
void __iomem *reg;
reg = tx_rx == MTK_RX ? hw_info->ap_pdn_base + REG_CLDMA_DL_STOP_CMD :
hw_info->ap_pdn_base + REG_CLDMA_UL_STOP_CMD;
iowrite32(CLDMA_ALL_Q, reg);
}
void t7xx_cldma_hw_stop(struct t7xx_cldma_hw *hw_info, enum mtk_txrx tx_rx)
{
void __iomem *reg;
reg = tx_rx == MTK_RX ? hw_info->ap_ao_base + REG_CLDMA_L2RIMSR0 :
hw_info->ap_pdn_base + REG_CLDMA_L2TIMSR0;
iowrite32(TXRX_STATUS_BITMASK, reg);
iowrite32(EMPTY_STATUS_BITMASK, reg);
}