mirror of
https://github.com/torvalds/linux.git
synced 2024-11-21 19:46:16 +00:00
334304ac2b
A NULL dev->dma_parms indicates either a bus that is not DMA capable or grave bug in the implementation of the bus code. There isn't much the driver can do in terms of error handling for either case, so just warn and continue as DMA operations will fail anyway. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC
750 lines
19 KiB
C
750 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
|
|
* Author: Ludovic.barre@st.com for STMicroelectronics.
|
|
*/
|
|
#include <linux/bitfield.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/card.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/scatterlist.h>
|
|
#include "mmci.h"
|
|
|
|
#define SDMMC_LLI_BUF_LEN PAGE_SIZE
|
|
|
|
#define DLYB_CR 0x0
|
|
#define DLYB_CR_DEN BIT(0)
|
|
#define DLYB_CR_SEN BIT(1)
|
|
|
|
#define DLYB_CFGR 0x4
|
|
#define DLYB_CFGR_SEL_MASK GENMASK(3, 0)
|
|
#define DLYB_CFGR_UNIT_MASK GENMASK(14, 8)
|
|
#define DLYB_CFGR_LNG_MASK GENMASK(27, 16)
|
|
#define DLYB_CFGR_LNGF BIT(31)
|
|
|
|
#define DLYB_NB_DELAY 11
|
|
#define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1)
|
|
#define DLYB_CFGR_UNIT_MAX 127
|
|
|
|
#define DLYB_LNG_TIMEOUT_US 1000
|
|
#define SDMMC_VSWEND_TIMEOUT_US 10000
|
|
|
|
#define SYSCFG_DLYBSD_CR 0x0
|
|
#define DLYBSD_CR_EN BIT(0)
|
|
#define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1)
|
|
#define DLYBSD_TAPSEL_NB 32
|
|
#define DLYBSD_BYP_EN BIT(16)
|
|
#define DLYBSD_BYP_CMD GENMASK(21, 17)
|
|
#define DLYBSD_ANTIGLITCH_EN BIT(22)
|
|
|
|
#define SYSCFG_DLYBSD_SR 0x4
|
|
#define DLYBSD_SR_LOCK BIT(0)
|
|
#define DLYBSD_SR_RXTAPSEL_ACK BIT(1)
|
|
|
|
#define DLYBSD_TIMEOUT_1S_IN_US 1000000
|
|
|
|
struct sdmmc_lli_desc {
|
|
u32 idmalar;
|
|
u32 idmabase;
|
|
u32 idmasize;
|
|
};
|
|
|
|
struct sdmmc_idma {
|
|
dma_addr_t sg_dma;
|
|
void *sg_cpu;
|
|
dma_addr_t bounce_dma_addr;
|
|
void *bounce_buf;
|
|
bool use_bounce_buffer;
|
|
};
|
|
|
|
struct sdmmc_dlyb;
|
|
|
|
struct sdmmc_tuning_ops {
|
|
int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
|
|
void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
|
|
int (*tuning_prepare)(struct mmci_host *host);
|
|
int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
|
|
int phase, bool sampler __maybe_unused);
|
|
};
|
|
|
|
struct sdmmc_dlyb {
|
|
void __iomem *base;
|
|
u32 unit;
|
|
u32 max;
|
|
struct sdmmc_tuning_ops *ops;
|
|
};
|
|
|
|
static int sdmmc_idma_validate_data(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
struct sdmmc_idma *idma = host->dma_priv;
|
|
struct device *dev = mmc_dev(host->mmc);
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
/*
|
|
* idma has constraints on idmabase & idmasize for each element
|
|
* excepted the last element which has no constraint on idmasize
|
|
*/
|
|
idma->use_bounce_buffer = false;
|
|
for_each_sg(data->sg, sg, data->sg_len - 1, i) {
|
|
if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
|
|
!IS_ALIGNED(sg->length,
|
|
host->variant->stm32_idmabsize_align)) {
|
|
dev_dbg(mmc_dev(host->mmc),
|
|
"unaligned scatterlist: ofst:%x length:%d\n",
|
|
data->sg->offset, data->sg->length);
|
|
goto use_bounce_buffer;
|
|
}
|
|
}
|
|
|
|
if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
|
|
dev_dbg(mmc_dev(host->mmc),
|
|
"unaligned last scatterlist: ofst:%x length:%d\n",
|
|
data->sg->offset, data->sg->length);
|
|
goto use_bounce_buffer;
|
|
}
|
|
|
|
return 0;
|
|
|
|
use_bounce_buffer:
|
|
if (!idma->bounce_buf) {
|
|
idma->bounce_buf = dmam_alloc_coherent(dev,
|
|
host->mmc->max_req_size,
|
|
&idma->bounce_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!idma->bounce_buf) {
|
|
dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
idma->use_bounce_buffer = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _sdmmc_idma_prep_data(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
struct sdmmc_idma *idma = host->dma_priv;
|
|
|
|
if (idma->use_bounce_buffer) {
|
|
if (data->flags & MMC_DATA_WRITE) {
|
|
unsigned int xfer_bytes = data->blksz * data->blocks;
|
|
|
|
sg_copy_to_buffer(data->sg, data->sg_len,
|
|
idma->bounce_buf, xfer_bytes);
|
|
dma_wmb();
|
|
}
|
|
} else {
|
|
int n_elem;
|
|
|
|
n_elem = dma_map_sg(mmc_dev(host->mmc),
|
|
data->sg,
|
|
data->sg_len,
|
|
mmc_get_dma_dir(data));
|
|
|
|
if (!n_elem) {
|
|
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_idma_prep_data(struct mmci_host *host,
|
|
struct mmc_data *data, bool next)
|
|
{
|
|
/* Check if job is already prepared. */
|
|
if (!next && data->host_cookie == host->next_cookie)
|
|
return 0;
|
|
|
|
return _sdmmc_idma_prep_data(host, data);
|
|
}
|
|
|
|
static void sdmmc_idma_unprep_data(struct mmci_host *host,
|
|
struct mmc_data *data, int err)
|
|
{
|
|
struct sdmmc_idma *idma = host->dma_priv;
|
|
|
|
if (idma->use_bounce_buffer) {
|
|
if (data->flags & MMC_DATA_READ) {
|
|
unsigned int xfer_bytes = data->blksz * data->blocks;
|
|
|
|
sg_copy_from_buffer(data->sg, data->sg_len,
|
|
idma->bounce_buf, xfer_bytes);
|
|
}
|
|
} else {
|
|
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
|
|
mmc_get_dma_dir(data));
|
|
}
|
|
}
|
|
|
|
static int sdmmc_idma_setup(struct mmci_host *host)
|
|
{
|
|
struct sdmmc_idma *idma;
|
|
struct device *dev = mmc_dev(host->mmc);
|
|
|
|
idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
|
|
if (!idma)
|
|
return -ENOMEM;
|
|
|
|
host->dma_priv = idma;
|
|
|
|
if (host->variant->dma_lli) {
|
|
idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
|
|
&idma->sg_dma, GFP_KERNEL);
|
|
if (!idma->sg_cpu) {
|
|
dev_err(dev, "Failed to alloc IDMA descriptor\n");
|
|
return -ENOMEM;
|
|
}
|
|
host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
|
|
sizeof(struct sdmmc_lli_desc);
|
|
host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
|
|
|
|
host->mmc->max_req_size = SZ_1M;
|
|
} else {
|
|
host->mmc->max_segs = 1;
|
|
host->mmc->max_seg_size = host->mmc->max_req_size;
|
|
}
|
|
|
|
dma_set_max_seg_size(dev, host->mmc->max_seg_size);
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
|
|
|
|
{
|
|
struct sdmmc_idma *idma = host->dma_priv;
|
|
struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
|
|
struct mmc_data *data = host->data;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
host->dma_in_progress = true;
|
|
|
|
if (!host->variant->dma_lli || data->sg_len == 1 ||
|
|
idma->use_bounce_buffer) {
|
|
u32 dma_addr;
|
|
|
|
if (idma->use_bounce_buffer)
|
|
dma_addr = idma->bounce_dma_addr;
|
|
else
|
|
dma_addr = sg_dma_address(data->sg);
|
|
|
|
writel_relaxed(dma_addr,
|
|
host->base + MMCI_STM32_IDMABASE0R);
|
|
writel_relaxed(MMCI_STM32_IDMAEN,
|
|
host->base + MMCI_STM32_IDMACTRLR);
|
|
return 0;
|
|
}
|
|
|
|
for_each_sg(data->sg, sg, data->sg_len, i) {
|
|
desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
|
|
desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
|
|
| MMCI_STM32_ABR;
|
|
desc[i].idmabase = sg_dma_address(sg);
|
|
desc[i].idmasize = sg_dma_len(sg);
|
|
}
|
|
|
|
/* notice the end of link list */
|
|
desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
|
|
|
|
dma_wmb();
|
|
writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
|
|
writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
|
|
writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
|
|
writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
|
|
writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
|
|
host->base + MMCI_STM32_IDMACTRLR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sdmmc_idma_error(struct mmci_host *host)
|
|
{
|
|
struct mmc_data *data = host->data;
|
|
struct sdmmc_idma *idma = host->dma_priv;
|
|
|
|
if (!dma_inprogress(host))
|
|
return;
|
|
|
|
writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
|
|
host->dma_in_progress = false;
|
|
data->host_cookie = 0;
|
|
|
|
if (!idma->use_bounce_buffer)
|
|
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
|
|
mmc_get_dma_dir(data));
|
|
}
|
|
|
|
static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
if (!dma_inprogress(host))
|
|
return;
|
|
|
|
writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
|
|
host->dma_in_progress = false;
|
|
|
|
if (!data->host_cookie)
|
|
sdmmc_idma_unprep_data(host, data, 0);
|
|
}
|
|
|
|
static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
|
|
{
|
|
unsigned int clk = 0, ddr = 0;
|
|
|
|
if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
|
|
host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
|
|
ddr = MCI_STM32_CLK_DDR;
|
|
|
|
/*
|
|
* cclk = mclk / (2 * clkdiv)
|
|
* clkdiv 0 => bypass
|
|
* in ddr mode bypass is not possible
|
|
*/
|
|
if (desired) {
|
|
if (desired >= host->mclk && !ddr) {
|
|
host->cclk = host->mclk;
|
|
} else {
|
|
clk = DIV_ROUND_UP(host->mclk, 2 * desired);
|
|
if (clk > MCI_STM32_CLK_CLKDIV_MSK)
|
|
clk = MCI_STM32_CLK_CLKDIV_MSK;
|
|
host->cclk = host->mclk / (2 * clk);
|
|
}
|
|
} else {
|
|
/*
|
|
* while power-on phase the clock can't be define to 0,
|
|
* Only power-off and power-cyc deactivate the clock.
|
|
* if desired clock is 0, set max divider
|
|
*/
|
|
clk = MCI_STM32_CLK_CLKDIV_MSK;
|
|
host->cclk = host->mclk / (2 * clk);
|
|
}
|
|
|
|
/* Set actual clock for debug */
|
|
if (host->mmc->ios.power_mode == MMC_POWER_ON)
|
|
host->mmc->actual_clock = host->cclk;
|
|
else
|
|
host->mmc->actual_clock = 0;
|
|
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
|
|
clk |= MCI_STM32_CLK_WIDEBUS_4;
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
|
|
clk |= MCI_STM32_CLK_WIDEBUS_8;
|
|
|
|
clk |= MCI_STM32_CLK_HWFCEN;
|
|
clk |= host->clk_reg_add;
|
|
clk |= ddr;
|
|
|
|
if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
|
|
clk |= MCI_STM32_CLK_BUSSPEED;
|
|
|
|
mmci_write_clkreg(host, clk);
|
|
}
|
|
|
|
static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
|
|
{
|
|
if (!dlyb || !dlyb->base)
|
|
return;
|
|
|
|
/* Output clock = Input clock */
|
|
writel_relaxed(0, dlyb->base + DLYB_CR);
|
|
}
|
|
|
|
static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
|
|
{
|
|
struct mmc_ios ios = host->mmc->ios;
|
|
struct sdmmc_dlyb *dlyb = host->variant_priv;
|
|
|
|
/* adds OF options */
|
|
pwr = host->pwr_reg_add;
|
|
|
|
if (dlyb && dlyb->ops->set_input_ck)
|
|
dlyb->ops->set_input_ck(dlyb);
|
|
|
|
if (ios.power_mode == MMC_POWER_OFF) {
|
|
/* Only a reset could power-off sdmmc */
|
|
reset_control_assert(host->rst);
|
|
udelay(2);
|
|
reset_control_deassert(host->rst);
|
|
|
|
/*
|
|
* Set the SDMMC in Power-cycle state.
|
|
* This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
|
|
* are driven low, to prevent the Card from being supplied
|
|
* through the signal lines.
|
|
*/
|
|
mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
|
|
} else if (ios.power_mode == MMC_POWER_ON) {
|
|
/*
|
|
* After power-off (reset): the irq mask defined in probe
|
|
* functionis lost
|
|
* ault irq mask (probe) must be activated
|
|
*/
|
|
writel(MCI_IRQENABLE | host->variant->start_err,
|
|
host->base + MMCIMASK0);
|
|
|
|
/* preserves voltage switch bits */
|
|
pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
|
|
MCI_STM32_VSWITCH);
|
|
|
|
/*
|
|
* After a power-cycle state, we must set the SDMMC in
|
|
* Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
|
|
* driven high. Then we can set the SDMMC to Power-on state
|
|
*/
|
|
mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
|
|
mdelay(1);
|
|
mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
|
|
}
|
|
}
|
|
|
|
static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
|
|
{
|
|
u32 datactrl;
|
|
|
|
datactrl = mmci_dctrl_blksz(host);
|
|
|
|
if (host->hw_revision >= 3) {
|
|
u32 thr = 0;
|
|
|
|
if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
|
|
host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
|
|
thr = ffs(min_t(unsigned int, host->data->blksz,
|
|
host->variant->fifosize));
|
|
thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
|
|
}
|
|
|
|
writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
|
|
}
|
|
|
|
if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
|
|
host->data->blocks == 1)
|
|
datactrl |= MCI_DPSM_STM32_MODE_SDIO;
|
|
else if (host->data->stop && !host->mrq->sbc)
|
|
datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
|
|
else
|
|
datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
|
|
|
|
return datactrl;
|
|
}
|
|
|
|
static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
|
|
u32 status, u32 err_msk)
|
|
{
|
|
void __iomem *base = host->base;
|
|
u32 busy_d0, busy_d0end, mask, sdmmc_status;
|
|
|
|
mask = readl_relaxed(base + MMCIMASK0);
|
|
sdmmc_status = readl_relaxed(base + MMCISTATUS);
|
|
busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
|
|
busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
|
|
|
|
/* complete if there is an error or busy_d0end */
|
|
if ((status & err_msk) || busy_d0end)
|
|
goto complete;
|
|
|
|
/*
|
|
* On response the busy signaling is reflected in the BUSYD0 flag.
|
|
* if busy_d0 is in-progress we must activate busyd0end interrupt
|
|
* to wait this completion. Else this request has no busy step.
|
|
*/
|
|
if (busy_d0) {
|
|
if (!host->busy_status) {
|
|
writel_relaxed(mask | host->variant->busy_detect_mask,
|
|
base + MMCIMASK0);
|
|
host->busy_status = status &
|
|
(MCI_CMDSENT | MCI_CMDRESPEND);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
complete:
|
|
if (host->busy_status) {
|
|
writel_relaxed(mask & ~host->variant->busy_detect_mask,
|
|
base + MMCIMASK0);
|
|
host->busy_status = 0;
|
|
}
|
|
|
|
writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
|
|
{
|
|
writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
|
|
int unit, int phase, bool sampler)
|
|
{
|
|
u32 cfgr;
|
|
|
|
writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
|
|
|
|
cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
|
|
FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
|
|
writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
|
|
|
|
if (!sampler)
|
|
writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
|
|
{
|
|
struct sdmmc_dlyb *dlyb = host->variant_priv;
|
|
u32 cfgr;
|
|
int i, lng, ret;
|
|
|
|
for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
|
|
dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
|
|
|
|
ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
|
|
(cfgr & DLYB_CFGR_LNGF),
|
|
1, DLYB_LNG_TIMEOUT_US);
|
|
if (ret) {
|
|
dev_warn(mmc_dev(host->mmc),
|
|
"delay line cfg timeout unit:%d cfgr:%d\n",
|
|
i, cfgr);
|
|
continue;
|
|
}
|
|
|
|
lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
|
|
if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
|
|
break;
|
|
}
|
|
|
|
if (i > DLYB_CFGR_UNIT_MAX)
|
|
return -EINVAL;
|
|
|
|
dlyb->unit = i;
|
|
dlyb->max = __fls(lng);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
|
|
{
|
|
u32 cr, sr;
|
|
|
|
cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
|
|
cr |= DLYBSD_CR_EN;
|
|
|
|
writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
|
|
|
|
return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
|
|
sr, sr & DLYBSD_SR_LOCK, 1,
|
|
DLYBSD_TIMEOUT_1S_IN_US);
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
|
|
int unit __maybe_unused, int phase,
|
|
bool sampler __maybe_unused)
|
|
{
|
|
u32 cr, sr;
|
|
|
|
cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
|
|
cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
|
|
cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);
|
|
|
|
writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
|
|
|
|
return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
|
|
sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
|
|
DLYBSD_TIMEOUT_1S_IN_US);
|
|
}
|
|
|
|
static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
|
|
{
|
|
struct sdmmc_dlyb *dlyb = host->variant_priv;
|
|
|
|
dlyb->max = DLYBSD_TAPSEL_NB;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
|
|
{
|
|
struct sdmmc_dlyb *dlyb = host->variant_priv;
|
|
int cur_len = 0, max_len = 0, end_of_len = 0;
|
|
int phase, ret;
|
|
|
|
for (phase = 0; phase <= dlyb->max; phase++) {
|
|
ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
|
|
if (ret) {
|
|
dev_err(mmc_dev(host->mmc), "tuning config failed\n");
|
|
return ret;
|
|
}
|
|
|
|
if (mmc_send_tuning(host->mmc, opcode, NULL)) {
|
|
cur_len = 0;
|
|
} else {
|
|
cur_len++;
|
|
if (cur_len > max_len) {
|
|
max_len = cur_len;
|
|
end_of_len = phase;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!max_len) {
|
|
dev_err(mmc_dev(host->mmc), "no tuning point found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dlyb->ops->set_input_ck)
|
|
dlyb->ops->set_input_ck(dlyb);
|
|
|
|
phase = end_of_len - max_len / 2;
|
|
ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
|
|
if (ret) {
|
|
dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
|
|
dlyb->unit, dlyb->max, phase);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct sdmmc_dlyb *dlyb = host->variant_priv;
|
|
u32 clk;
|
|
int ret;
|
|
|
|
if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
|
|
host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
|
|
host->mmc->actual_clock <= 50000000)
|
|
return 0;
|
|
|
|
if (!dlyb || !dlyb->base)
|
|
return -EINVAL;
|
|
|
|
ret = dlyb->ops->dlyb_enable(dlyb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* SDMMC_FBCK is selected when an external Delay Block is needed
|
|
* with SDR104 or HS200.
|
|
*/
|
|
clk = host->clk_reg;
|
|
clk &= ~MCI_STM32_CLK_SEL_MSK;
|
|
clk |= MCI_STM32_CLK_SELFBCK;
|
|
mmci_write_clkreg(host, clk);
|
|
|
|
ret = dlyb->ops->tuning_prepare(host);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return sdmmc_dlyb_phase_tuning(host, opcode);
|
|
}
|
|
|
|
static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
|
|
{
|
|
/* clear the voltage switch completion flag */
|
|
writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
|
|
/* enable Voltage switch procedure */
|
|
mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
|
|
}
|
|
|
|
static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
|
|
struct mmc_ios *ios)
|
|
{
|
|
unsigned long flags;
|
|
u32 status;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
|
|
host->pwr_reg & MCI_STM32_VSWITCHEN) {
|
|
mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
/* wait voltage switch completion while 10ms */
|
|
ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
|
|
status,
|
|
(status & MCI_STM32_VSWEND),
|
|
10, SDMMC_VSWEND_TIMEOUT_US);
|
|
|
|
writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
|
|
host->base + MMCICLEAR);
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
mmci_write_pwrreg(host, host->pwr_reg &
|
|
~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
|
|
}
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct mmci_host_ops sdmmc_variant_ops = {
|
|
.validate_data = sdmmc_idma_validate_data,
|
|
.prep_data = sdmmc_idma_prep_data,
|
|
.unprep_data = sdmmc_idma_unprep_data,
|
|
.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
|
|
.dma_setup = sdmmc_idma_setup,
|
|
.dma_start = sdmmc_idma_start,
|
|
.dma_finalize = sdmmc_idma_finalize,
|
|
.dma_error = sdmmc_idma_error,
|
|
.set_clkreg = mmci_sdmmc_set_clkreg,
|
|
.set_pwrreg = mmci_sdmmc_set_pwrreg,
|
|
.busy_complete = sdmmc_busy_complete,
|
|
.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
|
|
.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
|
|
};
|
|
|
|
static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
|
|
.dlyb_enable = sdmmc_dlyb_mp15_enable,
|
|
.set_input_ck = sdmmc_dlyb_mp15_input_ck,
|
|
.tuning_prepare = sdmmc_dlyb_mp15_prepare,
|
|
.set_cfg = sdmmc_dlyb_mp15_set_cfg,
|
|
};
|
|
|
|
static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
|
|
.dlyb_enable = sdmmc_dlyb_mp25_enable,
|
|
.tuning_prepare = sdmmc_dlyb_mp25_prepare,
|
|
.set_cfg = sdmmc_dlyb_mp25_set_cfg,
|
|
};
|
|
|
|
void sdmmc_variant_init(struct mmci_host *host)
|
|
{
|
|
struct device_node *np = host->mmc->parent->of_node;
|
|
void __iomem *base_dlyb;
|
|
struct sdmmc_dlyb *dlyb;
|
|
|
|
host->ops = &sdmmc_variant_ops;
|
|
host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
|
|
|
|
base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
|
|
if (IS_ERR(base_dlyb))
|
|
return;
|
|
|
|
dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
|
|
if (!dlyb)
|
|
return;
|
|
|
|
dlyb->base = base_dlyb;
|
|
if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
|
|
dlyb->ops = &dlyb_tuning_mp25_ops;
|
|
else
|
|
dlyb->ops = &dlyb_tuning_mp15_ops;
|
|
|
|
host->variant_priv = dlyb;
|
|
host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
|
|
}
|