linux/drivers/cpufreq/imx6q-cpufreq.c
Uwe Kleine-König a9dedaa07b cpufreq: Switch back to struct platform_driver::remove()
After commit 0edb555a65 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.

Convert all platform drivers below drivers/cpufreq to use .remove(),
with the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://patch.msgid.link/20241020153910.324096-2-u.kleine-koenig@baylibre.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-10-28 12:24:39 +01:00

533 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pm_opp.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#define PU_SOC_VOLTAGE_NORMAL 1250000
#define PU_SOC_VOLTAGE_HIGH 1275000
#define FREQ_1P2_GHZ 1200000000
static struct regulator *arm_reg;
static struct regulator *pu_reg;
static struct regulator *soc_reg;
enum IMX6_CPUFREQ_CLKS {
ARM,
PLL1_SYS,
STEP,
PLL1_SW,
PLL2_PFD2_396M,
/* MX6UL requires two more clks */
PLL2_BUS,
SECONDARY_SEL,
};
#define IMX6Q_CPUFREQ_CLK_NUM 5
#define IMX6UL_CPUFREQ_CLK_NUM 7
static int num_clks;
static struct clk_bulk_data clks[] = {
{ .id = "arm" },
{ .id = "pll1_sys" },
{ .id = "step" },
{ .id = "pll1_sw" },
{ .id = "pll2_pfd2_396m" },
{ .id = "pll2_bus" },
{ .id = "secondary_sel" },
};
static struct device *cpu_dev;
static struct cpufreq_frequency_table *freq_table;
static unsigned int max_freq;
static unsigned int transition_latency;
static u32 *imx6_soc_volt;
static u32 soc_opp_count;
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
{
struct dev_pm_opp *opp;
unsigned long freq_hz, volt, volt_old;
unsigned int old_freq, new_freq;
bool pll1_sys_temp_enabled = false;
int ret;
new_freq = freq_table[index].frequency;
freq_hz = new_freq * 1000;
old_freq = clk_get_rate(clks[ARM].clk) / 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
return PTR_ERR(opp);
}
volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
volt_old = regulator_get_voltage(arm_reg);
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
old_freq / 1000, volt_old / 1000,
new_freq / 1000, volt / 1000);
/* scaling up? scale voltage before frequency */
if (new_freq > old_freq) {
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
return ret;
}
}
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret) {
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
return ret;
}
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret) {
dev_err(cpu_dev,
"failed to scale vddarm up: %d\n", ret);
return ret;
}
}
/*
* The setpoints are selected per PLL/PDF frequencies, so we need to
* reprogram PLL for frequency scaling. The procedure of reprogramming
* PLL1 is as below.
* For i.MX6UL, it has a secondary clk mux, the cpu frequency change
* flow is slightly different from other i.MX6 OSC.
* The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
* - Disable pll2_pfd2_396m_clk
*/
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
/*
* When changing pll1_sw_clk's parent to pll1_sys_clk,
* CPU may run at higher than 528MHz, this will lead to
* the system unstable if the voltage is lower than the
* voltage of 528MHz, so lower the CPU frequency to one
* half before changing CPU frequency.
*/
clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
clk_set_parent(clks[SECONDARY_SEL].clk,
clks[PLL2_BUS].clk);
else
clk_set_parent(clks[SECONDARY_SEL].clk,
clks[PLL2_PFD2_396M].clk);
clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
}
} else {
clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
} else {
/* pll1_sys needs to be enabled for divider rate change to work. */
pll1_sys_temp_enabled = true;
clk_prepare_enable(clks[PLL1_SYS].clk);
}
}
/* Ensure the arm clock divider is what we expect */
ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
if (ret) {
int ret1;
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
if (ret1)
dev_warn(cpu_dev,
"failed to restore vddarm voltage: %d\n", ret1);
return ret;
}
/* PLL1 is only needed until after ARM-PODF is set. */
if (pll1_sys_temp_enabled)
clk_disable_unprepare(clks[PLL1_SYS].clk);
/* scaling down? scale voltage after frequency */
if (new_freq < old_freq) {
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
if (ret)
dev_warn(cpu_dev,
"failed to scale vddarm down: %d\n", ret);
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
if (ret)
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
if (ret)
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
}
}
return 0;
}
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
{
policy->clk = clks[ARM].clk;
cpufreq_generic_init(policy, freq_table, transition_latency);
policy->suspend_freq = max_freq;
return 0;
}
static struct cpufreq_driver imx6q_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = imx6q_set_target,
.get = cpufreq_generic_get,
.init = imx6q_cpufreq_init,
.register_em = cpufreq_register_em_with_opp,
.name = "imx6q-cpufreq",
.attr = cpufreq_generic_attr,
.suspend = cpufreq_generic_suspend,
};
static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
{
int ret = dev_pm_opp_disable(dev, freq);
if (ret < 0 && ret != -ENODEV)
dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
}
#define OCOTP_CFG3 0x440
#define OCOTP_CFG3_SPEED_SHIFT 16
#define OCOTP_CFG3_SPEED_1P2GHZ 0x3
#define OCOTP_CFG3_SPEED_996MHZ 0x2
#define OCOTP_CFG3_SPEED_852MHZ 0x1
static int imx6q_opp_check_speed_grading(struct device *dev)
{
u32 val;
int ret;
if (of_property_present(dev->of_node, "nvmem-cells")) {
ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
if (ret)
return ret;
} else {
struct regmap *ocotp;
ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp");
if (IS_ERR(ocotp))
return -ENOENT;
/*
* SPEED_GRADING[1:0] defines the max speed of ARM:
* 2b'11: 1200000000Hz;
* 2b'10: 996000000Hz;
* 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
* 2b'00: 792000000Hz;
* We need to set the max speed of ARM according to fuse map.
*/
regmap_read(ocotp, OCOTP_CFG3, &val);
}
val >>= OCOTP_CFG3_SPEED_SHIFT;
val &= 0x3;
if (val < OCOTP_CFG3_SPEED_996MHZ)
imx6x_disable_freq_in_opp(dev, 996000000);
if (of_machine_is_compatible("fsl,imx6q") ||
of_machine_is_compatible("fsl,imx6qp")) {
if (val != OCOTP_CFG3_SPEED_852MHZ)
imx6x_disable_freq_in_opp(dev, 852000000);
if (val != OCOTP_CFG3_SPEED_1P2GHZ)
imx6x_disable_freq_in_opp(dev, 1200000000);
}
return 0;
}
#define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
#define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
#define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
static int imx6ul_opp_check_speed_grading(struct device *dev)
{
u32 val;
int ret = 0;
if (of_property_present(dev->of_node, "nvmem-cells")) {
ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
if (ret)
return ret;
} else {
struct regmap *ocotp;
ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp");
if (IS_ERR(ocotp))
ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp");
if (IS_ERR(ocotp))
return -ENOENT;
regmap_read(ocotp, OCOTP_CFG3, &val);
}
/*
* Speed GRADING[1:0] defines the max speed of ARM:
* 2b'00: Reserved;
* 2b'01: 528000000Hz;
* 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
* 2b'11: 900000000Hz on i.MX6ULL only;
* We need to set the max speed of ARM according to fuse map.
*/
val >>= OCOTP_CFG3_SPEED_SHIFT;
val &= 0x3;
if (of_machine_is_compatible("fsl,imx6ul"))
if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
imx6x_disable_freq_in_opp(dev, 696000000);
if (of_machine_is_compatible("fsl,imx6ull")) {
if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
imx6x_disable_freq_in_opp(dev, 792000000);
if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
imx6x_disable_freq_in_opp(dev, 900000000);
}
return ret;
}
static int imx6q_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *np;
struct dev_pm_opp *opp;
unsigned long min_volt, max_volt;
int num, ret;
const struct property *prop;
const __be32 *val;
u32 nr, i, j;
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
pr_err("failed to get cpu0 device\n");
return -ENODEV;
}
np = of_node_get(cpu_dev->of_node);
if (!np) {
dev_err(cpu_dev, "failed to find cpu0 node\n");
return -ENOENT;
}
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull"))
num_clks = IMX6UL_CPUFREQ_CLK_NUM;
else
num_clks = IMX6Q_CPUFREQ_CLK_NUM;
ret = clk_bulk_get(cpu_dev, num_clks, clks);
if (ret)
goto put_node;
arm_reg = regulator_get(cpu_dev, "arm");
pu_reg = regulator_get_optional(cpu_dev, "pu");
soc_reg = regulator_get(cpu_dev, "soc");
if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
PTR_ERR(soc_reg) == -EPROBE_DEFER ||
PTR_ERR(pu_reg) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
dev_dbg(cpu_dev, "regulators not ready, defer\n");
goto put_reg;
}
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
dev_err(cpu_dev, "failed to get regulators\n");
ret = -ENOENT;
goto put_reg;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret < 0) {
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
goto put_reg;
}
if (of_machine_is_compatible("fsl,imx6ul") ||
of_machine_is_compatible("fsl,imx6ull")) {
ret = imx6ul_opp_check_speed_grading(cpu_dev);
} else {
ret = imx6q_opp_check_speed_grading(cpu_dev);
}
if (ret) {
dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
goto out_free_opp;
}
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto out_free_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto out_free_opp;
}
/* Make imx6_soc_volt array's size same as arm opp number */
imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
GFP_KERNEL);
if (imx6_soc_volt == NULL) {
ret = -ENOMEM;
goto free_freq_table;
}
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
if (!prop || !prop->value)
goto soc_opp_out;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2 || (nr / 2) < num)
goto soc_opp_out;
for (j = 0; j < num; j++) {
val = prop->value;
for (i = 0; i < nr / 2; i++) {
unsigned long freq = be32_to_cpup(val++);
unsigned long volt = be32_to_cpup(val++);
if (freq_table[j].frequency == freq) {
imx6_soc_volt[soc_opp_count++] = volt;
break;
}
}
}
soc_opp_out:
/* use fixed soc opp volt if no valid soc opp info found in dtb */
if (soc_opp_count != num) {
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
for (j = 0; j < num; j++)
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
}
if (of_property_read_u32(np, "clock-latency", &transition_latency))
transition_latency = CPUFREQ_ETERNAL;
/*
* Calculate the ramp time for max voltage change in the
* VDDSOC and VDDPU regulators.
*/
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
if (!IS_ERR(pu_reg)) {
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
if (ret > 0)
transition_latency += ret * 1000;
}
/*
* OPP is maintained in order of increasing frequency, and
* freq_table initialised from OPP is therefore sorted in the
* same order.
*/
max_freq = freq_table[--num].frequency;
opp = dev_pm_opp_find_freq_exact(cpu_dev,
freq_table[0].frequency * 1000, true);
min_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
max_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
if (ret > 0)
transition_latency += ret * 1000;
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
if (ret) {
dev_err(cpu_dev, "failed register driver: %d\n", ret);
goto free_freq_table;
}
of_node_put(np);
return 0;
free_freq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
out_free_opp:
dev_pm_opp_of_remove_table(cpu_dev);
put_reg:
if (!IS_ERR(arm_reg))
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
if (!IS_ERR(soc_reg))
regulator_put(soc_reg);
clk_bulk_put(num_clks, clks);
put_node:
of_node_put(np);
return ret;
}
static void imx6q_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
dev_pm_opp_of_remove_table(cpu_dev);
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
regulator_put(soc_reg);
clk_bulk_put(num_clks, clks);
}
static struct platform_driver imx6q_cpufreq_platdrv = {
.driver = {
.name = "imx6q-cpufreq",
},
.probe = imx6q_cpufreq_probe,
.remove = imx6q_cpufreq_remove,
};
module_platform_driver(imx6q_cpufreq_platdrv);
MODULE_ALIAS("platform:imx6q-cpufreq");
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
MODULE_LICENSE("GPL");