linux/drivers/cpufreq/e_powersaver.c
Lizhe b4b1ddc9df cpufreq: Make cpufreq_driver->exit() return void
The cpufreq core doesn't check the return type of the exit() callback
and there is not much the core can do on failures at that point. Just
drop the returned value and make it return void.

Signed-off-by: Lizhe <sensor1010@163.com>
[ Viresh: Reworked the patches to fix all missing changes together. ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> # Mediatek
Acked-by: Sudeep Holla <sudeep.holla@arm.com> # scpi, scmi, vexpress
Acked-by: Mario Limonciello <mario.limonciello@amd.com> # amd
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com> # bmips
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Kevin Hilman <khilman@baylibre.com> # omap
2024-07-09 08:45:30 +05:30

424 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on documentation provided by Dave Jones. Thanks!
*
* BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/timex.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <asm/cpu_device_id.h>
#include <asm/msr.h>
#include <asm/tsc.h>
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
#include <linux/acpi.h>
#include <acpi/processor.h>
#endif
#define EPS_BRAND_C7M 0
#define EPS_BRAND_C7 1
#define EPS_BRAND_EDEN 2
#define EPS_BRAND_C3 3
#define EPS_BRAND_C7D 4
struct eps_cpu_data {
u32 fsb;
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
u32 bios_limit;
#endif
struct cpufreq_frequency_table freq_table[];
};
static struct eps_cpu_data *eps_cpu[NR_CPUS];
/* Module parameters */
static int freq_failsafe_off;
static int voltage_failsafe_off;
static int set_max_voltage;
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
static int ignore_acpi_limit;
static struct acpi_processor_performance *eps_acpi_cpu_perf;
/* Minimum necessary to get acpi_processor_get_bios_limit() working */
static int eps_acpi_init(void)
{
eps_acpi_cpu_perf = kzalloc(sizeof(*eps_acpi_cpu_perf),
GFP_KERNEL);
if (!eps_acpi_cpu_perf)
return -ENOMEM;
if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
GFP_KERNEL)) {
kfree(eps_acpi_cpu_perf);
eps_acpi_cpu_perf = NULL;
return -ENOMEM;
}
if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
kfree(eps_acpi_cpu_perf);
eps_acpi_cpu_perf = NULL;
return -EIO;
}
return 0;
}
static int eps_acpi_exit(struct cpufreq_policy *policy)
{
if (eps_acpi_cpu_perf) {
acpi_processor_unregister_performance(0);
free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
kfree(eps_acpi_cpu_perf);
eps_acpi_cpu_perf = NULL;
}
return 0;
}
#endif
static unsigned int eps_get(unsigned int cpu)
{
struct eps_cpu_data *centaur;
u32 lo, hi;
if (cpu)
return 0;
centaur = eps_cpu[cpu];
if (centaur == NULL)
return 0;
/* Return current frequency */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
return centaur->fsb * ((lo >> 8) & 0xff);
}
static int eps_set_state(struct eps_cpu_data *centaur,
struct cpufreq_policy *policy,
u32 dest_state)
{
u32 lo, hi;
int i;
/* Wait while CPU is busy */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
i = 0;
while (lo & ((1 << 16) | (1 << 17))) {
udelay(16);
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
i++;
if (unlikely(i > 64)) {
return -ENODEV;
}
}
/* Set new multiplier and voltage */
wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
/* Wait until transition end */
i = 0;
do {
udelay(16);
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
i++;
if (unlikely(i > 64)) {
return -ENODEV;
}
} while (lo & ((1 << 16) | (1 << 17)));
#ifdef DEBUG
{
u8 current_multiplier, current_voltage;
/* Print voltage and multiplier */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
current_voltage = lo & 0xff;
pr_info("Current voltage = %dmV\n", current_voltage * 16 + 700);
current_multiplier = (lo >> 8) & 0xff;
pr_info("Current multiplier = %d\n", current_multiplier);
}
#endif
return 0;
}
static int eps_target(struct cpufreq_policy *policy, unsigned int index)
{
struct eps_cpu_data *centaur;
unsigned int cpu = policy->cpu;
unsigned int dest_state;
int ret;
if (unlikely(eps_cpu[cpu] == NULL))
return -ENODEV;
centaur = eps_cpu[cpu];
/* Make frequency transition */
dest_state = centaur->freq_table[index].driver_data & 0xffff;
ret = eps_set_state(centaur, policy, dest_state);
if (ret)
pr_err("Timeout!\n");
return ret;
}
static int eps_cpu_init(struct cpufreq_policy *policy)
{
unsigned int i;
u32 lo, hi;
u64 val;
u8 current_multiplier, current_voltage;
u8 max_multiplier, max_voltage;
u8 min_multiplier, min_voltage;
u8 brand = 0;
u32 fsb;
struct eps_cpu_data *centaur;
struct cpuinfo_x86 *c = &cpu_data(0);
struct cpufreq_frequency_table *f_table;
int k, step, voltage;
int states;
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
unsigned int limit;
#endif
if (policy->cpu != 0)
return -ENODEV;
/* Check brand */
pr_info("Detected VIA ");
switch (c->x86_model) {
case 10:
rdmsr(0x1153, lo, hi);
brand = (((lo >> 2) ^ lo) >> 18) & 3;
pr_cont("Model A ");
break;
case 13:
rdmsr(0x1154, lo, hi);
brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
pr_cont("Model D ");
break;
}
switch (brand) {
case EPS_BRAND_C7M:
pr_cont("C7-M\n");
break;
case EPS_BRAND_C7:
pr_cont("C7\n");
break;
case EPS_BRAND_EDEN:
pr_cont("Eden\n");
break;
case EPS_BRAND_C7D:
pr_cont("C7-D\n");
break;
case EPS_BRAND_C3:
pr_cont("C3\n");
return -ENODEV;
}
/* Enable Enhanced PowerSaver */
rdmsrl(MSR_IA32_MISC_ENABLE, val);
if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
wrmsrl(MSR_IA32_MISC_ENABLE, val);
/* Can be locked at 0 */
rdmsrl(MSR_IA32_MISC_ENABLE, val);
if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
pr_info("Can't enable Enhanced PowerSaver\n");
return -ENODEV;
}
}
/* Print voltage and multiplier */
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
current_voltage = lo & 0xff;
pr_info("Current voltage = %dmV\n", current_voltage * 16 + 700);
current_multiplier = (lo >> 8) & 0xff;
pr_info("Current multiplier = %d\n", current_multiplier);
/* Print limits */
max_voltage = hi & 0xff;
pr_info("Highest voltage = %dmV\n", max_voltage * 16 + 700);
max_multiplier = (hi >> 8) & 0xff;
pr_info("Highest multiplier = %d\n", max_multiplier);
min_voltage = (hi >> 16) & 0xff;
pr_info("Lowest voltage = %dmV\n", min_voltage * 16 + 700);
min_multiplier = (hi >> 24) & 0xff;
pr_info("Lowest multiplier = %d\n", min_multiplier);
/* Sanity checks */
if (current_multiplier == 0 || max_multiplier == 0
|| min_multiplier == 0)
return -EINVAL;
if (current_multiplier > max_multiplier
|| max_multiplier <= min_multiplier)
return -EINVAL;
if (current_voltage > 0x1f || max_voltage > 0x1f)
return -EINVAL;
if (max_voltage < min_voltage
|| current_voltage < min_voltage
|| current_voltage > max_voltage)
return -EINVAL;
/* Check for systems using underclocked CPU */
if (!freq_failsafe_off && max_multiplier != current_multiplier) {
pr_info("Your processor is running at different frequency then its maximum. Aborting.\n");
pr_info("You can use freq_failsafe_off option to disable this check.\n");
return -EINVAL;
}
if (!voltage_failsafe_off && max_voltage != current_voltage) {
pr_info("Your processor is running at different voltage then its maximum. Aborting.\n");
pr_info("You can use voltage_failsafe_off option to disable this check.\n");
return -EINVAL;
}
/* Calc FSB speed */
fsb = cpu_khz / current_multiplier;
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
/* Check for ACPI processor speed limit */
if (!ignore_acpi_limit && !eps_acpi_init()) {
if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
pr_info("ACPI limit %u.%uGHz\n",
limit/1000000,
(limit%1000000)/10000);
eps_acpi_exit(policy);
/* Check if max_multiplier is in BIOS limits */
if (limit && max_multiplier * fsb > limit) {
pr_info("Aborting\n");
return -EINVAL;
}
}
}
#endif
/* Allow user to set lower maximum voltage then that reported
* by processor */
if (brand == EPS_BRAND_C7M && set_max_voltage) {
u32 v;
/* Change mV to something hardware can use */
v = (set_max_voltage - 700) / 16;
/* Check if voltage is within limits */
if (v >= min_voltage && v <= max_voltage) {
pr_info("Setting %dmV as maximum\n", v * 16 + 700);
max_voltage = v;
}
}
/* Calc number of p-states supported */
if (brand == EPS_BRAND_C7M)
states = max_multiplier - min_multiplier + 1;
else
states = 2;
/* Allocate private data and frequency table for current cpu */
centaur = kzalloc(struct_size(centaur, freq_table, states + 1),
GFP_KERNEL);
if (!centaur)
return -ENOMEM;
eps_cpu[0] = centaur;
/* Copy basic values */
centaur->fsb = fsb;
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
centaur->bios_limit = limit;
#endif
/* Fill frequency and MSR value table */
f_table = &centaur->freq_table[0];
if (brand != EPS_BRAND_C7M) {
f_table[0].frequency = fsb * min_multiplier;
f_table[0].driver_data = (min_multiplier << 8) | min_voltage;
f_table[1].frequency = fsb * max_multiplier;
f_table[1].driver_data = (max_multiplier << 8) | max_voltage;
f_table[2].frequency = CPUFREQ_TABLE_END;
} else {
k = 0;
step = ((max_voltage - min_voltage) * 256)
/ (max_multiplier - min_multiplier);
for (i = min_multiplier; i <= max_multiplier; i++) {
voltage = (k * step) / 256 + min_voltage;
f_table[k].frequency = fsb * i;
f_table[k].driver_data = (i << 8) | voltage;
k++;
}
f_table[k].frequency = CPUFREQ_TABLE_END;
}
policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
policy->freq_table = &centaur->freq_table[0];
return 0;
}
static void eps_cpu_exit(struct cpufreq_policy *policy)
{
unsigned int cpu = policy->cpu;
/* Bye */
kfree(eps_cpu[cpu]);
eps_cpu[cpu] = NULL;
}
static struct cpufreq_driver eps_driver = {
.verify = cpufreq_generic_frequency_table_verify,
.target_index = eps_target,
.init = eps_cpu_init,
.exit = eps_cpu_exit,
.get = eps_get,
.name = "e_powersaver",
.attr = cpufreq_generic_attr,
};
/* This driver will work only on Centaur C7 processors with
* Enhanced SpeedStep/PowerSaver registers */
static const struct x86_cpu_id eps_cpu_id[] = {
X86_MATCH_VENDOR_FAM_FEATURE(CENTAUR, 6, X86_FEATURE_EST, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, eps_cpu_id);
static int __init eps_init(void)
{
if (!x86_match_cpu(eps_cpu_id) || boot_cpu_data.x86_model < 10)
return -ENODEV;
if (cpufreq_register_driver(&eps_driver))
return -EINVAL;
return 0;
}
static void __exit eps_exit(void)
{
cpufreq_unregister_driver(&eps_driver);
}
/* Allow user to overclock his machine or to change frequency to higher after
* unloading module */
module_param(freq_failsafe_off, int, 0644);
MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
module_param(voltage_failsafe_off, int, 0644);
MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
#if IS_ENABLED(CONFIG_ACPI_PROCESSOR)
module_param(ignore_acpi_limit, int, 0644);
MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
#endif
module_param(set_max_voltage, int, 0644);
MODULE_PARM_DESC(set_max_voltage, "Set maximum CPU voltage (mV) C7-M only");
MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
MODULE_LICENSE("GPL");
module_init(eps_init);
module_exit(eps_exit);