linux/arch/x86/kvm/smm.c
Sean Christopherson 3f6821aa14 KVM: x86: Forcibly leave nested if RSM to L2 hits shutdown
Leave nested mode before synthesizing shutdown (a.k.a. TRIPLE_FAULT) if
RSM fails when resuming L2 (a.k.a. guest mode).  Architecturally, shutdown
on RSM occurs _before_ the transition back to guest mode on both Intel and
AMD.

On Intel, per the SDM pseudocode, SMRAM state is loaded before critical
VMX state:

  restore state normally from SMRAM;
  ...
  CR4.VMXE := value stored internally;
  IF internal storage indicates that the logical processor had been in
     VMX operation (root or non-root)
  THEN
     enter VMX operation (root or non-root);
     restore VMX-critical state as defined in Section 32.14.1;
     ...
     restore current VMCS pointer;
  FI;

AMD's APM is both less clearcut and more explicit.  Because AMD CPUs save
VMCB and guest state in SMRAM itself, given the lack of anything in the
APM to indicate a shutdown in guest mode is possible, a straightforward
reading of the clause on invalid state is that _what_ state is invalid is
irrelevant, i.e. all roads lead to shutdown.

  An RSM causes a processor shutdown if an invalid-state condition is
  found in the SMRAM state-save area.

This fixes a bug found by syzkaller where synthesizing shutdown for L2
led to a nested VM-Exit (if L1 is intercepting shutdown), which in turn
caused KVM to complain about trying to cancel a nested VM-Enter (see
commit 759cbd5967 ("KVM: x86: nSVM/nVMX: set nested_run_pending on VM
entry which is a result of RSM").

Note, Paolo pointed out that KVM shouldn't set nested_run_pending until
after loading SMRAM state.  But as above, that's only half the story, KVM
shouldn't transition to guest mode either.  Unfortunately, fixing that
mess requires rewriting the nVMX and nSVM RSM flows to not piggyback
their nested VM-Enter flows, as executing the nested VM-Enter flows after
loading state from SMRAM would clobber much of said state.

For now, add a FIXME to call out that transitioning to guest mode before
loading state from SMRAM is wrong.

Link: https://lore.kernel.org/all/CABgObfYaUHXyRmsmg8UjRomnpQ0Jnaog9-L2gMjsjkqChjDYUQ@mail.gmail.com
Reported-by: syzbot+988d9efcdf137bc05f66@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/0000000000007a9acb06151e1670@google.com
Reported-by: Zheyu Ma <zheyuma97@gmail.com>
Closes: https://lore.kernel.org/all/CAMhUBjmXMYsEoVYw_M8hSZjBMHh24i88QYm-RY6HDta5YZ7Wgw@mail.gmail.com
Analyzed-by: Michal Wilczynski <michal.wilczynski@intel.com>
Cc: Kishen Maloor <kishen.maloor@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906161337.1118412-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09 20:09:49 -07:00

655 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
#include "x86.h"
#include "kvm_cache_regs.h"
#include "kvm_emulate.h"
#include "smm.h"
#include "cpuid.h"
#include "trace.h"
#define CHECK_SMRAM32_OFFSET(field, offset) \
ASSERT_STRUCT_OFFSET(struct kvm_smram_state_32, field, offset - 0xFE00)
#define CHECK_SMRAM64_OFFSET(field, offset) \
ASSERT_STRUCT_OFFSET(struct kvm_smram_state_64, field, offset - 0xFE00)
static void check_smram_offsets(void)
{
/* 32 bit SMRAM image */
CHECK_SMRAM32_OFFSET(reserved1, 0xFE00);
CHECK_SMRAM32_OFFSET(smbase, 0xFEF8);
CHECK_SMRAM32_OFFSET(smm_revision, 0xFEFC);
CHECK_SMRAM32_OFFSET(io_inst_restart, 0xFF00);
CHECK_SMRAM32_OFFSET(auto_hlt_restart, 0xFF02);
CHECK_SMRAM32_OFFSET(io_restart_rdi, 0xFF04);
CHECK_SMRAM32_OFFSET(io_restart_rcx, 0xFF08);
CHECK_SMRAM32_OFFSET(io_restart_rsi, 0xFF0C);
CHECK_SMRAM32_OFFSET(io_restart_rip, 0xFF10);
CHECK_SMRAM32_OFFSET(cr4, 0xFF14);
CHECK_SMRAM32_OFFSET(reserved2, 0xFF18);
CHECK_SMRAM32_OFFSET(int_shadow, 0xFF1A);
CHECK_SMRAM32_OFFSET(reserved3, 0xFF1B);
CHECK_SMRAM32_OFFSET(ds, 0xFF2C);
CHECK_SMRAM32_OFFSET(fs, 0xFF38);
CHECK_SMRAM32_OFFSET(gs, 0xFF44);
CHECK_SMRAM32_OFFSET(idtr, 0xFF50);
CHECK_SMRAM32_OFFSET(tr, 0xFF5C);
CHECK_SMRAM32_OFFSET(gdtr, 0xFF6C);
CHECK_SMRAM32_OFFSET(ldtr, 0xFF78);
CHECK_SMRAM32_OFFSET(es, 0xFF84);
CHECK_SMRAM32_OFFSET(cs, 0xFF90);
CHECK_SMRAM32_OFFSET(ss, 0xFF9C);
CHECK_SMRAM32_OFFSET(es_sel, 0xFFA8);
CHECK_SMRAM32_OFFSET(cs_sel, 0xFFAC);
CHECK_SMRAM32_OFFSET(ss_sel, 0xFFB0);
CHECK_SMRAM32_OFFSET(ds_sel, 0xFFB4);
CHECK_SMRAM32_OFFSET(fs_sel, 0xFFB8);
CHECK_SMRAM32_OFFSET(gs_sel, 0xFFBC);
CHECK_SMRAM32_OFFSET(ldtr_sel, 0xFFC0);
CHECK_SMRAM32_OFFSET(tr_sel, 0xFFC4);
CHECK_SMRAM32_OFFSET(dr7, 0xFFC8);
CHECK_SMRAM32_OFFSET(dr6, 0xFFCC);
CHECK_SMRAM32_OFFSET(gprs, 0xFFD0);
CHECK_SMRAM32_OFFSET(eip, 0xFFF0);
CHECK_SMRAM32_OFFSET(eflags, 0xFFF4);
CHECK_SMRAM32_OFFSET(cr3, 0xFFF8);
CHECK_SMRAM32_OFFSET(cr0, 0xFFFC);
/* 64 bit SMRAM image */
CHECK_SMRAM64_OFFSET(es, 0xFE00);
CHECK_SMRAM64_OFFSET(cs, 0xFE10);
CHECK_SMRAM64_OFFSET(ss, 0xFE20);
CHECK_SMRAM64_OFFSET(ds, 0xFE30);
CHECK_SMRAM64_OFFSET(fs, 0xFE40);
CHECK_SMRAM64_OFFSET(gs, 0xFE50);
CHECK_SMRAM64_OFFSET(gdtr, 0xFE60);
CHECK_SMRAM64_OFFSET(ldtr, 0xFE70);
CHECK_SMRAM64_OFFSET(idtr, 0xFE80);
CHECK_SMRAM64_OFFSET(tr, 0xFE90);
CHECK_SMRAM64_OFFSET(io_restart_rip, 0xFEA0);
CHECK_SMRAM64_OFFSET(io_restart_rcx, 0xFEA8);
CHECK_SMRAM64_OFFSET(io_restart_rsi, 0xFEB0);
CHECK_SMRAM64_OFFSET(io_restart_rdi, 0xFEB8);
CHECK_SMRAM64_OFFSET(io_restart_dword, 0xFEC0);
CHECK_SMRAM64_OFFSET(reserved1, 0xFEC4);
CHECK_SMRAM64_OFFSET(io_inst_restart, 0xFEC8);
CHECK_SMRAM64_OFFSET(auto_hlt_restart, 0xFEC9);
CHECK_SMRAM64_OFFSET(amd_nmi_mask, 0xFECA);
CHECK_SMRAM64_OFFSET(int_shadow, 0xFECB);
CHECK_SMRAM64_OFFSET(reserved2, 0xFECC);
CHECK_SMRAM64_OFFSET(efer, 0xFED0);
CHECK_SMRAM64_OFFSET(svm_guest_flag, 0xFED8);
CHECK_SMRAM64_OFFSET(svm_guest_vmcb_gpa, 0xFEE0);
CHECK_SMRAM64_OFFSET(svm_guest_virtual_int, 0xFEE8);
CHECK_SMRAM64_OFFSET(reserved3, 0xFEF0);
CHECK_SMRAM64_OFFSET(smm_revison, 0xFEFC);
CHECK_SMRAM64_OFFSET(smbase, 0xFF00);
CHECK_SMRAM64_OFFSET(reserved4, 0xFF04);
CHECK_SMRAM64_OFFSET(ssp, 0xFF18);
CHECK_SMRAM64_OFFSET(svm_guest_pat, 0xFF20);
CHECK_SMRAM64_OFFSET(svm_host_efer, 0xFF28);
CHECK_SMRAM64_OFFSET(svm_host_cr4, 0xFF30);
CHECK_SMRAM64_OFFSET(svm_host_cr3, 0xFF38);
CHECK_SMRAM64_OFFSET(svm_host_cr0, 0xFF40);
CHECK_SMRAM64_OFFSET(cr4, 0xFF48);
CHECK_SMRAM64_OFFSET(cr3, 0xFF50);
CHECK_SMRAM64_OFFSET(cr0, 0xFF58);
CHECK_SMRAM64_OFFSET(dr7, 0xFF60);
CHECK_SMRAM64_OFFSET(dr6, 0xFF68);
CHECK_SMRAM64_OFFSET(rflags, 0xFF70);
CHECK_SMRAM64_OFFSET(rip, 0xFF78);
CHECK_SMRAM64_OFFSET(gprs, 0xFF80);
BUILD_BUG_ON(sizeof(union kvm_smram) != 512);
}
#undef CHECK_SMRAM64_OFFSET
#undef CHECK_SMRAM32_OFFSET
void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
{
trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
if (entering_smm) {
vcpu->arch.hflags |= HF_SMM_MASK;
} else {
vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
/* Process a latched INIT or SMI, if any. */
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
* Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
* on SMM exit we still need to reload them from
* guest memory
*/
vcpu->arch.pdptrs_from_userspace = false;
}
kvm_mmu_reset_context(vcpu);
}
void process_smi(struct kvm_vcpu *vcpu)
{
vcpu->arch.smi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
{
u32 flags = 0;
flags |= seg->g << 23;
flags |= seg->db << 22;
flags |= seg->l << 21;
flags |= seg->avl << 20;
flags |= seg->present << 15;
flags |= seg->dpl << 13;
flags |= seg->s << 12;
flags |= seg->type << 8;
return flags;
}
static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu,
struct kvm_smm_seg_state_32 *state,
u32 *selector, int n)
{
struct kvm_segment seg;
kvm_get_segment(vcpu, &seg, n);
*selector = seg.selector;
state->base = seg.base;
state->limit = seg.limit;
state->flags = enter_smm_get_segment_flags(&seg);
}
#ifdef CONFIG_X86_64
static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu,
struct kvm_smm_seg_state_64 *state,
int n)
{
struct kvm_segment seg;
kvm_get_segment(vcpu, &seg, n);
state->selector = seg.selector;
state->attributes = enter_smm_get_segment_flags(&seg) >> 8;
state->limit = seg.limit;
state->base = seg.base;
}
#endif
static void enter_smm_save_state_32(struct kvm_vcpu *vcpu,
struct kvm_smram_state_32 *smram)
{
struct desc_ptr dt;
int i;
smram->cr0 = kvm_read_cr0(vcpu);
smram->cr3 = kvm_read_cr3(vcpu);
smram->eflags = kvm_get_rflags(vcpu);
smram->eip = kvm_rip_read(vcpu);
for (i = 0; i < 8; i++)
smram->gprs[i] = kvm_register_read_raw(vcpu, i);
smram->dr6 = (u32)vcpu->arch.dr6;
smram->dr7 = (u32)vcpu->arch.dr7;
enter_smm_save_seg_32(vcpu, &smram->tr, &smram->tr_sel, VCPU_SREG_TR);
enter_smm_save_seg_32(vcpu, &smram->ldtr, &smram->ldtr_sel, VCPU_SREG_LDTR);
kvm_x86_call(get_gdt)(vcpu, &dt);
smram->gdtr.base = dt.address;
smram->gdtr.limit = dt.size;
kvm_x86_call(get_idt)(vcpu, &dt);
smram->idtr.base = dt.address;
smram->idtr.limit = dt.size;
enter_smm_save_seg_32(vcpu, &smram->es, &smram->es_sel, VCPU_SREG_ES);
enter_smm_save_seg_32(vcpu, &smram->cs, &smram->cs_sel, VCPU_SREG_CS);
enter_smm_save_seg_32(vcpu, &smram->ss, &smram->ss_sel, VCPU_SREG_SS);
enter_smm_save_seg_32(vcpu, &smram->ds, &smram->ds_sel, VCPU_SREG_DS);
enter_smm_save_seg_32(vcpu, &smram->fs, &smram->fs_sel, VCPU_SREG_FS);
enter_smm_save_seg_32(vcpu, &smram->gs, &smram->gs_sel, VCPU_SREG_GS);
smram->cr4 = kvm_read_cr4(vcpu);
smram->smm_revision = 0x00020000;
smram->smbase = vcpu->arch.smbase;
smram->int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
}
#ifdef CONFIG_X86_64
static void enter_smm_save_state_64(struct kvm_vcpu *vcpu,
struct kvm_smram_state_64 *smram)
{
struct desc_ptr dt;
int i;
for (i = 0; i < 16; i++)
smram->gprs[15 - i] = kvm_register_read_raw(vcpu, i);
smram->rip = kvm_rip_read(vcpu);
smram->rflags = kvm_get_rflags(vcpu);
smram->dr6 = vcpu->arch.dr6;
smram->dr7 = vcpu->arch.dr7;
smram->cr0 = kvm_read_cr0(vcpu);
smram->cr3 = kvm_read_cr3(vcpu);
smram->cr4 = kvm_read_cr4(vcpu);
smram->smbase = vcpu->arch.smbase;
smram->smm_revison = 0x00020064;
smram->efer = vcpu->arch.efer;
enter_smm_save_seg_64(vcpu, &smram->tr, VCPU_SREG_TR);
kvm_x86_call(get_idt)(vcpu, &dt);
smram->idtr.limit = dt.size;
smram->idtr.base = dt.address;
enter_smm_save_seg_64(vcpu, &smram->ldtr, VCPU_SREG_LDTR);
kvm_x86_call(get_gdt)(vcpu, &dt);
smram->gdtr.limit = dt.size;
smram->gdtr.base = dt.address;
enter_smm_save_seg_64(vcpu, &smram->es, VCPU_SREG_ES);
enter_smm_save_seg_64(vcpu, &smram->cs, VCPU_SREG_CS);
enter_smm_save_seg_64(vcpu, &smram->ss, VCPU_SREG_SS);
enter_smm_save_seg_64(vcpu, &smram->ds, VCPU_SREG_DS);
enter_smm_save_seg_64(vcpu, &smram->fs, VCPU_SREG_FS);
enter_smm_save_seg_64(vcpu, &smram->gs, VCPU_SREG_GS);
smram->int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
}
#endif
void enter_smm(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ds;
struct desc_ptr dt;
unsigned long cr0;
union kvm_smram smram;
check_smram_offsets();
memset(smram.bytes, 0, sizeof(smram.bytes));
#ifdef CONFIG_X86_64
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
enter_smm_save_state_64(vcpu, &smram.smram64);
else
#endif
enter_smm_save_state_32(vcpu, &smram.smram32);
/*
* Give enter_smm() a chance to make ISA-specific changes to the vCPU
* state (e.g. leave guest mode) after we've saved the state into the
* SMM state-save area.
*
* Kill the VM in the unlikely case of failure, because the VM
* can be in undefined state in this case.
*/
if (kvm_x86_call(enter_smm)(vcpu, &smram))
goto error;
kvm_smm_changed(vcpu, true);
if (kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, &smram, sizeof(smram)))
goto error;
if (kvm_x86_call(get_nmi_mask)(vcpu))
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
else
kvm_x86_call(set_nmi_mask)(vcpu, true);
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
kvm_rip_write(vcpu, 0x8000);
kvm_x86_call(set_interrupt_shadow)(vcpu, 0);
cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
kvm_x86_call(set_cr0)(vcpu, cr0);
kvm_x86_call(set_cr4)(vcpu, 0);
/* Undocumented: IDT limit is set to zero on entry to SMM. */
dt.address = dt.size = 0;
kvm_x86_call(set_idt)(vcpu, &dt);
if (WARN_ON_ONCE(kvm_set_dr(vcpu, 7, DR7_FIXED_1)))
goto error;
cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
cs.base = vcpu->arch.smbase;
ds.selector = 0;
ds.base = 0;
cs.limit = ds.limit = 0xffffffff;
cs.type = ds.type = 0x3;
cs.dpl = ds.dpl = 0;
cs.db = ds.db = 0;
cs.s = ds.s = 1;
cs.l = ds.l = 0;
cs.g = ds.g = 1;
cs.avl = ds.avl = 0;
cs.present = ds.present = 1;
cs.unusable = ds.unusable = 0;
cs.padding = ds.padding = 0;
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
#ifdef CONFIG_X86_64
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
if (kvm_x86_call(set_efer)(vcpu, 0))
goto error;
#endif
kvm_update_cpuid_runtime(vcpu);
kvm_mmu_reset_context(vcpu);
return;
error:
kvm_vm_dead(vcpu->kvm);
}
static void rsm_set_desc_flags(struct kvm_segment *desc, u32 flags)
{
desc->g = (flags >> 23) & 1;
desc->db = (flags >> 22) & 1;
desc->l = (flags >> 21) & 1;
desc->avl = (flags >> 20) & 1;
desc->present = (flags >> 15) & 1;
desc->dpl = (flags >> 13) & 3;
desc->s = (flags >> 12) & 1;
desc->type = (flags >> 8) & 15;
desc->unusable = !desc->present;
desc->padding = 0;
}
static int rsm_load_seg_32(struct kvm_vcpu *vcpu,
const struct kvm_smm_seg_state_32 *state,
u16 selector, int n)
{
struct kvm_segment desc;
desc.selector = selector;
desc.base = state->base;
desc.limit = state->limit;
rsm_set_desc_flags(&desc, state->flags);
kvm_set_segment(vcpu, &desc, n);
return X86EMUL_CONTINUE;
}
#ifdef CONFIG_X86_64
static int rsm_load_seg_64(struct kvm_vcpu *vcpu,
const struct kvm_smm_seg_state_64 *state,
int n)
{
struct kvm_segment desc;
desc.selector = state->selector;
rsm_set_desc_flags(&desc, state->attributes << 8);
desc.limit = state->limit;
desc.base = state->base;
kvm_set_segment(vcpu, &desc, n);
return X86EMUL_CONTINUE;
}
#endif
static int rsm_enter_protected_mode(struct kvm_vcpu *vcpu,
u64 cr0, u64 cr3, u64 cr4)
{
int bad;
u64 pcid;
/* In order to later set CR4.PCIDE, CR3[11:0] must be zero. */
pcid = 0;
if (cr4 & X86_CR4_PCIDE) {
pcid = cr3 & 0xfff;
cr3 &= ~0xfff;
}
bad = kvm_set_cr3(vcpu, cr3);
if (bad)
return X86EMUL_UNHANDLEABLE;
/*
* First enable PAE, long mode needs it before CR0.PG = 1 is set.
* Then enable protected mode. However, PCID cannot be enabled
* if EFER.LMA=0, so set it separately.
*/
bad = kvm_set_cr4(vcpu, cr4 & ~X86_CR4_PCIDE);
if (bad)
return X86EMUL_UNHANDLEABLE;
bad = kvm_set_cr0(vcpu, cr0);
if (bad)
return X86EMUL_UNHANDLEABLE;
if (cr4 & X86_CR4_PCIDE) {
bad = kvm_set_cr4(vcpu, cr4);
if (bad)
return X86EMUL_UNHANDLEABLE;
if (pcid) {
bad = kvm_set_cr3(vcpu, cr3 | pcid);
if (bad)
return X86EMUL_UNHANDLEABLE;
}
}
return X86EMUL_CONTINUE;
}
static int rsm_load_state_32(struct x86_emulate_ctxt *ctxt,
const struct kvm_smram_state_32 *smstate)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
struct desc_ptr dt;
int i, r;
ctxt->eflags = smstate->eflags | X86_EFLAGS_FIXED;
ctxt->_eip = smstate->eip;
for (i = 0; i < 8; i++)
*reg_write(ctxt, i) = smstate->gprs[i];
if (kvm_set_dr(vcpu, 6, smstate->dr6))
return X86EMUL_UNHANDLEABLE;
if (kvm_set_dr(vcpu, 7, smstate->dr7))
return X86EMUL_UNHANDLEABLE;
rsm_load_seg_32(vcpu, &smstate->tr, smstate->tr_sel, VCPU_SREG_TR);
rsm_load_seg_32(vcpu, &smstate->ldtr, smstate->ldtr_sel, VCPU_SREG_LDTR);
dt.address = smstate->gdtr.base;
dt.size = smstate->gdtr.limit;
kvm_x86_call(set_gdt)(vcpu, &dt);
dt.address = smstate->idtr.base;
dt.size = smstate->idtr.limit;
kvm_x86_call(set_idt)(vcpu, &dt);
rsm_load_seg_32(vcpu, &smstate->es, smstate->es_sel, VCPU_SREG_ES);
rsm_load_seg_32(vcpu, &smstate->cs, smstate->cs_sel, VCPU_SREG_CS);
rsm_load_seg_32(vcpu, &smstate->ss, smstate->ss_sel, VCPU_SREG_SS);
rsm_load_seg_32(vcpu, &smstate->ds, smstate->ds_sel, VCPU_SREG_DS);
rsm_load_seg_32(vcpu, &smstate->fs, smstate->fs_sel, VCPU_SREG_FS);
rsm_load_seg_32(vcpu, &smstate->gs, smstate->gs_sel, VCPU_SREG_GS);
vcpu->arch.smbase = smstate->smbase;
r = rsm_enter_protected_mode(vcpu, smstate->cr0,
smstate->cr3, smstate->cr4);
if (r != X86EMUL_CONTINUE)
return r;
kvm_x86_call(set_interrupt_shadow)(vcpu, 0);
ctxt->interruptibility = (u8)smstate->int_shadow;
return r;
}
#ifdef CONFIG_X86_64
static int rsm_load_state_64(struct x86_emulate_ctxt *ctxt,
const struct kvm_smram_state_64 *smstate)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
struct desc_ptr dt;
int i, r;
for (i = 0; i < 16; i++)
*reg_write(ctxt, i) = smstate->gprs[15 - i];
ctxt->_eip = smstate->rip;
ctxt->eflags = smstate->rflags | X86_EFLAGS_FIXED;
if (kvm_set_dr(vcpu, 6, smstate->dr6))
return X86EMUL_UNHANDLEABLE;
if (kvm_set_dr(vcpu, 7, smstate->dr7))
return X86EMUL_UNHANDLEABLE;
vcpu->arch.smbase = smstate->smbase;
if (kvm_set_msr(vcpu, MSR_EFER, smstate->efer & ~EFER_LMA))
return X86EMUL_UNHANDLEABLE;
rsm_load_seg_64(vcpu, &smstate->tr, VCPU_SREG_TR);
dt.size = smstate->idtr.limit;
dt.address = smstate->idtr.base;
kvm_x86_call(set_idt)(vcpu, &dt);
rsm_load_seg_64(vcpu, &smstate->ldtr, VCPU_SREG_LDTR);
dt.size = smstate->gdtr.limit;
dt.address = smstate->gdtr.base;
kvm_x86_call(set_gdt)(vcpu, &dt);
r = rsm_enter_protected_mode(vcpu, smstate->cr0, smstate->cr3, smstate->cr4);
if (r != X86EMUL_CONTINUE)
return r;
rsm_load_seg_64(vcpu, &smstate->es, VCPU_SREG_ES);
rsm_load_seg_64(vcpu, &smstate->cs, VCPU_SREG_CS);
rsm_load_seg_64(vcpu, &smstate->ss, VCPU_SREG_SS);
rsm_load_seg_64(vcpu, &smstate->ds, VCPU_SREG_DS);
rsm_load_seg_64(vcpu, &smstate->fs, VCPU_SREG_FS);
rsm_load_seg_64(vcpu, &smstate->gs, VCPU_SREG_GS);
kvm_x86_call(set_interrupt_shadow)(vcpu, 0);
ctxt->interruptibility = (u8)smstate->int_shadow;
return X86EMUL_CONTINUE;
}
#endif
int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
unsigned long cr0;
union kvm_smram smram;
u64 smbase;
int ret;
smbase = vcpu->arch.smbase;
ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfe00, smram.bytes, sizeof(smram));
if (ret < 0)
return X86EMUL_UNHANDLEABLE;
if ((vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK) == 0)
kvm_x86_call(set_nmi_mask)(vcpu, false);
kvm_smm_changed(vcpu, false);
/*
* Get back to real mode, to prepare a safe state in which to load
* CR0/CR3/CR4/EFER. It's all a bit more complicated if the vCPU
* supports long mode.
*/
#ifdef CONFIG_X86_64
if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
struct kvm_segment cs_desc;
unsigned long cr4;
/* Zero CR4.PCIDE before CR0.PG. */
cr4 = kvm_read_cr4(vcpu);
if (cr4 & X86_CR4_PCIDE)
kvm_set_cr4(vcpu, cr4 & ~X86_CR4_PCIDE);
/* A 32-bit code segment is required to clear EFER.LMA. */
memset(&cs_desc, 0, sizeof(cs_desc));
cs_desc.type = 0xb;
cs_desc.s = cs_desc.g = cs_desc.present = 1;
kvm_set_segment(vcpu, &cs_desc, VCPU_SREG_CS);
}
#endif
/* For the 64-bit case, this will clear EFER.LMA. */
cr0 = kvm_read_cr0(vcpu);
if (cr0 & X86_CR0_PE)
kvm_set_cr0(vcpu, cr0 & ~(X86_CR0_PG | X86_CR0_PE));
#ifdef CONFIG_X86_64
if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
unsigned long cr4, efer;
/* Clear CR4.PAE before clearing EFER.LME. */
cr4 = kvm_read_cr4(vcpu);
if (cr4 & X86_CR4_PAE)
kvm_set_cr4(vcpu, cr4 & ~X86_CR4_PAE);
/* And finally go back to 32-bit mode. */
efer = 0;
kvm_set_msr(vcpu, MSR_EFER, efer);
}
#endif
/*
* FIXME: When resuming L2 (a.k.a. guest mode), the transition to guest
* mode should happen _after_ loading state from SMRAM. However, KVM
* piggybacks the nested VM-Enter flows (which is wrong for many other
* reasons), and so nSVM/nVMX would clobber state that is loaded from
* SMRAM and from the VMCS/VMCB.
*/
if (kvm_x86_call(leave_smm)(vcpu, &smram))
return X86EMUL_UNHANDLEABLE;
#ifdef CONFIG_X86_64
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
ret = rsm_load_state_64(ctxt, &smram.smram64);
else
#endif
ret = rsm_load_state_32(ctxt, &smram.smram32);
/*
* If RSM fails and triggers shutdown, architecturally the shutdown
* occurs *before* the transition to guest mode. But due to KVM's
* flawed handling of RSM to L2 (see above), the vCPU may already be
* in_guest_mode(). Force the vCPU out of guest mode before delivering
* the shutdown, so that L1 enters shutdown instead of seeing a VM-Exit
* that architecturally shouldn't be possible.
*/
if (ret != X86EMUL_CONTINUE && is_guest_mode(vcpu))
kvm_leave_nested(vcpu);
return ret;
}