mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:38:03 +00:00
128b0c9781
David and a few others reported that on certain newer systems some legacy
interrupts fail to work correctly.
Debugging revealed that the BIOS of these systems leaves the legacy PIC in
uninitialized state which makes the PIC detection fail and the kernel
switches to a dummy implementation.
Unfortunately this fallback causes quite some code to fail as it depends on
checks for the number of legacy PIC interrupts or the availability of the
real PIC.
In theory there is no reason to use the PIC on any modern system when
IO/APIC is available, but the dependencies on the related checks cannot be
resolved trivially and on short notice. This needs lots of analysis and
rework.
The PIC detection has been added to avoid quirky checks and force selection
of the dummy implementation all over the place, especially in VM guest
scenarios. So it's not an option to revert the relevant commit as that
would break a lot of other scenarios.
One solution would be to try to initialize the PIC on detection fail and
retry the detection, but that puts the burden on everything which does not
have a PIC.
Fortunately the ACPI/MADT table header has a flag field, which advertises
in bit 0 that the system is PCAT compatible, which means it has a legacy
8259 PIC.
Evaluate that bit and if set avoid the detection routine and keep the real
PIC installed, which then gets initialized (for nothing) and makes the rest
of the code with all the dependencies work again.
Fixes: e179f69141
("x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately")
Reported-by: David Lazar <dlazar@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218003
Link: https://lore.kernel.org/r/875y2u5s8g.ffs@tglx
456 lines
12 KiB
C
456 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/linkage.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/random.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/i8259.h>
|
|
|
|
/*
|
|
* This is the 'legacy' 8259A Programmable Interrupt Controller,
|
|
* present in the majority of PC/AT boxes.
|
|
* plus some generic x86 specific things if generic specifics makes
|
|
* any sense at all.
|
|
*/
|
|
static void init_8259A(int auto_eoi);
|
|
|
|
static bool pcat_compat __ro_after_init;
|
|
static int i8259A_auto_eoi;
|
|
DEFINE_RAW_SPINLOCK(i8259A_lock);
|
|
|
|
/*
|
|
* 8259A PIC functions to handle ISA devices:
|
|
*/
|
|
|
|
/*
|
|
* This contains the irq mask for both 8259A irq controllers,
|
|
*/
|
|
unsigned int cached_irq_mask = 0xffff;
|
|
|
|
/*
|
|
* Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
|
|
* boards the timer interrupt is not really connected to any IO-APIC pin,
|
|
* it's fed to the master 8259A's IR0 line only.
|
|
*
|
|
* Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
|
|
* this 'mixed mode' IRQ handling costs nothing because it's only used
|
|
* at IRQ setup time.
|
|
*/
|
|
unsigned long io_apic_irqs;
|
|
|
|
static void mask_8259A_irq(unsigned int irq)
|
|
{
|
|
unsigned int mask = 1 << irq;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
cached_irq_mask |= mask;
|
|
if (irq & 8)
|
|
outb(cached_slave_mask, PIC_SLAVE_IMR);
|
|
else
|
|
outb(cached_master_mask, PIC_MASTER_IMR);
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
static void disable_8259A_irq(struct irq_data *data)
|
|
{
|
|
mask_8259A_irq(data->irq);
|
|
}
|
|
|
|
static void unmask_8259A_irq(unsigned int irq)
|
|
{
|
|
unsigned int mask = ~(1 << irq);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
cached_irq_mask &= mask;
|
|
if (irq & 8)
|
|
outb(cached_slave_mask, PIC_SLAVE_IMR);
|
|
else
|
|
outb(cached_master_mask, PIC_MASTER_IMR);
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
static void enable_8259A_irq(struct irq_data *data)
|
|
{
|
|
unmask_8259A_irq(data->irq);
|
|
}
|
|
|
|
static int i8259A_irq_pending(unsigned int irq)
|
|
{
|
|
unsigned int mask = 1<<irq;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
if (irq < 8)
|
|
ret = inb(PIC_MASTER_CMD) & mask;
|
|
else
|
|
ret = inb(PIC_SLAVE_CMD) & (mask >> 8);
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void make_8259A_irq(unsigned int irq)
|
|
{
|
|
disable_irq_nosync(irq);
|
|
io_apic_irqs &= ~(1<<irq);
|
|
irq_set_chip_and_handler(irq, &i8259A_chip, handle_level_irq);
|
|
irq_set_status_flags(irq, IRQ_LEVEL);
|
|
enable_irq(irq);
|
|
lapic_assign_legacy_vector(irq, true);
|
|
}
|
|
|
|
/*
|
|
* This function assumes to be called rarely. Switching between
|
|
* 8259A registers is slow.
|
|
* This has to be protected by the irq controller spinlock
|
|
* before being called.
|
|
*/
|
|
static inline int i8259A_irq_real(unsigned int irq)
|
|
{
|
|
int value;
|
|
int irqmask = 1<<irq;
|
|
|
|
if (irq < 8) {
|
|
outb(0x0B, PIC_MASTER_CMD); /* ISR register */
|
|
value = inb(PIC_MASTER_CMD) & irqmask;
|
|
outb(0x0A, PIC_MASTER_CMD); /* back to the IRR register */
|
|
return value;
|
|
}
|
|
outb(0x0B, PIC_SLAVE_CMD); /* ISR register */
|
|
value = inb(PIC_SLAVE_CMD) & (irqmask >> 8);
|
|
outb(0x0A, PIC_SLAVE_CMD); /* back to the IRR register */
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Careful! The 8259A is a fragile beast, it pretty
|
|
* much _has_ to be done exactly like this (mask it
|
|
* first, _then_ send the EOI, and the order of EOI
|
|
* to the two 8259s is important!
|
|
*/
|
|
static void mask_and_ack_8259A(struct irq_data *data)
|
|
{
|
|
unsigned int irq = data->irq;
|
|
unsigned int irqmask = 1 << irq;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
/*
|
|
* Lightweight spurious IRQ detection. We do not want
|
|
* to overdo spurious IRQ handling - it's usually a sign
|
|
* of hardware problems, so we only do the checks we can
|
|
* do without slowing down good hardware unnecessarily.
|
|
*
|
|
* Note that IRQ7 and IRQ15 (the two spurious IRQs
|
|
* usually resulting from the 8259A-1|2 PICs) occur
|
|
* even if the IRQ is masked in the 8259A. Thus we
|
|
* can check spurious 8259A IRQs without doing the
|
|
* quite slow i8259A_irq_real() call for every IRQ.
|
|
* This does not cover 100% of spurious interrupts,
|
|
* but should be enough to warn the user that there
|
|
* is something bad going on ...
|
|
*/
|
|
if (cached_irq_mask & irqmask)
|
|
goto spurious_8259A_irq;
|
|
cached_irq_mask |= irqmask;
|
|
|
|
handle_real_irq:
|
|
if (irq & 8) {
|
|
inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */
|
|
outb(cached_slave_mask, PIC_SLAVE_IMR);
|
|
/* 'Specific EOI' to slave */
|
|
outb(0x60+(irq&7), PIC_SLAVE_CMD);
|
|
/* 'Specific EOI' to master-IRQ2 */
|
|
outb(0x60+PIC_CASCADE_IR, PIC_MASTER_CMD);
|
|
} else {
|
|
inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */
|
|
outb(cached_master_mask, PIC_MASTER_IMR);
|
|
outb(0x60+irq, PIC_MASTER_CMD); /* 'Specific EOI to master */
|
|
}
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
return;
|
|
|
|
spurious_8259A_irq:
|
|
/*
|
|
* this is the slow path - should happen rarely.
|
|
*/
|
|
if (i8259A_irq_real(irq))
|
|
/*
|
|
* oops, the IRQ _is_ in service according to the
|
|
* 8259A - not spurious, go handle it.
|
|
*/
|
|
goto handle_real_irq;
|
|
|
|
{
|
|
static int spurious_irq_mask;
|
|
/*
|
|
* At this point we can be sure the IRQ is spurious,
|
|
* lets ACK and report it. [once per IRQ]
|
|
*/
|
|
if (!(spurious_irq_mask & irqmask)) {
|
|
printk_deferred(KERN_DEBUG
|
|
"spurious 8259A interrupt: IRQ%d.\n", irq);
|
|
spurious_irq_mask |= irqmask;
|
|
}
|
|
atomic_inc(&irq_err_count);
|
|
/*
|
|
* Theoretically we do not have to handle this IRQ,
|
|
* but in Linux this does not cause problems and is
|
|
* simpler for us.
|
|
*/
|
|
goto handle_real_irq;
|
|
}
|
|
}
|
|
|
|
struct irq_chip i8259A_chip = {
|
|
.name = "XT-PIC",
|
|
.irq_mask = disable_8259A_irq,
|
|
.irq_disable = disable_8259A_irq,
|
|
.irq_unmask = enable_8259A_irq,
|
|
.irq_mask_ack = mask_and_ack_8259A,
|
|
};
|
|
|
|
static char irq_trigger[2];
|
|
/* ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ */
|
|
static void restore_ELCR(char *trigger)
|
|
{
|
|
outb(trigger[0], PIC_ELCR1);
|
|
outb(trigger[1], PIC_ELCR2);
|
|
}
|
|
|
|
static void save_ELCR(char *trigger)
|
|
{
|
|
/* IRQ 0,1,2,8,13 are marked as reserved */
|
|
trigger[0] = inb(PIC_ELCR1) & 0xF8;
|
|
trigger[1] = inb(PIC_ELCR2) & 0xDE;
|
|
}
|
|
|
|
static void i8259A_resume(void)
|
|
{
|
|
init_8259A(i8259A_auto_eoi);
|
|
restore_ELCR(irq_trigger);
|
|
}
|
|
|
|
static int i8259A_suspend(void)
|
|
{
|
|
save_ELCR(irq_trigger);
|
|
return 0;
|
|
}
|
|
|
|
static void i8259A_shutdown(void)
|
|
{
|
|
/* Put the i8259A into a quiescent state that
|
|
* the kernel initialization code can get it
|
|
* out of.
|
|
*/
|
|
outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
|
|
outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
|
|
}
|
|
|
|
static struct syscore_ops i8259_syscore_ops = {
|
|
.suspend = i8259A_suspend,
|
|
.resume = i8259A_resume,
|
|
.shutdown = i8259A_shutdown,
|
|
};
|
|
|
|
static void mask_8259A(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
|
|
outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
static void unmask_8259A(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
|
|
outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
static int probe_8259A(void)
|
|
{
|
|
unsigned char new_val, probe_val = ~(1 << PIC_CASCADE_IR);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* If MADT has the PCAT_COMPAT flag set, then do not bother probing
|
|
* for the PIC. Some BIOSes leave the PIC uninitialized and probing
|
|
* fails.
|
|
*
|
|
* Right now this causes problems as quite some code depends on
|
|
* nr_legacy_irqs() > 0 or has_legacy_pic() == true. This is silly
|
|
* when the system has an IO/APIC because then PIC is not required
|
|
* at all, except for really old machines where the timer interrupt
|
|
* must be routed through the PIC. So just pretend that the PIC is
|
|
* there and let legacy_pic->init() initialize it for nothing.
|
|
*
|
|
* Alternatively this could just try to initialize the PIC and
|
|
* repeat the probe, but for cases where there is no PIC that's
|
|
* just pointless.
|
|
*/
|
|
if (pcat_compat)
|
|
return nr_legacy_irqs();
|
|
|
|
/*
|
|
* Check to see if we have a PIC. Mask all except the cascade and
|
|
* read back the value we just wrote. If we don't have a PIC, we
|
|
* will read 0xff as opposed to the value we wrote.
|
|
*/
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
|
|
outb(probe_val, PIC_MASTER_IMR);
|
|
new_val = inb(PIC_MASTER_IMR);
|
|
if (new_val != probe_val) {
|
|
printk(KERN_INFO "Using NULL legacy PIC\n");
|
|
legacy_pic = &null_legacy_pic;
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
return nr_legacy_irqs();
|
|
}
|
|
|
|
static void init_8259A(int auto_eoi)
|
|
{
|
|
unsigned long flags;
|
|
|
|
i8259A_auto_eoi = auto_eoi;
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
|
|
|
|
/*
|
|
* outb_pic - this has to work on a wide range of PC hardware.
|
|
*/
|
|
outb_pic(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */
|
|
|
|
/* ICW2: 8259A-1 IR0-7 mapped to ISA_IRQ_VECTOR(0) */
|
|
outb_pic(ISA_IRQ_VECTOR(0), PIC_MASTER_IMR);
|
|
|
|
/* 8259A-1 (the master) has a slave on IR2 */
|
|
outb_pic(1U << PIC_CASCADE_IR, PIC_MASTER_IMR);
|
|
|
|
if (auto_eoi) /* master does Auto EOI */
|
|
outb_pic(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR);
|
|
else /* master expects normal EOI */
|
|
outb_pic(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR);
|
|
|
|
outb_pic(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */
|
|
|
|
/* ICW2: 8259A-2 IR0-7 mapped to ISA_IRQ_VECTOR(8) */
|
|
outb_pic(ISA_IRQ_VECTOR(8), PIC_SLAVE_IMR);
|
|
/* 8259A-2 is a slave on master's IR2 */
|
|
outb_pic(PIC_CASCADE_IR, PIC_SLAVE_IMR);
|
|
/* (slave's support for AEOI in flat mode is to be investigated) */
|
|
outb_pic(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR);
|
|
|
|
if (auto_eoi)
|
|
/*
|
|
* In AEOI mode we just have to mask the interrupt
|
|
* when acking.
|
|
*/
|
|
i8259A_chip.irq_mask_ack = disable_8259A_irq;
|
|
else
|
|
i8259A_chip.irq_mask_ack = mask_and_ack_8259A;
|
|
|
|
udelay(100); /* wait for 8259A to initialize */
|
|
|
|
outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
|
|
outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* make i8259 a driver so that we can select pic functions at run time. the goal
|
|
* is to make x86 binary compatible among pc compatible and non-pc compatible
|
|
* platforms, such as x86 MID.
|
|
*/
|
|
|
|
static void legacy_pic_noop(void) { };
|
|
static void legacy_pic_uint_noop(unsigned int unused) { };
|
|
static void legacy_pic_int_noop(int unused) { };
|
|
static int legacy_pic_irq_pending_noop(unsigned int irq)
|
|
{
|
|
return 0;
|
|
}
|
|
static int legacy_pic_probe(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct legacy_pic null_legacy_pic = {
|
|
.nr_legacy_irqs = 0,
|
|
.chip = &dummy_irq_chip,
|
|
.mask = legacy_pic_uint_noop,
|
|
.unmask = legacy_pic_uint_noop,
|
|
.mask_all = legacy_pic_noop,
|
|
.restore_mask = legacy_pic_noop,
|
|
.init = legacy_pic_int_noop,
|
|
.probe = legacy_pic_probe,
|
|
.irq_pending = legacy_pic_irq_pending_noop,
|
|
.make_irq = legacy_pic_uint_noop,
|
|
};
|
|
|
|
static struct legacy_pic default_legacy_pic = {
|
|
.nr_legacy_irqs = NR_IRQS_LEGACY,
|
|
.chip = &i8259A_chip,
|
|
.mask = mask_8259A_irq,
|
|
.unmask = unmask_8259A_irq,
|
|
.mask_all = mask_8259A,
|
|
.restore_mask = unmask_8259A,
|
|
.init = init_8259A,
|
|
.probe = probe_8259A,
|
|
.irq_pending = i8259A_irq_pending,
|
|
.make_irq = make_8259A_irq,
|
|
};
|
|
|
|
struct legacy_pic *legacy_pic = &default_legacy_pic;
|
|
EXPORT_SYMBOL(legacy_pic);
|
|
|
|
static int __init i8259A_init_ops(void)
|
|
{
|
|
if (legacy_pic == &default_legacy_pic)
|
|
register_syscore_ops(&i8259_syscore_ops);
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(i8259A_init_ops);
|
|
|
|
void __init legacy_pic_pcat_compat(void)
|
|
{
|
|
pcat_compat = true;
|
|
}
|