mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:18:58 +00:00
97d8894b6f
* Support for using Zkr to seed KASLR. * Support for IPI-triggered CPU backtracing. * Support for generic CPU vulnerabilities reporting to userspace. * A few cleanups for missing licenses. * The size limit on the XIP kernel has been removed. * Support for tracing userspace stacks. * Support for the Svvptc extension. * Various cleanups and fixes throughout the tree. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmbykZITHHBhbG1lckBk YWJiZWx0LmNvbQAKCRAuExnzX7sYiTDLEACABTPlMX+Ke1lMYWj6MLBTXMSlQJ6w TKLVk3slp4POPsd+ViWy4J6EJDpCkNp6iK30Bv4AGainA3RJnbS7neKYy+MTw0ZV pJWTn73sxHeF+APnZ+geFYcmyteL/SZplgHgwLipFaojs7i/+tOvLFRRD3LueCz6 Q6Muvke9R5uN6LL3tUrmIhJeyZjOwJtKEYoRz6Fo5Tq3RRK0VHYZkdpqRQ86rr9U yNbRNlBLlANstq8xjtiwm22ImPGIsvvhs0AvFft0H72zhf3Tfy0VcTLlDJYwkdKN Bz59v4N4jg1ajXuAsj4/BQdj5uRkzJNZ3Yq1yvMmGI+2UV1tInHEMeZi63+4gs8F 0FYCziA+j6/08u8v8CrwdDOpJ9Iq/NMV6359bt5ySu3rM6QnPRGnHGkv4Ptk9Oyh sSPiuHS8YxpRBOB8xXNp5xFipTZ4+65VqCz253pAsbbp5aZ/o9Jw/bbBFFWcSsRZ tV2xhELVzPiC7dowfYkQhcNZOLlCaJ/Mvo2nMOtjbUwzaXkcjIRcYEy7+dTlfXyr 3h5sStjWAKEmtLEvCYSI+lAT544tbV1x+lCMJGuvztapsTMtAP4GpQKblXl5qqnV L+VWIPJV1elI26H/p/Max9Z1s48NtfwoJSRL7Rnaya6uJ3iWG/BtajHlFbvgOkJf ObPZ//Yr9e91gg== =zDwL -----END PGP SIGNATURE----- Merge tag 'riscv-for-linus-6.12-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-V updates from Palmer Dabbelt: - Support using Zkr to seed KASLR - Support IPI-triggered CPU backtracing - Support for generic CPU vulnerabilities reporting to userspace - A few cleanups for missing licenses - The size limit on the XIP kernel has been removed - Support for tracing userspace stacks - Support for the Svvptc extension - Various cleanups and fixes throughout the tree * tag 'riscv-for-linus-6.12-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (47 commits) crash: Fix riscv64 crash memory reserve dead loop perf/riscv-sbi: Add platform specific firmware event handling tools: Optimize ring buffer for riscv tools: Add riscv barrier implementation RISC-V: Don't have MAX_PHYSMEM_BITS exceed phys_addr_t ACPI: NUMA: initialize all values of acpi_early_node_map to NUMA_NO_NODE riscv: Enable bitops instrumentation riscv: Omit optimized string routines when using KASAN ACPI: RISCV: Make acpi_numa_get_nid() to be static riscv: Randomize lower bits of stack address selftests: riscv: Allow mmap test to compile on 32-bit riscv: Make riscv_isa_vendor_ext_andes array static riscv: Use LIST_HEAD() to simplify code riscv: defconfig: Disable RZ/Five peripheral support RISC-V: Implement kgdb_roundup_cpus() to enable future NMI Roundup riscv: avoid Imbalance in RAS riscv: cacheinfo: Add back init_cache_level() function riscv: Remove unused _TIF_WORK_MASK drivers/perf: riscv: Remove redundant macro check riscv: define ILLEGAL_POINTER_VALUE for 64bit ...
1813 lines
50 KiB
C
1813 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 Regents of the University of California
|
|
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
|
|
* Copyright (C) 2020 FORTH-ICS/CARV
|
|
* Nick Kossifidis <mick@ics.forth.gr>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/hugetlb.h>
|
|
#ifdef CONFIG_RELOCATABLE
|
|
#include <linux/elf.h>
|
|
#endif
|
|
#include <linux/kfence.h>
|
|
#include <linux/execmem.h>
|
|
|
|
#include <asm/fixmap.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kasan.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/soc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "../kernel/head.h"
|
|
|
|
u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1];
|
|
|
|
struct kernel_mapping kernel_map __ro_after_init;
|
|
EXPORT_SYMBOL(kernel_map);
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
|
|
#endif
|
|
|
|
#ifdef CONFIG_64BIT
|
|
u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
|
|
#else
|
|
u64 satp_mode __ro_after_init = SATP_MODE_32;
|
|
#endif
|
|
EXPORT_SYMBOL(satp_mode);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
|
|
bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
|
|
EXPORT_SYMBOL(pgtable_l4_enabled);
|
|
EXPORT_SYMBOL(pgtable_l5_enabled);
|
|
#endif
|
|
|
|
phys_addr_t phys_ram_base __ro_after_init;
|
|
EXPORT_SYMBOL(phys_ram_base);
|
|
|
|
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
|
|
__page_aligned_bss;
|
|
EXPORT_SYMBOL(empty_zero_page);
|
|
|
|
extern char _start[];
|
|
void *_dtb_early_va __initdata;
|
|
uintptr_t _dtb_early_pa __initdata;
|
|
|
|
phys_addr_t dma32_phys_limit __initdata;
|
|
|
|
static void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
|
|
free_area_init(max_zone_pfns);
|
|
}
|
|
|
|
#if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
|
|
|
|
#define LOG2_SZ_1K ilog2(SZ_1K)
|
|
#define LOG2_SZ_1M ilog2(SZ_1M)
|
|
#define LOG2_SZ_1G ilog2(SZ_1G)
|
|
#define LOG2_SZ_1T ilog2(SZ_1T)
|
|
|
|
static inline void print_mlk(char *name, unsigned long b, unsigned long t)
|
|
{
|
|
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
|
|
(((t) - (b)) >> LOG2_SZ_1K));
|
|
}
|
|
|
|
static inline void print_mlm(char *name, unsigned long b, unsigned long t)
|
|
{
|
|
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
|
|
(((t) - (b)) >> LOG2_SZ_1M));
|
|
}
|
|
|
|
static inline void print_mlg(char *name, unsigned long b, unsigned long t)
|
|
{
|
|
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t,
|
|
(((t) - (b)) >> LOG2_SZ_1G));
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static inline void print_mlt(char *name, unsigned long b, unsigned long t)
|
|
{
|
|
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t,
|
|
(((t) - (b)) >> LOG2_SZ_1T));
|
|
}
|
|
#else
|
|
#define print_mlt(n, b, t) do {} while (0)
|
|
#endif
|
|
|
|
static inline void print_ml(char *name, unsigned long b, unsigned long t)
|
|
{
|
|
unsigned long diff = t - b;
|
|
|
|
if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
|
|
print_mlt(name, b, t);
|
|
else if ((diff >> LOG2_SZ_1G) >= 10)
|
|
print_mlg(name, b, t);
|
|
else if ((diff >> LOG2_SZ_1M) >= 10)
|
|
print_mlm(name, b, t);
|
|
else
|
|
print_mlk(name, b, t);
|
|
}
|
|
|
|
static void __init print_vm_layout(void)
|
|
{
|
|
pr_notice("Virtual kernel memory layout:\n");
|
|
print_ml("fixmap", (unsigned long)FIXADDR_START,
|
|
(unsigned long)FIXADDR_TOP);
|
|
print_ml("pci io", (unsigned long)PCI_IO_START,
|
|
(unsigned long)PCI_IO_END);
|
|
print_ml("vmemmap", (unsigned long)VMEMMAP_START,
|
|
(unsigned long)VMEMMAP_END);
|
|
print_ml("vmalloc", (unsigned long)VMALLOC_START,
|
|
(unsigned long)VMALLOC_END);
|
|
#ifdef CONFIG_64BIT
|
|
print_ml("modules", (unsigned long)MODULES_VADDR,
|
|
(unsigned long)MODULES_END);
|
|
#endif
|
|
print_ml("lowmem", (unsigned long)PAGE_OFFSET,
|
|
(unsigned long)high_memory);
|
|
if (IS_ENABLED(CONFIG_64BIT)) {
|
|
#ifdef CONFIG_KASAN
|
|
print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
|
|
#endif
|
|
|
|
print_ml("kernel", (unsigned long)kernel_map.virt_addr,
|
|
(unsigned long)ADDRESS_SPACE_END);
|
|
}
|
|
}
|
|
#else
|
|
static void print_vm_layout(void) { }
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
|
|
#ifdef CONFIG_FLATMEM
|
|
BUG_ON(!mem_map);
|
|
#endif /* CONFIG_FLATMEM */
|
|
|
|
if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
|
|
dma_cache_alignment != 1) {
|
|
/*
|
|
* If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
|
|
* buffer per 1GB of RAM for kmalloc() bouncing on
|
|
* non-coherent platforms.
|
|
*/
|
|
unsigned long size =
|
|
DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
|
|
swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
|
|
swiotlb = true;
|
|
}
|
|
|
|
swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
|
|
memblock_free_all();
|
|
|
|
print_vm_layout();
|
|
}
|
|
|
|
/* Limit the memory size via mem. */
|
|
static phys_addr_t memory_limit;
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
|
|
#endif /* CONFIG_XIP_KERNEL */
|
|
|
|
static int __init early_mem(char *p)
|
|
{
|
|
u64 size;
|
|
|
|
if (!p)
|
|
return 1;
|
|
|
|
size = memparse(p, &p) & PAGE_MASK;
|
|
memory_limit = min_t(u64, size, memory_limit);
|
|
|
|
pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_mem);
|
|
|
|
static void __init setup_bootmem(void)
|
|
{
|
|
phys_addr_t vmlinux_end = __pa_symbol(&_end);
|
|
phys_addr_t max_mapped_addr;
|
|
phys_addr_t phys_ram_end, vmlinux_start;
|
|
|
|
if (IS_ENABLED(CONFIG_XIP_KERNEL))
|
|
vmlinux_start = __pa_symbol(&_sdata);
|
|
else
|
|
vmlinux_start = __pa_symbol(&_start);
|
|
|
|
memblock_enforce_memory_limit(memory_limit);
|
|
|
|
/*
|
|
* Make sure we align the reservation on PMD_SIZE since we will
|
|
* map the kernel in the linear mapping as read-only: we do not want
|
|
* any allocation to happen between _end and the next pmd aligned page.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
|
|
vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
|
|
/*
|
|
* Reserve from the start of the kernel to the end of the kernel
|
|
*/
|
|
memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
|
|
|
|
/*
|
|
* Make sure we align the start of the memory on a PMD boundary so that
|
|
* at worst, we map the linear mapping with PMD mappings.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_XIP_KERNEL))
|
|
phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
|
|
|
|
/*
|
|
* In 64-bit, any use of __va/__pa before this point is wrong as we
|
|
* did not know the start of DRAM before.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
|
|
kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
|
|
|
|
/*
|
|
* The size of the linear page mapping may restrict the amount of
|
|
* usable RAM.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
|
|
max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
|
|
memblock_cap_memory_range(phys_ram_base,
|
|
max_mapped_addr - phys_ram_base);
|
|
}
|
|
|
|
/*
|
|
* Reserve physical address space that would be mapped to virtual
|
|
* addresses greater than (void *)(-PAGE_SIZE) because:
|
|
* - This memory would overlap with ERR_PTR
|
|
* - This memory belongs to high memory, which is not supported
|
|
*
|
|
* This is not applicable to 64-bit kernel, because virtual addresses
|
|
* after (void *)(-PAGE_SIZE) are not linearly mapped: they are
|
|
* occupied by kernel mapping. Also it is unrealistic for high memory
|
|
* to exist on 64-bit platforms.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_64BIT)) {
|
|
max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
|
|
memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
|
|
}
|
|
|
|
phys_ram_end = memblock_end_of_DRAM();
|
|
min_low_pfn = PFN_UP(phys_ram_base);
|
|
max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
|
|
high_memory = (void *)(__va(PFN_PHYS(max_low_pfn)));
|
|
|
|
dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
|
|
set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET);
|
|
|
|
reserve_initrd_mem();
|
|
|
|
/*
|
|
* No allocation should be done before reserving the memory as defined
|
|
* in the device tree, otherwise the allocation could end up in a
|
|
* reserved region.
|
|
*/
|
|
early_init_fdt_scan_reserved_mem();
|
|
|
|
/*
|
|
* If DTB is built in, no need to reserve its memblock.
|
|
* Otherwise, do reserve it but avoid using
|
|
* early_init_fdt_reserve_self() since __pa() does
|
|
* not work for DTB pointers that are fixmap addresses
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
|
|
memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
|
|
|
|
dma_contiguous_reserve(dma32_phys_limit);
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
struct pt_alloc_ops pt_ops __meminitdata;
|
|
|
|
pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
|
|
pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
|
|
static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
|
|
|
|
pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
|
|
#define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
|
|
#define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte))
|
|
#define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir))
|
|
#endif /* CONFIG_XIP_KERNEL */
|
|
|
|
static const pgprot_t protection_map[16] = {
|
|
[VM_NONE] = PAGE_NONE,
|
|
[VM_READ] = PAGE_READ,
|
|
[VM_WRITE] = PAGE_COPY,
|
|
[VM_WRITE | VM_READ] = PAGE_COPY,
|
|
[VM_EXEC] = PAGE_EXEC,
|
|
[VM_EXEC | VM_READ] = PAGE_READ_EXEC,
|
|
[VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
|
|
[VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
|
|
[VM_SHARED] = PAGE_NONE,
|
|
[VM_SHARED | VM_READ] = PAGE_READ,
|
|
[VM_SHARED | VM_WRITE] = PAGE_SHARED,
|
|
[VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
|
|
[VM_SHARED | VM_EXEC] = PAGE_EXEC,
|
|
[VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC,
|
|
[VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
|
|
[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
|
|
};
|
|
DECLARE_VM_GET_PAGE_PROT
|
|
|
|
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *ptep;
|
|
|
|
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
|
|
|
|
ptep = &fixmap_pte[pte_index(addr)];
|
|
|
|
if (pgprot_val(prot))
|
|
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
|
|
else
|
|
pte_clear(&init_mm, addr, ptep);
|
|
local_flush_tlb_page(addr);
|
|
}
|
|
|
|
static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
|
|
{
|
|
return (pte_t *)((uintptr_t)pa);
|
|
}
|
|
|
|
static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
|
|
{
|
|
clear_fixmap(FIX_PTE);
|
|
return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
|
|
}
|
|
|
|
static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
|
|
{
|
|
return (pte_t *) __va(pa);
|
|
}
|
|
|
|
static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
|
|
{
|
|
/*
|
|
* We only create PMD or PGD early mappings so we
|
|
* should never reach here with MMU disabled.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
|
|
{
|
|
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
|
|
static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
|
|
{
|
|
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
|
|
|
|
BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
|
|
return __pa((pte_t *)ptdesc_address(ptdesc));
|
|
}
|
|
|
|
static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
|
|
pgprot_t prot)
|
|
{
|
|
uintptr_t pte_idx = pte_index(va);
|
|
|
|
BUG_ON(sz != PAGE_SIZE);
|
|
|
|
if (pte_none(ptep[pte_idx]))
|
|
ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
|
|
}
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
|
|
static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
|
|
static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
|
|
static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
|
|
#define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd))
|
|
#define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd))
|
|
#endif /* CONFIG_XIP_KERNEL */
|
|
|
|
static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
|
|
static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
|
|
static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
|
|
#define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d))
|
|
#define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d))
|
|
#endif /* CONFIG_XIP_KERNEL */
|
|
|
|
static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
|
|
static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
|
|
static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
|
|
#define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud))
|
|
#define early_pud ((pud_t *)XIP_FIXUP(early_pud))
|
|
#endif /* CONFIG_XIP_KERNEL */
|
|
|
|
static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
|
|
{
|
|
/* Before MMU is enabled */
|
|
return (pmd_t *)((uintptr_t)pa);
|
|
}
|
|
|
|
static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
|
|
{
|
|
clear_fixmap(FIX_PMD);
|
|
return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
|
|
}
|
|
|
|
static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
|
|
{
|
|
return (pmd_t *) __va(pa);
|
|
}
|
|
|
|
static phys_addr_t __init alloc_pmd_early(uintptr_t va)
|
|
{
|
|
BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
|
|
|
|
return (uintptr_t)early_pmd;
|
|
}
|
|
|
|
static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
|
|
{
|
|
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
|
|
static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
|
|
{
|
|
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
|
|
|
|
BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
|
|
return __pa((pmd_t *)ptdesc_address(ptdesc));
|
|
}
|
|
|
|
static void __meminit create_pmd_mapping(pmd_t *pmdp,
|
|
uintptr_t va, phys_addr_t pa,
|
|
phys_addr_t sz, pgprot_t prot)
|
|
{
|
|
pte_t *ptep;
|
|
phys_addr_t pte_phys;
|
|
uintptr_t pmd_idx = pmd_index(va);
|
|
|
|
if (sz == PMD_SIZE) {
|
|
if (pmd_none(pmdp[pmd_idx]))
|
|
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
|
|
return;
|
|
}
|
|
|
|
if (pmd_none(pmdp[pmd_idx])) {
|
|
pte_phys = pt_ops.alloc_pte(va);
|
|
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
|
|
ptep = pt_ops.get_pte_virt(pte_phys);
|
|
memset(ptep, 0, PAGE_SIZE);
|
|
} else {
|
|
pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
|
|
ptep = pt_ops.get_pte_virt(pte_phys);
|
|
}
|
|
|
|
create_pte_mapping(ptep, va, pa, sz, prot);
|
|
}
|
|
|
|
static pud_t *__init get_pud_virt_early(phys_addr_t pa)
|
|
{
|
|
return (pud_t *)((uintptr_t)pa);
|
|
}
|
|
|
|
static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
|
|
{
|
|
clear_fixmap(FIX_PUD);
|
|
return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
|
|
}
|
|
|
|
static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
|
|
{
|
|
return (pud_t *)__va(pa);
|
|
}
|
|
|
|
static phys_addr_t __init alloc_pud_early(uintptr_t va)
|
|
{
|
|
/* Only one PUD is available for early mapping */
|
|
BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
|
|
|
|
return (uintptr_t)early_pud;
|
|
}
|
|
|
|
static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
|
|
{
|
|
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
|
|
static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
vaddr = __get_free_page(GFP_KERNEL);
|
|
BUG_ON(!vaddr);
|
|
return __pa(vaddr);
|
|
}
|
|
|
|
static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
|
|
{
|
|
return (p4d_t *)((uintptr_t)pa);
|
|
}
|
|
|
|
static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
|
|
{
|
|
clear_fixmap(FIX_P4D);
|
|
return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
|
|
}
|
|
|
|
static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
|
|
{
|
|
return (p4d_t *)__va(pa);
|
|
}
|
|
|
|
static phys_addr_t __init alloc_p4d_early(uintptr_t va)
|
|
{
|
|
/* Only one P4D is available for early mapping */
|
|
BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
|
|
|
|
return (uintptr_t)early_p4d;
|
|
}
|
|
|
|
static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
|
|
{
|
|
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
|
|
static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
vaddr = __get_free_page(GFP_KERNEL);
|
|
BUG_ON(!vaddr);
|
|
return __pa(vaddr);
|
|
}
|
|
|
|
static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
|
|
pgprot_t prot)
|
|
{
|
|
pmd_t *nextp;
|
|
phys_addr_t next_phys;
|
|
uintptr_t pud_index = pud_index(va);
|
|
|
|
if (sz == PUD_SIZE) {
|
|
if (pud_val(pudp[pud_index]) == 0)
|
|
pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
|
|
return;
|
|
}
|
|
|
|
if (pud_val(pudp[pud_index]) == 0) {
|
|
next_phys = pt_ops.alloc_pmd(va);
|
|
pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
|
|
nextp = pt_ops.get_pmd_virt(next_phys);
|
|
memset(nextp, 0, PAGE_SIZE);
|
|
} else {
|
|
next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
|
|
nextp = pt_ops.get_pmd_virt(next_phys);
|
|
}
|
|
|
|
create_pmd_mapping(nextp, va, pa, sz, prot);
|
|
}
|
|
|
|
static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
|
|
pgprot_t prot)
|
|
{
|
|
pud_t *nextp;
|
|
phys_addr_t next_phys;
|
|
uintptr_t p4d_index = p4d_index(va);
|
|
|
|
if (sz == P4D_SIZE) {
|
|
if (p4d_val(p4dp[p4d_index]) == 0)
|
|
p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
|
|
return;
|
|
}
|
|
|
|
if (p4d_val(p4dp[p4d_index]) == 0) {
|
|
next_phys = pt_ops.alloc_pud(va);
|
|
p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
|
|
nextp = pt_ops.get_pud_virt(next_phys);
|
|
memset(nextp, 0, PAGE_SIZE);
|
|
} else {
|
|
next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
|
|
nextp = pt_ops.get_pud_virt(next_phys);
|
|
}
|
|
|
|
create_pud_mapping(nextp, va, pa, sz, prot);
|
|
}
|
|
|
|
#define pgd_next_t p4d_t
|
|
#define alloc_pgd_next(__va) (pgtable_l5_enabled ? \
|
|
pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \
|
|
pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
|
|
#define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \
|
|
pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
|
|
pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
|
|
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
|
|
(pgtable_l5_enabled ? \
|
|
create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
|
|
(pgtable_l4_enabled ? \
|
|
create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \
|
|
create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
|
|
#define fixmap_pgd_next (pgtable_l5_enabled ? \
|
|
(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \
|
|
(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
|
|
#define trampoline_pgd_next (pgtable_l5_enabled ? \
|
|
(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \
|
|
(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
|
|
#else
|
|
#define pgd_next_t pte_t
|
|
#define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
|
|
#define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
|
|
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
|
|
create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
|
|
#define fixmap_pgd_next ((uintptr_t)fixmap_pte)
|
|
#define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
|
|
#define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
|
|
#define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
|
|
#endif /* __PAGETABLE_PMD_FOLDED */
|
|
|
|
void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
|
|
pgprot_t prot)
|
|
{
|
|
pgd_next_t *nextp;
|
|
phys_addr_t next_phys;
|
|
uintptr_t pgd_idx = pgd_index(va);
|
|
|
|
if (sz == PGDIR_SIZE) {
|
|
if (pgd_val(pgdp[pgd_idx]) == 0)
|
|
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
|
|
return;
|
|
}
|
|
|
|
if (pgd_val(pgdp[pgd_idx]) == 0) {
|
|
next_phys = alloc_pgd_next(va);
|
|
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
|
|
nextp = get_pgd_next_virt(next_phys);
|
|
memset(nextp, 0, PAGE_SIZE);
|
|
} else {
|
|
next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
|
|
nextp = get_pgd_next_virt(next_phys);
|
|
}
|
|
|
|
create_pgd_next_mapping(nextp, va, pa, sz, prot);
|
|
}
|
|
|
|
static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
|
|
{
|
|
if (debug_pagealloc_enabled())
|
|
return PAGE_SIZE;
|
|
|
|
if (pgtable_l5_enabled &&
|
|
!(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
|
|
return P4D_SIZE;
|
|
|
|
if (pgtable_l4_enabled &&
|
|
!(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
|
|
return PUD_SIZE;
|
|
|
|
if (IS_ENABLED(CONFIG_64BIT) &&
|
|
!(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
|
|
return PMD_SIZE;
|
|
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
|
|
extern char _xiprom[], _exiprom[], __data_loc;
|
|
|
|
/* called from head.S with MMU off */
|
|
asmlinkage void __init __copy_data(void)
|
|
{
|
|
void *from = (void *)(&__data_loc);
|
|
void *to = (void *)CONFIG_PHYS_RAM_BASE;
|
|
size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
|
|
|
|
memcpy(to, from, sz);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
static __meminit pgprot_t pgprot_from_va(uintptr_t va)
|
|
{
|
|
if (is_va_kernel_text(va))
|
|
return PAGE_KERNEL_READ_EXEC;
|
|
|
|
/*
|
|
* In 64-bit kernel, the kernel mapping is outside the linear mapping so
|
|
* we must protect its linear mapping alias from being executed and
|
|
* written.
|
|
* And rodata section is marked readonly in mark_rodata_ro.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
|
|
return PAGE_KERNEL_READ;
|
|
|
|
return PAGE_KERNEL;
|
|
}
|
|
|
|
void mark_rodata_ro(void)
|
|
{
|
|
set_kernel_memory(__start_rodata, _data, set_memory_ro);
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
|
|
set_memory_ro);
|
|
}
|
|
#else
|
|
static __meminit pgprot_t pgprot_from_va(uintptr_t va)
|
|
{
|
|
if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
|
|
return PAGE_KERNEL;
|
|
|
|
return PAGE_KERNEL_EXEC;
|
|
}
|
|
#endif /* CONFIG_STRICT_KERNEL_RWX */
|
|
|
|
#if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
|
|
u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
|
|
|
|
static void __init disable_pgtable_l5(void)
|
|
{
|
|
pgtable_l5_enabled = false;
|
|
kernel_map.page_offset = PAGE_OFFSET_L4;
|
|
satp_mode = SATP_MODE_48;
|
|
}
|
|
|
|
static void __init disable_pgtable_l4(void)
|
|
{
|
|
pgtable_l4_enabled = false;
|
|
kernel_map.page_offset = PAGE_OFFSET_L3;
|
|
satp_mode = SATP_MODE_39;
|
|
}
|
|
|
|
static int __init print_no4lvl(char *p)
|
|
{
|
|
pr_info("Disabled 4-level and 5-level paging");
|
|
return 0;
|
|
}
|
|
early_param("no4lvl", print_no4lvl);
|
|
|
|
static int __init print_no5lvl(char *p)
|
|
{
|
|
pr_info("Disabled 5-level paging");
|
|
return 0;
|
|
}
|
|
early_param("no5lvl", print_no5lvl);
|
|
|
|
static void __init set_mmap_rnd_bits_max(void)
|
|
{
|
|
mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
|
|
}
|
|
|
|
/*
|
|
* There is a simple way to determine if 4-level is supported by the
|
|
* underlying hardware: establish 1:1 mapping in 4-level page table mode
|
|
* then read SATP to see if the configuration was taken into account
|
|
* meaning sv48 is supported.
|
|
*/
|
|
static __init void set_satp_mode(uintptr_t dtb_pa)
|
|
{
|
|
u64 identity_satp, hw_satp;
|
|
uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
|
|
u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
|
|
|
|
if (satp_mode_cmdline == SATP_MODE_57) {
|
|
disable_pgtable_l5();
|
|
} else if (satp_mode_cmdline == SATP_MODE_48) {
|
|
disable_pgtable_l5();
|
|
disable_pgtable_l4();
|
|
return;
|
|
}
|
|
|
|
create_p4d_mapping(early_p4d,
|
|
set_satp_mode_pmd, (uintptr_t)early_pud,
|
|
P4D_SIZE, PAGE_TABLE);
|
|
create_pud_mapping(early_pud,
|
|
set_satp_mode_pmd, (uintptr_t)early_pmd,
|
|
PUD_SIZE, PAGE_TABLE);
|
|
/* Handle the case where set_satp_mode straddles 2 PMDs */
|
|
create_pmd_mapping(early_pmd,
|
|
set_satp_mode_pmd, set_satp_mode_pmd,
|
|
PMD_SIZE, PAGE_KERNEL_EXEC);
|
|
create_pmd_mapping(early_pmd,
|
|
set_satp_mode_pmd + PMD_SIZE,
|
|
set_satp_mode_pmd + PMD_SIZE,
|
|
PMD_SIZE, PAGE_KERNEL_EXEC);
|
|
retry:
|
|
create_pgd_mapping(early_pg_dir,
|
|
set_satp_mode_pmd,
|
|
pgtable_l5_enabled ?
|
|
(uintptr_t)early_p4d : (uintptr_t)early_pud,
|
|
PGDIR_SIZE, PAGE_TABLE);
|
|
|
|
identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
|
|
|
|
local_flush_tlb_all();
|
|
csr_write(CSR_SATP, identity_satp);
|
|
hw_satp = csr_swap(CSR_SATP, 0ULL);
|
|
local_flush_tlb_all();
|
|
|
|
if (hw_satp != identity_satp) {
|
|
if (pgtable_l5_enabled) {
|
|
disable_pgtable_l5();
|
|
memset(early_pg_dir, 0, PAGE_SIZE);
|
|
goto retry;
|
|
}
|
|
disable_pgtable_l4();
|
|
}
|
|
|
|
memset(early_pg_dir, 0, PAGE_SIZE);
|
|
memset(early_p4d, 0, PAGE_SIZE);
|
|
memset(early_pud, 0, PAGE_SIZE);
|
|
memset(early_pmd, 0, PAGE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* setup_vm() is called from head.S with MMU-off.
|
|
*
|
|
* Following requirements should be honoured for setup_vm() to work
|
|
* correctly:
|
|
* 1) It should use PC-relative addressing for accessing kernel symbols.
|
|
* To achieve this we always use GCC cmodel=medany.
|
|
* 2) The compiler instrumentation for FTRACE will not work for setup_vm()
|
|
* so disable compiler instrumentation when FTRACE is enabled.
|
|
*
|
|
* Currently, the above requirements are honoured by using custom CFLAGS
|
|
* for init.o in mm/Makefile.
|
|
*/
|
|
|
|
#ifndef __riscv_cmodel_medany
|
|
#error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
|
|
#endif
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
extern unsigned long __rela_dyn_start, __rela_dyn_end;
|
|
|
|
static void __init relocate_kernel(void)
|
|
{
|
|
Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start;
|
|
/*
|
|
* This holds the offset between the linked virtual address and the
|
|
* relocated virtual address.
|
|
*/
|
|
uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
|
|
/*
|
|
* This holds the offset between kernel linked virtual address and
|
|
* physical address.
|
|
*/
|
|
uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
|
|
|
|
for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) {
|
|
Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
|
|
Elf64_Addr relocated_addr = rela->r_addend;
|
|
|
|
if (rela->r_info != R_RISCV_RELATIVE)
|
|
continue;
|
|
|
|
/*
|
|
* Make sure to not relocate vdso symbols like rt_sigreturn
|
|
* which are linked from the address 0 in vmlinux since
|
|
* vdso symbol addresses are actually used as an offset from
|
|
* mm->context.vdso in VDSO_OFFSET macro.
|
|
*/
|
|
if (relocated_addr >= KERNEL_LINK_ADDR)
|
|
relocated_addr += reloc_offset;
|
|
|
|
*(Elf64_Addr *)addr = relocated_addr;
|
|
}
|
|
}
|
|
#endif /* CONFIG_RELOCATABLE */
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
static void __init create_kernel_page_table(pgd_t *pgdir,
|
|
__always_unused bool early)
|
|
{
|
|
uintptr_t va, start_va, end_va;
|
|
|
|
/* Map the flash resident part */
|
|
end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
|
|
for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
|
|
create_pgd_mapping(pgdir, va,
|
|
kernel_map.xiprom + (va - kernel_map.virt_addr),
|
|
PMD_SIZE, PAGE_KERNEL_EXEC);
|
|
|
|
/* Map the data in RAM */
|
|
start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start;
|
|
end_va = kernel_map.virt_addr + kernel_map.size;
|
|
for (va = start_va; va < end_va; va += PMD_SIZE)
|
|
create_pgd_mapping(pgdir, va,
|
|
kernel_map.phys_addr + (va - start_va),
|
|
PMD_SIZE, PAGE_KERNEL);
|
|
}
|
|
#else
|
|
static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
|
|
{
|
|
uintptr_t va, end_va;
|
|
|
|
end_va = kernel_map.virt_addr + kernel_map.size;
|
|
for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
|
|
create_pgd_mapping(pgdir, va,
|
|
kernel_map.phys_addr + (va - kernel_map.virt_addr),
|
|
PMD_SIZE,
|
|
early ?
|
|
PAGE_KERNEL_EXEC : pgprot_from_va(va));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
|
|
* this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
|
|
* entry.
|
|
*/
|
|
static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
|
|
uintptr_t dtb_pa)
|
|
{
|
|
#ifndef CONFIG_BUILTIN_DTB
|
|
uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
|
|
|
|
/* Make sure the fdt fixmap address is always aligned on PMD size */
|
|
BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
|
|
|
|
/* In 32-bit only, the fdt lies in its own PGD */
|
|
if (!IS_ENABLED(CONFIG_64BIT)) {
|
|
create_pgd_mapping(early_pg_dir, fix_fdt_va,
|
|
pa, MAX_FDT_SIZE, PAGE_KERNEL);
|
|
} else {
|
|
create_pmd_mapping(fixmap_pmd, fix_fdt_va,
|
|
pa, PMD_SIZE, PAGE_KERNEL);
|
|
create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
|
|
pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
|
|
}
|
|
|
|
dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
|
|
#else
|
|
/*
|
|
* For 64-bit kernel, __va can't be used since it would return a linear
|
|
* mapping address whereas dtb_early_va will be used before
|
|
* setup_vm_final installs the linear mapping. For 32-bit kernel, as the
|
|
* kernel is mapped in the linear mapping, that makes no difference.
|
|
*/
|
|
dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
|
|
#endif
|
|
|
|
dtb_early_pa = dtb_pa;
|
|
}
|
|
|
|
/*
|
|
* MMU is not enabled, the page tables are allocated directly using
|
|
* early_pmd/pud/p4d and the address returned is the physical one.
|
|
*/
|
|
static void __init pt_ops_set_early(void)
|
|
{
|
|
pt_ops.alloc_pte = alloc_pte_early;
|
|
pt_ops.get_pte_virt = get_pte_virt_early;
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
pt_ops.alloc_pmd = alloc_pmd_early;
|
|
pt_ops.get_pmd_virt = get_pmd_virt_early;
|
|
pt_ops.alloc_pud = alloc_pud_early;
|
|
pt_ops.get_pud_virt = get_pud_virt_early;
|
|
pt_ops.alloc_p4d = alloc_p4d_early;
|
|
pt_ops.get_p4d_virt = get_p4d_virt_early;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* MMU is enabled but page table setup is not complete yet.
|
|
* fixmap page table alloc functions must be used as a means to temporarily
|
|
* map the allocated physical pages since the linear mapping does not exist yet.
|
|
*
|
|
* Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
|
|
* but it will be used as described above.
|
|
*/
|
|
static void __init pt_ops_set_fixmap(void)
|
|
{
|
|
pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
|
|
pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
|
|
pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
|
|
pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
|
|
pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
|
|
pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
|
|
pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* MMU is enabled and page table setup is complete, so from now, we can use
|
|
* generic page allocation functions to setup page table.
|
|
*/
|
|
static void __init pt_ops_set_late(void)
|
|
{
|
|
pt_ops.alloc_pte = alloc_pte_late;
|
|
pt_ops.get_pte_virt = get_pte_virt_late;
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
pt_ops.alloc_pmd = alloc_pmd_late;
|
|
pt_ops.get_pmd_virt = get_pmd_virt_late;
|
|
pt_ops.alloc_pud = alloc_pud_late;
|
|
pt_ops.get_pud_virt = get_pud_virt_late;
|
|
pt_ops.alloc_p4d = alloc_p4d_late;
|
|
pt_ops.get_p4d_virt = get_p4d_virt_late;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_RANDOMIZE_BASE
|
|
extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
|
|
extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
|
|
extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa);
|
|
|
|
static int __init print_nokaslr(char *p)
|
|
{
|
|
pr_info("Disabled KASLR");
|
|
return 0;
|
|
}
|
|
early_param("nokaslr", print_nokaslr);
|
|
|
|
unsigned long kaslr_offset(void)
|
|
{
|
|
return kernel_map.virt_offset;
|
|
}
|
|
#endif
|
|
|
|
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
|
|
{
|
|
pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
|
|
|
|
#ifdef CONFIG_RANDOMIZE_BASE
|
|
if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
|
|
u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa);
|
|
u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
|
|
u32 nr_pos;
|
|
|
|
if (kaslr_seed == 0)
|
|
kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
|
|
/*
|
|
* Compute the number of positions available: we are limited
|
|
* by the early page table that only has one PUD and we must
|
|
* be aligned on PMD_SIZE.
|
|
*/
|
|
nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
|
|
|
|
kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
|
|
}
|
|
#endif
|
|
|
|
kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
#ifdef CONFIG_64BIT
|
|
kernel_map.page_offset = PAGE_OFFSET_L3;
|
|
#else
|
|
kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
|
|
#endif
|
|
kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
|
|
kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
|
|
|
|
phys_ram_base = CONFIG_PHYS_RAM_BASE;
|
|
kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
|
|
kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
|
|
|
|
kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
|
|
kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr
|
|
+ (uintptr_t)&_sdata - (uintptr_t)&_start;
|
|
#else
|
|
kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL);
|
|
kernel_map.phys_addr = (uintptr_t)(&_start);
|
|
kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
|
|
kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
|
|
#endif
|
|
|
|
#if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
|
|
set_satp_mode(dtb_pa);
|
|
set_mmap_rnd_bits_max();
|
|
#endif
|
|
|
|
/*
|
|
* In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
|
|
* where we have the system memory layout: this allows us to align
|
|
* the physical and virtual mappings and then make use of PUD/P4D/PGD
|
|
* for the linear mapping. This is only possible because the kernel
|
|
* mapping lies outside the linear mapping.
|
|
* In 32-bit however, as the kernel resides in the linear mapping,
|
|
* setup_vm_final can not change the mapping established here,
|
|
* otherwise the same kernel addresses would get mapped to different
|
|
* physical addresses (if the start of dram is different from the
|
|
* kernel physical address start).
|
|
*/
|
|
kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
|
|
0UL : PAGE_OFFSET - kernel_map.phys_addr;
|
|
|
|
memory_limit = KERN_VIRT_SIZE;
|
|
|
|
/* Sanity check alignment and size */
|
|
BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
|
|
BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/*
|
|
* The last 4K bytes of the addressable memory can not be mapped because
|
|
* of IS_ERR_VALUE macro.
|
|
*/
|
|
BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
|
|
#endif
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
/*
|
|
* Early page table uses only one PUD, which makes it possible
|
|
* to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
|
|
* makes the kernel cross over a PUD_SIZE boundary, raise a bug
|
|
* since a part of the kernel would not get mapped.
|
|
*/
|
|
BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
|
|
relocate_kernel();
|
|
#endif
|
|
|
|
apply_early_boot_alternatives();
|
|
pt_ops_set_early();
|
|
|
|
/* Setup early PGD for fixmap */
|
|
create_pgd_mapping(early_pg_dir, FIXADDR_START,
|
|
fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
/* Setup fixmap P4D and PUD */
|
|
if (pgtable_l5_enabled)
|
|
create_p4d_mapping(fixmap_p4d, FIXADDR_START,
|
|
(uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
|
|
/* Setup fixmap PUD and PMD */
|
|
if (pgtable_l4_enabled)
|
|
create_pud_mapping(fixmap_pud, FIXADDR_START,
|
|
(uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
|
|
create_pmd_mapping(fixmap_pmd, FIXADDR_START,
|
|
(uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
|
|
/* Setup trampoline PGD and PMD */
|
|
create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
|
|
trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
|
|
if (pgtable_l5_enabled)
|
|
create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
|
|
(uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
|
|
if (pgtable_l4_enabled)
|
|
create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
|
|
(uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
|
|
kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
|
|
#else
|
|
create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
|
|
kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
|
|
#endif
|
|
#else
|
|
/* Setup trampoline PGD */
|
|
create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
|
|
kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
|
|
#endif
|
|
|
|
/*
|
|
* Setup early PGD covering entire kernel which will allow
|
|
* us to reach paging_init(). We map all memory banks later
|
|
* in setup_vm_final() below.
|
|
*/
|
|
create_kernel_page_table(early_pg_dir, true);
|
|
|
|
/* Setup early mapping for FDT early scan */
|
|
create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
|
|
|
|
/*
|
|
* Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
|
|
* range can not span multiple pmds.
|
|
*/
|
|
BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
/*
|
|
* Early ioremap fixmap is already created as it lies within first 2MB
|
|
* of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
|
|
* FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
|
|
* the user if not.
|
|
*/
|
|
fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
|
|
fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
|
|
if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
|
|
WARN_ON(1);
|
|
pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
|
|
pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
|
|
}
|
|
#endif
|
|
|
|
pt_ops_set_fixmap();
|
|
}
|
|
|
|
static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
|
|
uintptr_t fixed_map_size, const pgprot_t *pgprot)
|
|
{
|
|
phys_addr_t pa;
|
|
uintptr_t va, map_size;
|
|
|
|
for (pa = start; pa < end; pa += map_size) {
|
|
va = (uintptr_t)__va(pa);
|
|
map_size = fixed_map_size ? fixed_map_size :
|
|
best_map_size(pa, va, end - pa);
|
|
|
|
create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
|
|
pgprot ? *pgprot : pgprot_from_va(va));
|
|
}
|
|
}
|
|
|
|
static void __init create_linear_mapping_page_table(void)
|
|
{
|
|
phys_addr_t start, end;
|
|
phys_addr_t kfence_pool __maybe_unused;
|
|
u64 i;
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
phys_addr_t ktext_start = __pa_symbol(_start);
|
|
phys_addr_t ktext_size = __init_data_begin - _start;
|
|
phys_addr_t krodata_start = __pa_symbol(__start_rodata);
|
|
phys_addr_t krodata_size = _data - __start_rodata;
|
|
|
|
/* Isolate kernel text and rodata so they don't get mapped with a PUD */
|
|
memblock_mark_nomap(ktext_start, ktext_size);
|
|
memblock_mark_nomap(krodata_start, krodata_size);
|
|
#endif
|
|
|
|
#ifdef CONFIG_KFENCE
|
|
/*
|
|
* kfence pool must be backed by PAGE_SIZE mappings, so allocate it
|
|
* before we setup the linear mapping so that we avoid using hugepages
|
|
* for this region.
|
|
*/
|
|
kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
|
|
BUG_ON(!kfence_pool);
|
|
|
|
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
|
|
__kfence_pool = __va(kfence_pool);
|
|
#endif
|
|
|
|
/* Map all memory banks in the linear mapping */
|
|
for_each_mem_range(i, &start, &end) {
|
|
if (start >= end)
|
|
break;
|
|
if (start <= __pa(PAGE_OFFSET) &&
|
|
__pa(PAGE_OFFSET) < end)
|
|
start = __pa(PAGE_OFFSET);
|
|
|
|
create_linear_mapping_range(start, end, 0, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
|
|
create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
|
|
|
|
memblock_clear_nomap(ktext_start, ktext_size);
|
|
memblock_clear_nomap(krodata_start, krodata_size);
|
|
#endif
|
|
|
|
#ifdef CONFIG_KFENCE
|
|
create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
|
|
|
|
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
|
|
#endif
|
|
}
|
|
|
|
static void __init setup_vm_final(void)
|
|
{
|
|
/* Setup swapper PGD for fixmap */
|
|
#if !defined(CONFIG_64BIT)
|
|
/*
|
|
* In 32-bit, the device tree lies in a pgd entry, so it must be copied
|
|
* directly in swapper_pg_dir in addition to the pgd entry that points
|
|
* to fixmap_pte.
|
|
*/
|
|
unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
|
|
|
|
set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
|
|
#endif
|
|
create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
|
|
__pa_symbol(fixmap_pgd_next),
|
|
PGDIR_SIZE, PAGE_TABLE);
|
|
|
|
/* Map the linear mapping */
|
|
create_linear_mapping_page_table();
|
|
|
|
/* Map the kernel */
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
create_kernel_page_table(swapper_pg_dir, false);
|
|
|
|
#ifdef CONFIG_KASAN
|
|
kasan_swapper_init();
|
|
#endif
|
|
|
|
/* Clear fixmap PTE and PMD mappings */
|
|
clear_fixmap(FIX_PTE);
|
|
clear_fixmap(FIX_PMD);
|
|
clear_fixmap(FIX_PUD);
|
|
clear_fixmap(FIX_P4D);
|
|
|
|
/* Move to swapper page table */
|
|
csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
|
|
local_flush_tlb_all();
|
|
|
|
pt_ops_set_late();
|
|
}
|
|
#else
|
|
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
|
|
{
|
|
dtb_early_va = (void *)dtb_pa;
|
|
dtb_early_pa = dtb_pa;
|
|
}
|
|
|
|
static inline void setup_vm_final(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/*
|
|
* reserve_crashkernel() - reserves memory for crash kernel
|
|
*
|
|
* This function reserves memory area given in "crashkernel=" kernel command
|
|
* line parameter. The memory reserved is used by dump capture kernel when
|
|
* primary kernel is crashing.
|
|
*/
|
|
static void __init arch_reserve_crashkernel(void)
|
|
{
|
|
unsigned long long low_size = 0;
|
|
unsigned long long crash_base, crash_size;
|
|
char *cmdline = boot_command_line;
|
|
bool high = false;
|
|
int ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
|
|
return;
|
|
|
|
ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
|
|
&crash_size, &crash_base,
|
|
&low_size, &high);
|
|
if (ret)
|
|
return;
|
|
|
|
reserve_crashkernel_generic(cmdline, crash_size, crash_base,
|
|
low_size, high);
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
setup_bootmem();
|
|
setup_vm_final();
|
|
|
|
/* Depend on that Linear Mapping is ready */
|
|
memblock_allow_resize();
|
|
}
|
|
|
|
void __init misc_mem_init(void)
|
|
{
|
|
early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
|
|
arch_numa_init();
|
|
sparse_init();
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/* The entire VMEMMAP region has been populated. Flush TLB for this region */
|
|
local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
|
|
#endif
|
|
zone_sizes_init();
|
|
arch_reserve_crashkernel();
|
|
memblock_dump_all();
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
|
|
}
|
|
|
|
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
vmemmap_verify((pte_t *)pmdp, node, addr, next);
|
|
return 1;
|
|
}
|
|
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
/*
|
|
* Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
|
|
* can't use hugepage mappings for 2-level page table because in case of
|
|
* memory hotplug, we are not able to update all the page tables with
|
|
* the new PMDs.
|
|
*/
|
|
return vmemmap_populate_hugepages(start, end, node, altmap);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
|
|
/*
|
|
* Pre-allocates page-table pages for a specific area in the kernel
|
|
* page-table. Only the level which needs to be synchronized between
|
|
* all page-tables is allocated because the synchronization can be
|
|
* expensive.
|
|
*/
|
|
static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
|
|
const char *area)
|
|
{
|
|
unsigned long addr;
|
|
const char *lvl;
|
|
|
|
for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
lvl = "p4d";
|
|
p4d = p4d_alloc(&init_mm, pgd, addr);
|
|
if (!p4d)
|
|
goto failed;
|
|
|
|
if (pgtable_l5_enabled)
|
|
continue;
|
|
|
|
lvl = "pud";
|
|
pud = pud_alloc(&init_mm, p4d, addr);
|
|
if (!pud)
|
|
goto failed;
|
|
|
|
if (pgtable_l4_enabled)
|
|
continue;
|
|
|
|
lvl = "pmd";
|
|
pmd = pmd_alloc(&init_mm, pud, addr);
|
|
if (!pmd)
|
|
goto failed;
|
|
}
|
|
return;
|
|
|
|
failed:
|
|
/*
|
|
* The pages have to be there now or they will be missing in
|
|
* process page-tables later.
|
|
*/
|
|
panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
|
|
}
|
|
|
|
#define PAGE_END KASAN_SHADOW_START
|
|
|
|
void __init pgtable_cache_init(void)
|
|
{
|
|
preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
|
|
if (IS_ENABLED(CONFIG_MODULES))
|
|
preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
|
|
preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
|
|
preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
|
|
if (IS_ENABLED(CONFIG_KASAN))
|
|
preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_EXECMEM
|
|
#ifdef CONFIG_MMU
|
|
static struct execmem_info execmem_info __ro_after_init;
|
|
|
|
struct execmem_info __init *execmem_arch_setup(void)
|
|
{
|
|
execmem_info = (struct execmem_info){
|
|
.ranges = {
|
|
[EXECMEM_DEFAULT] = {
|
|
.start = MODULES_VADDR,
|
|
.end = MODULES_END,
|
|
.pgprot = PAGE_KERNEL,
|
|
.alignment = 1,
|
|
},
|
|
[EXECMEM_KPROBES] = {
|
|
.start = VMALLOC_START,
|
|
.end = VMALLOC_END,
|
|
.pgprot = PAGE_KERNEL_READ_EXEC,
|
|
.alignment = 1,
|
|
},
|
|
[EXECMEM_BPF] = {
|
|
.start = BPF_JIT_REGION_START,
|
|
.end = BPF_JIT_REGION_END,
|
|
.pgprot = PAGE_KERNEL,
|
|
.alignment = PAGE_SIZE,
|
|
},
|
|
},
|
|
};
|
|
|
|
return &execmem_info;
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
#endif /* CONFIG_EXECMEM */
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
struct page *page = pmd_page(*pmd);
|
|
struct ptdesc *ptdesc = page_ptdesc(page);
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
pagetable_pte_dtor(ptdesc);
|
|
if (PageReserved(page))
|
|
free_reserved_page(page);
|
|
else
|
|
pagetable_free(ptdesc);
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
struct page *page = pud_page(*pud);
|
|
struct ptdesc *ptdesc = page_ptdesc(page);
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
pagetable_pmd_dtor(ptdesc);
|
|
if (PageReserved(page))
|
|
free_reserved_page(page);
|
|
else
|
|
pagetable_free(ptdesc);
|
|
pud_clear(pud);
|
|
}
|
|
|
|
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
struct page *page = p4d_page(*p4d);
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
if (PageReserved(page))
|
|
free_reserved_page(page);
|
|
else
|
|
free_pages((unsigned long)page_address(page), 0);
|
|
p4d_clear(p4d);
|
|
}
|
|
|
|
static void __meminit free_vmemmap_storage(struct page *page, size_t size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
int order = get_order(size);
|
|
|
|
if (altmap) {
|
|
vmem_altmap_free(altmap, size >> PAGE_SHIFT);
|
|
return;
|
|
}
|
|
|
|
if (PageReserved(page)) {
|
|
unsigned int nr_pages = 1 << order;
|
|
|
|
while (nr_pages--)
|
|
free_reserved_page(page++);
|
|
return;
|
|
}
|
|
|
|
free_pages((unsigned long)page_address(page), order);
|
|
}
|
|
|
|
static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
|
|
bool is_vmemmap, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pte_t *ptep, pte;
|
|
|
|
for (; addr < end; addr = next) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
ptep = pte_base + pte_index(addr);
|
|
pte = ptep_get(ptep);
|
|
if (!pte_present(*ptep))
|
|
continue;
|
|
|
|
pte_clear(&init_mm, addr, ptep);
|
|
if (is_vmemmap)
|
|
free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
|
|
bool is_vmemmap, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pte_t *pte_base;
|
|
pmd_t *pmdp, pmd;
|
|
|
|
for (; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
pmdp = pmd_base + pmd_index(addr);
|
|
pmd = pmdp_get(pmdp);
|
|
if (!pmd_present(pmd))
|
|
continue;
|
|
|
|
if (pmd_leaf(pmd)) {
|
|
pmd_clear(pmdp);
|
|
if (is_vmemmap)
|
|
free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
|
|
remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
|
|
free_pte_table(pte_base, pmdp);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
|
|
bool is_vmemmap, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmd_base;
|
|
|
|
for (; addr < end; addr = next) {
|
|
next = pud_addr_end(addr, end);
|
|
pudp = pud_base + pud_index(addr);
|
|
pud = pudp_get(pudp);
|
|
if (!pud_present(pud))
|
|
continue;
|
|
|
|
if (pud_leaf(pud)) {
|
|
if (pgtable_l4_enabled) {
|
|
pud_clear(pudp);
|
|
if (is_vmemmap)
|
|
free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
pmd_base = pmd_offset(pudp, 0);
|
|
remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
|
|
|
|
if (pgtable_l4_enabled)
|
|
free_pmd_table(pmd_base, pudp);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
|
|
bool is_vmemmap, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
p4d_t *p4dp, p4d;
|
|
pud_t *pud_base;
|
|
|
|
for (; addr < end; addr = next) {
|
|
next = p4d_addr_end(addr, end);
|
|
p4dp = p4d_base + p4d_index(addr);
|
|
p4d = p4dp_get(p4dp);
|
|
if (!p4d_present(p4d))
|
|
continue;
|
|
|
|
if (p4d_leaf(p4d)) {
|
|
if (pgtable_l5_enabled) {
|
|
p4d_clear(p4dp);
|
|
if (is_vmemmap)
|
|
free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
pud_base = pud_offset(p4dp, 0);
|
|
remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
|
|
|
|
if (pgtable_l5_enabled)
|
|
free_pud_table(pud_base, p4dp);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr, next;
|
|
p4d_t *p4d_base;
|
|
pgd_t *pgd;
|
|
|
|
for (addr = va; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
pgd = pgd_offset_k(addr);
|
|
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
if (pgd_leaf(*pgd))
|
|
continue;
|
|
|
|
p4d_base = p4d_offset(pgd, 0);
|
|
remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
|
|
}
|
|
|
|
flush_tlb_all();
|
|
}
|
|
|
|
static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
|
|
{
|
|
unsigned long va = (unsigned long)__va(start);
|
|
unsigned long end = (unsigned long)__va(start + size);
|
|
|
|
remove_pgd_mapping(va, end, false, NULL);
|
|
}
|
|
|
|
struct range arch_get_mappable_range(void)
|
|
{
|
|
struct range mhp_range;
|
|
|
|
mhp_range.start = __pa(PAGE_OFFSET);
|
|
mhp_range.end = __pa(PAGE_END - 1);
|
|
return mhp_range;
|
|
}
|
|
|
|
int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
|
|
{
|
|
int ret = 0;
|
|
|
|
create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot);
|
|
ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
|
|
if (ret) {
|
|
remove_linear_mapping(start, size);
|
|
goto out;
|
|
}
|
|
|
|
max_pfn = PFN_UP(start + size);
|
|
max_low_pfn = max_pfn;
|
|
|
|
out:
|
|
flush_tlb_all();
|
|
return ret;
|
|
}
|
|
|
|
void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
|
|
{
|
|
__remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
|
|
remove_linear_mapping(start, size);
|
|
flush_tlb_all();
|
|
}
|
|
|
|
void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
|
|
{
|
|
remove_pgd_mapping(start, end, true, altmap);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|