mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:38:03 +00:00
da5311a4b8
For ppc64, gcc with W=1 reports
arch/powerpc/platforms/cell/spu_base.c:330:17: error:
suggest braces around empty body in an 'if' statement [-Werror=empty-body]
330 | ;
| ^
arch/powerpc/platforms/cell/spu_base.c:333:17: error:
suggest braces around empty body in an 'if' statement [-Werror=empty-body]
333 | ;
| ^
These if-checks do not do anything so remove them.
Signed-off-by: Tom Rix <trix@redhat.com>
Fixes: 67207b9664
("[PATCH] spufs: The SPU file system, base")
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230428221240.2679194-1-trix@redhat.com
791 lines
18 KiB
C
791 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Low-level SPU handling
|
|
*
|
|
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
|
|
*
|
|
* Author: Arnd Bergmann <arndb@de.ibm.com>
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/linux_logo.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <asm/spu.h>
|
|
#include <asm/spu_priv1.h>
|
|
#include <asm/spu_csa.h>
|
|
#include <asm/xmon.h>
|
|
#include <asm/kexec.h>
|
|
|
|
const struct spu_management_ops *spu_management_ops;
|
|
EXPORT_SYMBOL_GPL(spu_management_ops);
|
|
|
|
const struct spu_priv1_ops *spu_priv1_ops;
|
|
EXPORT_SYMBOL_GPL(spu_priv1_ops);
|
|
|
|
struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
|
|
EXPORT_SYMBOL_GPL(cbe_spu_info);
|
|
|
|
/*
|
|
* The spufs fault-handling code needs to call force_sig_fault to raise signals
|
|
* on DMA errors. Export it here to avoid general kernel-wide access to this
|
|
* function
|
|
*/
|
|
EXPORT_SYMBOL_GPL(force_sig_fault);
|
|
|
|
/*
|
|
* Protects cbe_spu_info and spu->number.
|
|
*/
|
|
static DEFINE_SPINLOCK(spu_lock);
|
|
|
|
/*
|
|
* List of all spus in the system.
|
|
*
|
|
* This list is iterated by callers from irq context and callers that
|
|
* want to sleep. Thus modifications need to be done with both
|
|
* spu_full_list_lock and spu_full_list_mutex held, while iterating
|
|
* through it requires either of these locks.
|
|
*
|
|
* In addition spu_full_list_lock protects all assignments to
|
|
* spu->mm.
|
|
*/
|
|
static LIST_HEAD(spu_full_list);
|
|
static DEFINE_SPINLOCK(spu_full_list_lock);
|
|
static DEFINE_MUTEX(spu_full_list_mutex);
|
|
|
|
void spu_invalidate_slbs(struct spu *spu)
|
|
{
|
|
struct spu_priv2 __iomem *priv2 = spu->priv2;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&spu->register_lock, flags);
|
|
if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
|
|
out_be64(&priv2->slb_invalidate_all_W, 0UL);
|
|
spin_unlock_irqrestore(&spu->register_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
|
|
|
|
/* This is called by the MM core when a segment size is changed, to
|
|
* request a flush of all the SPEs using a given mm
|
|
*/
|
|
void spu_flush_all_slbs(struct mm_struct *mm)
|
|
{
|
|
struct spu *spu;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&spu_full_list_lock, flags);
|
|
list_for_each_entry(spu, &spu_full_list, full_list) {
|
|
if (spu->mm == mm)
|
|
spu_invalidate_slbs(spu);
|
|
}
|
|
spin_unlock_irqrestore(&spu_full_list_lock, flags);
|
|
}
|
|
|
|
/* The hack below stinks... try to do something better one of
|
|
* these days... Does it even work properly with NR_CPUS == 1 ?
|
|
*/
|
|
static inline void mm_needs_global_tlbie(struct mm_struct *mm)
|
|
{
|
|
int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
|
|
|
|
/* Global TLBIE broadcast required with SPEs. */
|
|
bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
|
|
}
|
|
|
|
void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&spu_full_list_lock, flags);
|
|
spu->mm = mm;
|
|
spin_unlock_irqrestore(&spu_full_list_lock, flags);
|
|
if (mm)
|
|
mm_needs_global_tlbie(mm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_associate_mm);
|
|
|
|
int spu_64k_pages_available(void)
|
|
{
|
|
return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_64k_pages_available);
|
|
|
|
static void spu_restart_dma(struct spu *spu)
|
|
{
|
|
struct spu_priv2 __iomem *priv2 = spu->priv2;
|
|
|
|
if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
|
|
out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
|
|
else {
|
|
set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
|
|
mb();
|
|
}
|
|
}
|
|
|
|
static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
|
|
{
|
|
struct spu_priv2 __iomem *priv2 = spu->priv2;
|
|
|
|
pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
|
|
__func__, slbe, slb->vsid, slb->esid);
|
|
|
|
out_be64(&priv2->slb_index_W, slbe);
|
|
/* set invalid before writing vsid */
|
|
out_be64(&priv2->slb_esid_RW, 0);
|
|
/* now it's safe to write the vsid */
|
|
out_be64(&priv2->slb_vsid_RW, slb->vsid);
|
|
/* setting the new esid makes the entry valid again */
|
|
out_be64(&priv2->slb_esid_RW, slb->esid);
|
|
}
|
|
|
|
static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
|
|
{
|
|
struct copro_slb slb;
|
|
int ret;
|
|
|
|
ret = copro_calculate_slb(spu->mm, ea, &slb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spu_load_slb(spu, spu->slb_replace, &slb);
|
|
|
|
spu->slb_replace++;
|
|
if (spu->slb_replace >= 8)
|
|
spu->slb_replace = 0;
|
|
|
|
spu_restart_dma(spu);
|
|
spu->stats.slb_flt++;
|
|
return 0;
|
|
}
|
|
|
|
extern int hash_page(unsigned long ea, unsigned long access,
|
|
unsigned long trap, unsigned long dsisr); //XXX
|
|
static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
|
|
{
|
|
int ret;
|
|
|
|
pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
|
|
|
|
/*
|
|
* Handle kernel space hash faults immediately. User hash
|
|
* faults need to be deferred to process context.
|
|
*/
|
|
if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
|
|
(get_region_id(ea) != USER_REGION_ID)) {
|
|
|
|
spin_unlock(&spu->register_lock);
|
|
ret = hash_page(ea,
|
|
_PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
|
|
0x300, dsisr);
|
|
spin_lock(&spu->register_lock);
|
|
|
|
if (!ret) {
|
|
spu_restart_dma(spu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
spu->class_1_dar = ea;
|
|
spu->class_1_dsisr = dsisr;
|
|
|
|
spu->stop_callback(spu, 1);
|
|
|
|
spu->class_1_dar = 0;
|
|
spu->class_1_dsisr = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
|
|
{
|
|
unsigned long ea = (unsigned long)addr;
|
|
u64 llp;
|
|
|
|
if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
|
|
llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
else
|
|
llp = mmu_psize_defs[mmu_virtual_psize].sllp;
|
|
|
|
slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
|
|
SLB_VSID_KERNEL | llp;
|
|
slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
|
|
}
|
|
|
|
/**
|
|
* Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
|
|
* address @new_addr is present.
|
|
*/
|
|
static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
|
|
void *new_addr)
|
|
{
|
|
unsigned long ea = (unsigned long)new_addr;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_slbs; i++)
|
|
if (!((slbs[i].esid ^ ea) & ESID_MASK))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Setup the SPU kernel SLBs, in preparation for a context save/restore. We
|
|
* need to map both the context save area, and the save/restore code.
|
|
*
|
|
* Because the lscsa and code may cross segment boundaries, we check to see
|
|
* if mappings are required for the start and end of each range. We currently
|
|
* assume that the mappings are smaller that one segment - if not, something
|
|
* is seriously wrong.
|
|
*/
|
|
void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
|
|
void *code, int code_size)
|
|
{
|
|
struct copro_slb slbs[4];
|
|
int i, nr_slbs = 0;
|
|
/* start and end addresses of both mappings */
|
|
void *addrs[] = {
|
|
lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
|
|
code, code + code_size - 1
|
|
};
|
|
|
|
/* check the set of addresses, and create a new entry in the slbs array
|
|
* if there isn't already a SLB for that address */
|
|
for (i = 0; i < ARRAY_SIZE(addrs); i++) {
|
|
if (__slb_present(slbs, nr_slbs, addrs[i]))
|
|
continue;
|
|
|
|
__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
|
|
nr_slbs++;
|
|
}
|
|
|
|
spin_lock_irq(&spu->register_lock);
|
|
/* Add the set of SLBs */
|
|
for (i = 0; i < nr_slbs; i++)
|
|
spu_load_slb(spu, i, &slbs[i]);
|
|
spin_unlock_irq(&spu->register_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
|
|
|
|
static irqreturn_t
|
|
spu_irq_class_0(int irq, void *data)
|
|
{
|
|
struct spu *spu;
|
|
unsigned long stat, mask;
|
|
|
|
spu = data;
|
|
|
|
spin_lock(&spu->register_lock);
|
|
mask = spu_int_mask_get(spu, 0);
|
|
stat = spu_int_stat_get(spu, 0) & mask;
|
|
|
|
spu->class_0_pending |= stat;
|
|
spu->class_0_dar = spu_mfc_dar_get(spu);
|
|
spu->stop_callback(spu, 0);
|
|
spu->class_0_pending = 0;
|
|
spu->class_0_dar = 0;
|
|
|
|
spu_int_stat_clear(spu, 0, stat);
|
|
spin_unlock(&spu->register_lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t
|
|
spu_irq_class_1(int irq, void *data)
|
|
{
|
|
struct spu *spu;
|
|
unsigned long stat, mask, dar, dsisr;
|
|
|
|
spu = data;
|
|
|
|
/* atomically read & clear class1 status. */
|
|
spin_lock(&spu->register_lock);
|
|
mask = spu_int_mask_get(spu, 1);
|
|
stat = spu_int_stat_get(spu, 1) & mask;
|
|
dar = spu_mfc_dar_get(spu);
|
|
dsisr = spu_mfc_dsisr_get(spu);
|
|
if (stat & CLASS1_STORAGE_FAULT_INTR)
|
|
spu_mfc_dsisr_set(spu, 0ul);
|
|
spu_int_stat_clear(spu, 1, stat);
|
|
|
|
pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
|
|
dar, dsisr);
|
|
|
|
if (stat & CLASS1_SEGMENT_FAULT_INTR)
|
|
__spu_trap_data_seg(spu, dar);
|
|
|
|
if (stat & CLASS1_STORAGE_FAULT_INTR)
|
|
__spu_trap_data_map(spu, dar, dsisr);
|
|
|
|
spu->class_1_dsisr = 0;
|
|
spu->class_1_dar = 0;
|
|
|
|
spin_unlock(&spu->register_lock);
|
|
|
|
return stat ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static irqreturn_t
|
|
spu_irq_class_2(int irq, void *data)
|
|
{
|
|
struct spu *spu;
|
|
unsigned long stat;
|
|
unsigned long mask;
|
|
const int mailbox_intrs =
|
|
CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
|
|
|
|
spu = data;
|
|
spin_lock(&spu->register_lock);
|
|
stat = spu_int_stat_get(spu, 2);
|
|
mask = spu_int_mask_get(spu, 2);
|
|
/* ignore interrupts we're not waiting for */
|
|
stat &= mask;
|
|
/* mailbox interrupts are level triggered. mask them now before
|
|
* acknowledging */
|
|
if (stat & mailbox_intrs)
|
|
spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
|
|
/* acknowledge all interrupts before the callbacks */
|
|
spu_int_stat_clear(spu, 2, stat);
|
|
|
|
pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
|
|
|
|
if (stat & CLASS2_MAILBOX_INTR)
|
|
spu->ibox_callback(spu);
|
|
|
|
if (stat & CLASS2_SPU_STOP_INTR)
|
|
spu->stop_callback(spu, 2);
|
|
|
|
if (stat & CLASS2_SPU_HALT_INTR)
|
|
spu->stop_callback(spu, 2);
|
|
|
|
if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
|
|
spu->mfc_callback(spu);
|
|
|
|
if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
|
|
spu->wbox_callback(spu);
|
|
|
|
spu->stats.class2_intr++;
|
|
|
|
spin_unlock(&spu->register_lock);
|
|
|
|
return stat ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static int __init spu_request_irqs(struct spu *spu)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (spu->irqs[0]) {
|
|
snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
|
|
spu->number);
|
|
ret = request_irq(spu->irqs[0], spu_irq_class_0,
|
|
0, spu->irq_c0, spu);
|
|
if (ret)
|
|
goto bail0;
|
|
}
|
|
if (spu->irqs[1]) {
|
|
snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
|
|
spu->number);
|
|
ret = request_irq(spu->irqs[1], spu_irq_class_1,
|
|
0, spu->irq_c1, spu);
|
|
if (ret)
|
|
goto bail1;
|
|
}
|
|
if (spu->irqs[2]) {
|
|
snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
|
|
spu->number);
|
|
ret = request_irq(spu->irqs[2], spu_irq_class_2,
|
|
0, spu->irq_c2, spu);
|
|
if (ret)
|
|
goto bail2;
|
|
}
|
|
return 0;
|
|
|
|
bail2:
|
|
if (spu->irqs[1])
|
|
free_irq(spu->irqs[1], spu);
|
|
bail1:
|
|
if (spu->irqs[0])
|
|
free_irq(spu->irqs[0], spu);
|
|
bail0:
|
|
return ret;
|
|
}
|
|
|
|
static void spu_free_irqs(struct spu *spu)
|
|
{
|
|
if (spu->irqs[0])
|
|
free_irq(spu->irqs[0], spu);
|
|
if (spu->irqs[1])
|
|
free_irq(spu->irqs[1], spu);
|
|
if (spu->irqs[2])
|
|
free_irq(spu->irqs[2], spu);
|
|
}
|
|
|
|
void spu_init_channels(struct spu *spu)
|
|
{
|
|
static const struct {
|
|
unsigned channel;
|
|
unsigned count;
|
|
} zero_list[] = {
|
|
{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
|
|
{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
|
|
}, count_list[] = {
|
|
{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
|
|
{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
|
|
{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
|
|
};
|
|
struct spu_priv2 __iomem *priv2;
|
|
int i;
|
|
|
|
priv2 = spu->priv2;
|
|
|
|
/* initialize all channel data to zero */
|
|
for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
|
|
int count;
|
|
|
|
out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
|
|
for (count = 0; count < zero_list[i].count; count++)
|
|
out_be64(&priv2->spu_chnldata_RW, 0);
|
|
}
|
|
|
|
/* initialize channel counts to meaningful values */
|
|
for (i = 0; i < ARRAY_SIZE(count_list); i++) {
|
|
out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
|
|
out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_init_channels);
|
|
|
|
static struct bus_type spu_subsys = {
|
|
.name = "spu",
|
|
.dev_name = "spu",
|
|
};
|
|
|
|
int spu_add_dev_attr(struct device_attribute *attr)
|
|
{
|
|
struct spu *spu;
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
list_for_each_entry(spu, &spu_full_list, full_list)
|
|
device_create_file(&spu->dev, attr);
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_add_dev_attr);
|
|
|
|
int spu_add_dev_attr_group(const struct attribute_group *attrs)
|
|
{
|
|
struct spu *spu;
|
|
int rc = 0;
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
list_for_each_entry(spu, &spu_full_list, full_list) {
|
|
rc = sysfs_create_group(&spu->dev.kobj, attrs);
|
|
|
|
/* we're in trouble here, but try unwinding anyway */
|
|
if (rc) {
|
|
printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
|
|
__func__, attrs->name);
|
|
|
|
list_for_each_entry_continue_reverse(spu,
|
|
&spu_full_list, full_list)
|
|
sysfs_remove_group(&spu->dev.kobj, attrs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
|
|
|
|
|
|
void spu_remove_dev_attr(struct device_attribute *attr)
|
|
{
|
|
struct spu *spu;
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
list_for_each_entry(spu, &spu_full_list, full_list)
|
|
device_remove_file(&spu->dev, attr);
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
|
|
|
|
void spu_remove_dev_attr_group(const struct attribute_group *attrs)
|
|
{
|
|
struct spu *spu;
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
list_for_each_entry(spu, &spu_full_list, full_list)
|
|
sysfs_remove_group(&spu->dev.kobj, attrs);
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
|
|
|
|
static int __init spu_create_dev(struct spu *spu)
|
|
{
|
|
int ret;
|
|
|
|
spu->dev.id = spu->number;
|
|
spu->dev.bus = &spu_subsys;
|
|
ret = device_register(&spu->dev);
|
|
if (ret) {
|
|
printk(KERN_ERR "Can't register SPU %d with sysfs\n",
|
|
spu->number);
|
|
return ret;
|
|
}
|
|
|
|
sysfs_add_device_to_node(&spu->dev, spu->node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init create_spu(void *data)
|
|
{
|
|
struct spu *spu;
|
|
int ret;
|
|
static int number;
|
|
unsigned long flags;
|
|
|
|
ret = -ENOMEM;
|
|
spu = kzalloc(sizeof (*spu), GFP_KERNEL);
|
|
if (!spu)
|
|
goto out;
|
|
|
|
spu->alloc_state = SPU_FREE;
|
|
|
|
spin_lock_init(&spu->register_lock);
|
|
spin_lock(&spu_lock);
|
|
spu->number = number++;
|
|
spin_unlock(&spu_lock);
|
|
|
|
ret = spu_create_spu(spu, data);
|
|
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
spu_mfc_sdr_setup(spu);
|
|
spu_mfc_sr1_set(spu, 0x33);
|
|
ret = spu_request_irqs(spu);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
ret = spu_create_dev(spu);
|
|
if (ret)
|
|
goto out_free_irqs;
|
|
|
|
mutex_lock(&cbe_spu_info[spu->node].list_mutex);
|
|
list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
|
|
cbe_spu_info[spu->node].n_spus++;
|
|
mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
spin_lock_irqsave(&spu_full_list_lock, flags);
|
|
list_add(&spu->full_list, &spu_full_list);
|
|
spin_unlock_irqrestore(&spu_full_list_lock, flags);
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
|
|
spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
|
|
spu->stats.tstamp = ktime_get_ns();
|
|
|
|
INIT_LIST_HEAD(&spu->aff_list);
|
|
|
|
goto out;
|
|
|
|
out_free_irqs:
|
|
spu_free_irqs(spu);
|
|
out_destroy:
|
|
spu_destroy_spu(spu);
|
|
out_free:
|
|
kfree(spu);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static const char *spu_state_names[] = {
|
|
"user", "system", "iowait", "idle"
|
|
};
|
|
|
|
static unsigned long long spu_acct_time(struct spu *spu,
|
|
enum spu_utilization_state state)
|
|
{
|
|
unsigned long long time = spu->stats.times[state];
|
|
|
|
/*
|
|
* If the spu is idle or the context is stopped, utilization
|
|
* statistics are not updated. Apply the time delta from the
|
|
* last recorded state of the spu.
|
|
*/
|
|
if (spu->stats.util_state == state)
|
|
time += ktime_get_ns() - spu->stats.tstamp;
|
|
|
|
return time / NSEC_PER_MSEC;
|
|
}
|
|
|
|
|
|
static ssize_t spu_stat_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct spu *spu = container_of(dev, struct spu, dev);
|
|
|
|
return sprintf(buf, "%s %llu %llu %llu %llu "
|
|
"%llu %llu %llu %llu %llu %llu %llu %llu\n",
|
|
spu_state_names[spu->stats.util_state],
|
|
spu_acct_time(spu, SPU_UTIL_USER),
|
|
spu_acct_time(spu, SPU_UTIL_SYSTEM),
|
|
spu_acct_time(spu, SPU_UTIL_IOWAIT),
|
|
spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
|
|
spu->stats.vol_ctx_switch,
|
|
spu->stats.invol_ctx_switch,
|
|
spu->stats.slb_flt,
|
|
spu->stats.hash_flt,
|
|
spu->stats.min_flt,
|
|
spu->stats.maj_flt,
|
|
spu->stats.class2_intr,
|
|
spu->stats.libassist);
|
|
}
|
|
|
|
static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
|
|
struct crash_spu_info {
|
|
struct spu *spu;
|
|
u32 saved_spu_runcntl_RW;
|
|
u32 saved_spu_status_R;
|
|
u32 saved_spu_npc_RW;
|
|
u64 saved_mfc_sr1_RW;
|
|
u64 saved_mfc_dar;
|
|
u64 saved_mfc_dsisr;
|
|
};
|
|
|
|
#define CRASH_NUM_SPUS 16 /* Enough for current hardware */
|
|
static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
|
|
|
|
static void crash_kexec_stop_spus(void)
|
|
{
|
|
struct spu *spu;
|
|
int i;
|
|
u64 tmp;
|
|
|
|
for (i = 0; i < CRASH_NUM_SPUS; i++) {
|
|
if (!crash_spu_info[i].spu)
|
|
continue;
|
|
|
|
spu = crash_spu_info[i].spu;
|
|
|
|
crash_spu_info[i].saved_spu_runcntl_RW =
|
|
in_be32(&spu->problem->spu_runcntl_RW);
|
|
crash_spu_info[i].saved_spu_status_R =
|
|
in_be32(&spu->problem->spu_status_R);
|
|
crash_spu_info[i].saved_spu_npc_RW =
|
|
in_be32(&spu->problem->spu_npc_RW);
|
|
|
|
crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
|
|
crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
|
|
tmp = spu_mfc_sr1_get(spu);
|
|
crash_spu_info[i].saved_mfc_sr1_RW = tmp;
|
|
|
|
tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
|
|
spu_mfc_sr1_set(spu, tmp);
|
|
|
|
__delay(200);
|
|
}
|
|
}
|
|
|
|
static void __init crash_register_spus(struct list_head *list)
|
|
{
|
|
struct spu *spu;
|
|
int ret;
|
|
|
|
list_for_each_entry(spu, list, full_list) {
|
|
if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
|
|
continue;
|
|
|
|
crash_spu_info[spu->number].spu = spu;
|
|
}
|
|
|
|
ret = crash_shutdown_register(&crash_kexec_stop_spus);
|
|
if (ret)
|
|
printk(KERN_ERR "Could not register SPU crash handler");
|
|
}
|
|
|
|
#else
|
|
static inline void crash_register_spus(struct list_head *list)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void spu_shutdown(void)
|
|
{
|
|
struct spu *spu;
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
list_for_each_entry(spu, &spu_full_list, full_list) {
|
|
spu_free_irqs(spu);
|
|
spu_destroy_spu(spu);
|
|
}
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
}
|
|
|
|
static struct syscore_ops spu_syscore_ops = {
|
|
.shutdown = spu_shutdown,
|
|
};
|
|
|
|
static int __init init_spu_base(void)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
mutex_init(&cbe_spu_info[i].list_mutex);
|
|
INIT_LIST_HEAD(&cbe_spu_info[i].spus);
|
|
}
|
|
|
|
if (!spu_management_ops)
|
|
goto out;
|
|
|
|
/* create system subsystem for spus */
|
|
ret = subsys_system_register(&spu_subsys, NULL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = spu_enumerate_spus(create_spu);
|
|
|
|
if (ret < 0) {
|
|
printk(KERN_WARNING "%s: Error initializing spus\n",
|
|
__func__);
|
|
goto out_unregister_subsys;
|
|
}
|
|
|
|
if (ret > 0)
|
|
fb_append_extra_logo(&logo_spe_clut224, ret);
|
|
|
|
mutex_lock(&spu_full_list_mutex);
|
|
xmon_register_spus(&spu_full_list);
|
|
crash_register_spus(&spu_full_list);
|
|
mutex_unlock(&spu_full_list_mutex);
|
|
spu_add_dev_attr(&dev_attr_stat);
|
|
register_syscore_ops(&spu_syscore_ops);
|
|
|
|
spu_init_affinity();
|
|
|
|
return 0;
|
|
|
|
out_unregister_subsys:
|
|
bus_unregister(&spu_subsys);
|
|
out:
|
|
return ret;
|
|
}
|
|
device_initcall(init_spu_base);
|