// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian , May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "internal.h" #include "pgalloc-track.h" #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; static int __init set_nohugeiomap(char *str) { ioremap_max_page_shift = PAGE_SHIFT; return 0; } early_param("nohugeiomap", set_nohugeiomap); #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC static bool __ro_after_init vmap_allow_huge = true; static int __init set_nohugevmalloc(char *str) { vmap_allow_huge = false; return 0; } early_param("nohugevmalloc", set_nohugevmalloc); #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ static const bool vmap_allow_huge = false; #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ bool is_vmalloc_addr(const void *x) { unsigned long addr = (unsigned long)kasan_reset_tag(x); return addr >= VMALLOC_START && addr < VMALLOC_END; } EXPORT_SYMBOL(is_vmalloc_addr); struct vfree_deferred { struct llist_head list; struct work_struct wq; }; static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); /*** Page table manipulation functions ***/ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pte_t *pte; u64 pfn; struct page *page; unsigned long size = PAGE_SIZE; pfn = phys_addr >> PAGE_SHIFT; pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { if (unlikely(!pte_none(ptep_get(pte)))) { if (pfn_valid(pfn)) { page = pfn_to_page(pfn); dump_page(page, "remapping already mapped page"); } BUG(); } #ifdef CONFIG_HUGETLB_PAGE size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); if (size != PAGE_SIZE) { pte_t entry = pfn_pte(pfn, prot); entry = arch_make_huge_pte(entry, ilog2(size), 0); set_huge_pte_at(&init_mm, addr, pte, entry, size); pfn += PFN_DOWN(size); continue; } #endif set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); pfn++; } while (pte += PFN_DOWN(size), addr += size, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PMD_SHIFT) return 0; if (!arch_vmap_pmd_supported(prot)) return 0; if ((end - addr) != PMD_SIZE) return 0; if (!IS_ALIGNED(addr, PMD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PMD_SIZE)) return 0; if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) return 0; return pmd_set_huge(pmd, phys_addr, prot); } static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PMD_MODIFIED; continue; } if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < PUD_SHIFT) return 0; if (!arch_vmap_pud_supported(prot)) return 0; if ((end - addr) != PUD_SIZE) return 0; if (!IS_ALIGNED(addr, PUD_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, PUD_SIZE)) return 0; if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) return 0; return pud_set_huge(pud, phys_addr, prot); } static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_PUD_MODIFIED; continue; } if (vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (pud++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { if (max_page_shift < P4D_SHIFT) return 0; if (!arch_vmap_p4d_supported(prot)) return 0; if ((end - addr) != P4D_SIZE) return 0; if (!IS_ALIGNED(addr, P4D_SIZE)) return 0; if (!IS_ALIGNED(phys_addr, P4D_SIZE)) return 0; if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) return 0; return p4d_set_huge(p4d, phys_addr, prot); } static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, max_page_shift)) { *mask |= PGTBL_P4D_MODIFIED; continue; } if (vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask)) return -ENOMEM; } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); return 0; } static int vmap_range_noflush(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int max_page_shift) { pgd_t *pgd; unsigned long start; unsigned long next; int err; pgtbl_mod_mask mask = 0; might_sleep(); BUG_ON(addr >= end); start = addr; pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, max_page_shift, &mask); if (err) break; } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return err; } int vmap_page_range(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot) { int err; err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), ioremap_max_page_shift); flush_cache_vmap(addr, end); if (!err) err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, ioremap_max_page_shift); return err; } int ioremap_page_range(unsigned long addr, unsigned long end, phys_addr_t phys_addr, pgprot_t prot) { struct vm_struct *area; area = find_vm_area((void *)addr); if (!area || !(area->flags & VM_IOREMAP)) { WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); return -EINVAL; } if (addr != (unsigned long)area->addr || (void *)end != area->addr + get_vm_area_size(area)) { WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", addr, end, (long)area->addr, (long)area->addr + get_vm_area_size(area)); return -ERANGE; } return vmap_page_range(addr, end, phys_addr, prot); } static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; } static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); cleared = pmd_clear_huge(pmd); if (cleared || pmd_bad(*pmd)) *mask |= PGTBL_PMD_MODIFIED; if (cleared) continue; if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next, mask); cond_resched(); } while (pmd++, addr = next, addr != end); } static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int cleared; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); cleared = pud_clear_huge(pud); if (cleared || pud_bad(*pud)) *mask |= PGTBL_PUD_MODIFIED; if (cleared) continue; if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); p4d_clear_huge(p4d); if (p4d_bad(*p4d)) *mask |= PGTBL_P4D_MODIFIED; if (p4d_none_or_clear_bad(p4d)) continue; vunmap_pud_range(p4d, addr, next, mask); } while (p4d++, addr = next, addr != end); } /* * vunmap_range_noflush is similar to vunmap_range, but does not * flush caches or TLBs. * * The caller is responsible for calling flush_cache_vmap() before calling * this function, and flush_tlb_kernel_range after it has returned * successfully (and before the addresses are expected to cause a page fault * or be re-mapped for something else, if TLB flushes are being delayed or * coalesced). * * This is an internal function only. Do not use outside mm/. */ void __vunmap_range_noflush(unsigned long start, unsigned long end) { unsigned long next; pgd_t *pgd; unsigned long addr = start; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); } void vunmap_range_noflush(unsigned long start, unsigned long end) { kmsan_vunmap_range_noflush(start, end); __vunmap_range_noflush(start, end); } /** * vunmap_range - unmap kernel virtual addresses * @addr: start of the VM area to unmap * @end: end of the VM area to unmap (non-inclusive) * * Clears any present PTEs in the virtual address range, flushes TLBs and * caches. Any subsequent access to the address before it has been re-mapped * is a kernel bug. */ void vunmap_range(unsigned long addr, unsigned long end) { flush_cache_vunmap(addr, end); vunmap_range_noflush(addr, end); flush_tlb_kernel_range(addr, end); } static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pte_t *pte; /* * nr is a running index into the array which helps higher level * callers keep track of where we're up to. */ pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { struct page *page = pages[*nr]; if (WARN_ON(!pte_none(ptep_get(pte)))) return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; if (WARN_ON(!pfn_valid(page_to_pfn(page)))) return -EINVAL; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (p4d++, addr = next, addr != end); return 0; } static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages) { unsigned long start = addr; pgd_t *pgd; unsigned long next; int err = 0; int nr = 0; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) return err; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return 0; } /* * vmap_pages_range_noflush is similar to vmap_pages_range, but does not * flush caches. * * The caller is responsible for calling flush_cache_vmap() after this * function returns successfully and before the addresses are accessed. * * This is an internal function only. Do not use outside mm/. */ int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { unsigned int i, nr = (end - addr) >> PAGE_SHIFT; WARN_ON(page_shift < PAGE_SHIFT); if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || page_shift == PAGE_SHIFT) return vmap_small_pages_range_noflush(addr, end, prot, pages); for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { int err; err = vmap_range_noflush(addr, addr + (1UL << page_shift), page_to_phys(pages[i]), prot, page_shift); if (err) return err; addr += 1UL << page_shift; } return 0; } int vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); if (ret) return ret; return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); } /** * vmap_pages_range - map pages to a kernel virtual address * @addr: start of the VM area to map * @end: end of the VM area to map (non-inclusive) * @prot: page protection flags to use * @pages: pages to map (always PAGE_SIZE pages) * @page_shift: maximum shift that the pages may be mapped with, @pages must * be aligned and contiguous up to at least this shift. * * RETURNS: * 0 on success, -errno on failure. */ static int vmap_pages_range(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { int err; err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); flush_cache_vmap(addr, end); return err; } static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, unsigned long end) { might_sleep(); if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) return -EINVAL; if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) return -EINVAL; if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) return -EINVAL; if ((end - start) >> PAGE_SHIFT > totalram_pages()) return -E2BIG; if (start < (unsigned long)area->addr || (void *)end > area->addr + get_vm_area_size(area)) return -ERANGE; return 0; } /** * vm_area_map_pages - map pages inside given sparse vm_area * @area: vm_area * @start: start address inside vm_area * @end: end address inside vm_area * @pages: pages to map (always PAGE_SIZE pages) */ int vm_area_map_pages(struct vm_struct *area, unsigned long start, unsigned long end, struct page **pages) { int err; err = check_sparse_vm_area(area, start, end); if (err) return err; return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); } /** * vm_area_unmap_pages - unmap pages inside given sparse vm_area * @area: vm_area * @start: start address inside vm_area * @end: end address inside vm_area */ void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, unsigned long end) { if (check_sparse_vm_area(area, start, end)) return; vunmap_range(start, end); } int is_vmalloc_or_module_addr(const void *x) { /* * ARM, x86-64 and sparc64 put modules in a special place, * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) unsigned long addr = (unsigned long)kasan_reset_tag(x); if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); /* * Walk a vmap address to the struct page it maps. Huge vmap mappings will * return the tail page that corresponds to the base page address, which * matches small vmap mappings. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for * architectures that do not vmalloc module space */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); if (pgd_none(*pgd)) return NULL; if (WARN_ON_ONCE(pgd_leaf(*pgd))) return NULL; /* XXX: no allowance for huge pgd */ if (WARN_ON_ONCE(pgd_bad(*pgd))) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; if (p4d_leaf(*p4d)) return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(p4d_bad(*p4d))) return NULL; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return NULL; if (pud_leaf(*pud)) return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pud_bad(*pud))) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return NULL; if (pmd_leaf(*pmd)) return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); if (WARN_ON_ONCE(pmd_bad(*pmd))) return NULL; ptep = pte_offset_kernel(pmd, addr); pte = ptep_get(ptep); if (pte_present(pte)) page = pte_page(pte); return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 static DEFINE_SPINLOCK(free_vmap_area_lock); static bool vmap_initialized __read_mostly; /* * This kmem_cache is used for vmap_area objects. Instead of * allocating from slab we reuse an object from this cache to * make things faster. Especially in "no edge" splitting of * free block. */ static struct kmem_cache *vmap_area_cachep; /* * This linked list is used in pair with free_vmap_area_root. * It gives O(1) access to prev/next to perform fast coalescing. */ static LIST_HEAD(free_vmap_area_list); /* * This augment red-black tree represents the free vmap space. * All vmap_area objects in this tree are sorted by va->va_start * address. It is used for allocation and merging when a vmap * object is released. * * Each vmap_area node contains a maximum available free block * of its sub-tree, right or left. Therefore it is possible to * find a lowest match of free area. */ static struct rb_root free_vmap_area_root = RB_ROOT; /* * Preload a CPU with one object for "no edge" split case. The * aim is to get rid of allocations from the atomic context, thus * to use more permissive allocation masks. */ static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); /* * This structure defines a single, solid model where a list and * rb-tree are part of one entity protected by the lock. Nodes are * sorted in ascending order, thus for O(1) access to left/right * neighbors a list is used as well as for sequential traversal. */ struct rb_list { struct rb_root root; struct list_head head; spinlock_t lock; }; /* * A fast size storage contains VAs up to 1M size. A pool consists * of linked between each other ready to go VAs of certain sizes. * An index in the pool-array corresponds to number of pages + 1. */ #define MAX_VA_SIZE_PAGES 256 struct vmap_pool { struct list_head head; unsigned long len; }; /* * An effective vmap-node logic. Users make use of nodes instead * of a global heap. It allows to balance an access and mitigate * contention. */ static struct vmap_node { /* Simple size segregated storage. */ struct vmap_pool pool[MAX_VA_SIZE_PAGES]; spinlock_t pool_lock; bool skip_populate; /* Bookkeeping data of this node. */ struct rb_list busy; struct rb_list lazy; /* * Ready-to-free areas. */ struct list_head purge_list; struct work_struct purge_work; unsigned long nr_purged; } single; /* * Initial setup consists of one single node, i.e. a balancing * is fully disabled. Later on, after vmap is initialized these * parameters are updated based on a system capacity. */ static struct vmap_node *vmap_nodes = &single; static __read_mostly unsigned int nr_vmap_nodes = 1; static __read_mostly unsigned int vmap_zone_size = 1; static inline unsigned int addr_to_node_id(unsigned long addr) { return (addr / vmap_zone_size) % nr_vmap_nodes; } static inline struct vmap_node * addr_to_node(unsigned long addr) { return &vmap_nodes[addr_to_node_id(addr)]; } static inline struct vmap_node * id_to_node(unsigned int id) { return &vmap_nodes[id % nr_vmap_nodes]; } /* * We use the value 0 to represent "no node", that is why * an encoded value will be the node-id incremented by 1. * It is always greater then 0. A valid node_id which can * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id * is not valid 0 is returned. */ static unsigned int encode_vn_id(unsigned int node_id) { /* Can store U8_MAX [0:254] nodes. */ if (node_id < nr_vmap_nodes) return (node_id + 1) << BITS_PER_BYTE; /* Warn and no node encoded. */ WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); return 0; } /* * Returns an encoded node-id, the valid range is within * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is * returned if extracted data is wrong. */ static unsigned int decode_vn_id(unsigned int val) { unsigned int node_id = (val >> BITS_PER_BYTE) - 1; /* Can store U8_MAX [0:254] nodes. */ if (node_id < nr_vmap_nodes) return node_id; /* If it was _not_ zero, warn. */ WARN_ONCE(node_id != UINT_MAX, "Decode wrong node id (%d)\n", node_id); return nr_vmap_nodes; } static bool is_vn_id_valid(unsigned int node_id) { if (node_id < nr_vmap_nodes) return true; return false; } static __always_inline unsigned long va_size(struct vmap_area *va) { return (va->va_end - va->va_start); } static __always_inline unsigned long get_subtree_max_size(struct rb_node *node) { struct vmap_area *va; va = rb_entry_safe(node, struct vmap_area, rb_node); return va ? va->subtree_max_size : 0; } RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) static void reclaim_and_purge_vmap_areas(void); static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); static void drain_vmap_area_work(struct work_struct *work); static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); static atomic_long_t nr_vmalloc_pages; unsigned long vmalloc_nr_pages(void) { return atomic_long_read(&nr_vmalloc_pages); } static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) { struct rb_node *n = root->rb_node; addr = (unsigned long)kasan_reset_tag((void *)addr); while (n) { struct vmap_area *va; va = rb_entry(n, struct vmap_area, rb_node); if (addr < va->va_start) n = n->rb_left; else if (addr >= va->va_end) n = n->rb_right; else return va; } return NULL; } /* Look up the first VA which satisfies addr < va_end, NULL if none. */ static struct vmap_area * __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) { struct vmap_area *va = NULL; struct rb_node *n = root->rb_node; addr = (unsigned long)kasan_reset_tag((void *)addr); while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end > addr) { va = tmp; if (tmp->va_start <= addr) break; n = n->rb_left; } else n = n->rb_right; } return va; } /* * Returns a node where a first VA, that satisfies addr < va_end, resides. * If success, a node is locked. A user is responsible to unlock it when a * VA is no longer needed to be accessed. * * Returns NULL if nothing found. */ static struct vmap_node * find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) { unsigned long va_start_lowest; struct vmap_node *vn; int i; repeat: for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); if (*va) if (!va_start_lowest || (*va)->va_start < va_start_lowest) va_start_lowest = (*va)->va_start; spin_unlock(&vn->busy.lock); } /* * Check if found VA exists, it might have gone away. In this case we * repeat the search because a VA has been removed concurrently and we * need to proceed to the next one, which is a rare case. */ if (va_start_lowest) { vn = addr_to_node(va_start_lowest); spin_lock(&vn->busy.lock); *va = __find_vmap_area(va_start_lowest, &vn->busy.root); if (*va) return vn; spin_unlock(&vn->busy.lock); goto repeat; } return NULL; } /* * This function returns back addresses of parent node * and its left or right link for further processing. * * Otherwise NULL is returned. In that case all further * steps regarding inserting of conflicting overlap range * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, struct rb_root *root, struct rb_node *from, struct rb_node **parent) { struct vmap_area *tmp_va; struct rb_node **link; if (root) { link = &root->rb_node; if (unlikely(!*link)) { *parent = NULL; return link; } } else { link = &from; } /* * Go to the bottom of the tree. When we hit the last point * we end up with parent rb_node and correct direction, i name * it link, where the new va->rb_node will be attached to. */ do { tmp_va = rb_entry(*link, struct vmap_area, rb_node); /* * During the traversal we also do some sanity check. * Trigger the BUG() if there are sides(left/right) * or full overlaps. */ if (va->va_end <= tmp_va->va_start) link = &(*link)->rb_left; else if (va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; else { WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); return NULL; } } while (*link); *parent = &tmp_va->rb_node; return link; } static __always_inline struct list_head * get_va_next_sibling(struct rb_node *parent, struct rb_node **link) { struct list_head *list; if (unlikely(!parent)) /* * The red-black tree where we try to find VA neighbors * before merging or inserting is empty, i.e. it means * there is no free vmap space. Normally it does not * happen but we handle this case anyway. */ return NULL; list = &rb_entry(parent, struct vmap_area, rb_node)->list; return (&parent->rb_right == link ? list->next : list); } static __always_inline void __link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head, bool augment) { /* * VA is still not in the list, but we can * identify its future previous list_head node. */ if (likely(parent)) { head = &rb_entry(parent, struct vmap_area, rb_node)->list; if (&parent->rb_right != link) head = head->prev; } /* Insert to the rb-tree */ rb_link_node(&va->rb_node, parent, link); if (augment) { /* * Some explanation here. Just perform simple insertion * to the tree. We do not set va->subtree_max_size to * its current size before calling rb_insert_augmented(). * It is because we populate the tree from the bottom * to parent levels when the node _is_ in the tree. * * Therefore we set subtree_max_size to zero after insertion, * to let __augment_tree_propagate_from() puts everything to * the correct order later on. */ rb_insert_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); va->subtree_max_size = 0; } else { rb_insert_color(&va->rb_node, root); } /* Address-sort this list */ list_add(&va->list, head); } static __always_inline void link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { __link_va(va, root, parent, link, head, false); } static __always_inline void link_va_augment(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { __link_va(va, root, parent, link, head, true); } static __always_inline void __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) { if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) return; if (augment) rb_erase_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); else rb_erase(&va->rb_node, root); list_del_init(&va->list); RB_CLEAR_NODE(&va->rb_node); } static __always_inline void unlink_va(struct vmap_area *va, struct rb_root *root) { __unlink_va(va, root, false); } static __always_inline void unlink_va_augment(struct vmap_area *va, struct rb_root *root) { __unlink_va(va, root, true); } #if DEBUG_AUGMENT_PROPAGATE_CHECK /* * Gets called when remove the node and rotate. */ static __always_inline unsigned long compute_subtree_max_size(struct vmap_area *va) { return max3(va_size(va), get_subtree_max_size(va->rb_node.rb_left), get_subtree_max_size(va->rb_node.rb_right)); } static void augment_tree_propagate_check(void) { struct vmap_area *va; unsigned long computed_size; list_for_each_entry(va, &free_vmap_area_list, list) { computed_size = compute_subtree_max_size(va); if (computed_size != va->subtree_max_size) pr_emerg("tree is corrupted: %lu, %lu\n", va_size(va), va->subtree_max_size); } } #endif /* * This function populates subtree_max_size from bottom to upper * levels starting from VA point. The propagation must be done * when VA size is modified by changing its va_start/va_end. Or * in case of newly inserting of VA to the tree. * * It means that __augment_tree_propagate_from() must be called: * - After VA has been inserted to the tree(free path); * - After VA has been shrunk(allocation path); * - After VA has been increased(merging path). * * Please note that, it does not mean that upper parent nodes * and their subtree_max_size are recalculated all the time up * to the root node. * * 4--8 * /\ * / \ * / \ * 2--2 8--8 * * For example if we modify the node 4, shrinking it to 2, then * no any modification is required. If we shrink the node 2 to 1 * its subtree_max_size is updated only, and set to 1. If we shrink * the node 8 to 6, then its subtree_max_size is set to 6 and parent * node becomes 4--6. */ static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { /* * Populate the tree from bottom towards the root until * the calculated maximum available size of checked node * is equal to its current one. */ free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK augment_tree_propagate_check(); #endif } static void insert_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); if (link) link_va(va, root, parent, link, head); } static void insert_vmap_area_augment(struct vmap_area *va, struct rb_node *from, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; if (from) link = find_va_links(va, NULL, from, &parent); else link = find_va_links(va, root, NULL, &parent); if (link) { link_va_augment(va, root, parent, link, head); augment_tree_propagate_from(va); } } /* * Merge de-allocated chunk of VA memory with previous * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. * * Please note, it can return NULL in case of overlap * ranges, followed by WARN() report. Despite it is a * buggy behaviour, a system can be alive and keep * ongoing. */ static __always_inline struct vmap_area * __merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head, bool augment) { struct vmap_area *sibling; struct list_head *next; struct rb_node **link; struct rb_node *parent; bool merged = false; /* * Find a place in the tree where VA potentially will be * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); if (!link) return NULL; /* * Get next node of VA to check if merging can be done. */ next = get_va_next_sibling(parent, link); if (unlikely(next == NULL)) goto insert; /* * start end * | | * |<------VA------>|<-----Next----->| * | | * start end */ if (next != head) { sibling = list_entry(next, struct vmap_area, list); if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } /* * start end * | | * |<-----Prev----->|<------VA------>| * | | * start end */ if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { /* * If both neighbors are coalesced, it is important * to unlink the "next" node first, followed by merging * with "previous" one. Otherwise the tree might not be * fully populated if a sibling's augmented value is * "normalized" because of rotation operations. */ if (merged) __unlink_va(va, root, augment); sibling->va_end = va->va_end; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } insert: if (!merged) __link_va(va, root, parent, link, head, augment); return va; } static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { return __merge_or_add_vmap_area(va, root, head, false); } static __always_inline struct vmap_area * merge_or_add_vmap_area_augment(struct vmap_area *va, struct rb_root *root, struct list_head *head) { va = __merge_or_add_vmap_area(va, root, head, true); if (va) augment_tree_propagate_from(va); return va; } static __always_inline bool is_within_this_va(struct vmap_area *va, unsigned long size, unsigned long align, unsigned long vstart) { unsigned long nva_start_addr; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Can be overflowed due to big size or alignment. */ if (nva_start_addr + size < nva_start_addr || nva_start_addr < vstart) return false; return (nva_start_addr + size <= va->va_end); } /* * Find the first free block(lowest start address) in the tree, * that will accomplish the request corresponding to passing * parameters. Please note, with an alignment bigger than PAGE_SIZE, * a search length is adjusted to account for worst case alignment * overhead. */ static __always_inline struct vmap_area * find_vmap_lowest_match(struct rb_root *root, unsigned long size, unsigned long align, unsigned long vstart, bool adjust_search_size) { struct vmap_area *va; struct rb_node *node; unsigned long length; /* Start from the root. */ node = root->rb_node; /* Adjust the search size for alignment overhead. */ length = adjust_search_size ? size + align - 1 : size; while (node) { va = rb_entry(node, struct vmap_area, rb_node); if (get_subtree_max_size(node->rb_left) >= length && vstart < va->va_start) { node = node->rb_left; } else { if (is_within_this_va(va, size, align, vstart)) return va; /* * Does not make sense to go deeper towards the right * sub-tree if it does not have a free block that is * equal or bigger to the requested search length. */ if (get_subtree_max_size(node->rb_right) >= length) { node = node->rb_right; continue; } /* * OK. We roll back and find the first right sub-tree, * that will satisfy the search criteria. It can happen * due to "vstart" restriction or an alignment overhead * that is bigger then PAGE_SIZE. */ while ((node = rb_parent(node))) { va = rb_entry(node, struct vmap_area, rb_node); if (is_within_this_va(va, size, align, vstart)) return va; if (get_subtree_max_size(node->rb_right) >= length && vstart <= va->va_start) { /* * Shift the vstart forward. Please note, we update it with * parent's start address adding "1" because we do not want * to enter same sub-tree after it has already been checked * and no suitable free block found there. */ vstart = va->va_start + 1; node = node->rb_right; break; } } } } return NULL; } #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK #include static struct vmap_area * find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; list_for_each_entry(va, head, list) { if (!is_within_this_va(va, size, align, vstart)) continue; return va; } return NULL; } static void find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align) { struct vmap_area *va_1, *va_2; unsigned long vstart; unsigned int rnd; get_random_bytes(&rnd, sizeof(rnd)); vstart = VMALLOC_START + rnd; va_1 = find_vmap_lowest_match(root, size, align, vstart, false); va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); if (va_1 != va_2) pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", va_1, va_2, vstart); } #endif enum fit_type { NOTHING_FIT = 0, FL_FIT_TYPE = 1, /* full fit */ LE_FIT_TYPE = 2, /* left edge fit */ RE_FIT_TYPE = 3, /* right edge fit */ NE_FIT_TYPE = 4 /* no edge fit */ }; static __always_inline enum fit_type classify_va_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { enum fit_type type; /* Check if it is within VA. */ if (nva_start_addr < va->va_start || nva_start_addr + size > va->va_end) return NOTHING_FIT; /* Now classify. */ if (va->va_start == nva_start_addr) { if (va->va_end == nva_start_addr + size) type = FL_FIT_TYPE; else type = LE_FIT_TYPE; } else if (va->va_end == nva_start_addr + size) { type = RE_FIT_TYPE; } else { type = NE_FIT_TYPE; } return type; } static __always_inline int va_clip(struct rb_root *root, struct list_head *head, struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { struct vmap_area *lva = NULL; enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); if (type == FL_FIT_TYPE) { /* * No need to split VA, it fully fits. * * | | * V NVA V * |---------------| */ unlink_va_augment(va, root); kmem_cache_free(vmap_area_cachep, va); } else if (type == LE_FIT_TYPE) { /* * Split left edge of fit VA. * * | | * V NVA V R * |-------|-------| */ va->va_start += size; } else if (type == RE_FIT_TYPE) { /* * Split right edge of fit VA. * * | | * L V NVA V * |-------|-------| */ va->va_end = nva_start_addr; } else if (type == NE_FIT_TYPE) { /* * Split no edge of fit VA. * * | | * L V NVA V R * |---|-------|---| */ lva = __this_cpu_xchg(ne_fit_preload_node, NULL); if (unlikely(!lva)) { /* * For percpu allocator we do not do any pre-allocation * and leave it as it is. The reason is it most likely * never ends up with NE_FIT_TYPE splitting. In case of * percpu allocations offsets and sizes are aligned to * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE * are its main fitting cases. * * There are a few exceptions though, as an example it is * a first allocation (early boot up) when we have "one" * big free space that has to be split. * * Also we can hit this path in case of regular "vmap" * allocations, if "this" current CPU was not preloaded. * See the comment in alloc_vmap_area() why. If so, then * GFP_NOWAIT is used instead to get an extra object for * split purpose. That is rare and most time does not * occur. * * What happens if an allocation gets failed. Basically, * an "overflow" path is triggered to purge lazily freed * areas to free some memory, then, the "retry" path is * triggered to repeat one more time. See more details * in alloc_vmap_area() function. */ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); if (!lva) return -1; } /* * Build the remainder. */ lva->va_start = va->va_start; lva->va_end = nva_start_addr; /* * Shrink this VA to remaining size. */ va->va_start = nva_start_addr + size; } else { return -1; } if (type != FL_FIT_TYPE) { augment_tree_propagate_from(va); if (lva) /* type == NE_FIT_TYPE */ insert_vmap_area_augment(lva, &va->rb_node, root, head); } return 0; } static unsigned long va_alloc(struct vmap_area *va, struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { unsigned long nva_start_addr; int ret; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Check the "vend" restriction. */ if (nva_start_addr + size > vend) return vend; /* Update the free vmap_area. */ ret = va_clip(root, head, va, nva_start_addr, size); if (WARN_ON_ONCE(ret)) return vend; return nva_start_addr; } /* * Returns a start address of the newly allocated area, if success. * Otherwise a vend is returned that indicates failure. */ static __always_inline unsigned long __alloc_vmap_area(struct rb_root *root, struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { bool adjust_search_size = true; unsigned long nva_start_addr; struct vmap_area *va; /* * Do not adjust when: * a) align <= PAGE_SIZE, because it does not make any sense. * All blocks(their start addresses) are at least PAGE_SIZE * aligned anyway; * b) a short range where a requested size corresponds to exactly * specified [vstart:vend] interval and an alignment > PAGE_SIZE. * With adjusted search length an allocation would not succeed. */ if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) adjust_search_size = false; va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); if (unlikely(!va)) return vend; nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); if (nva_start_addr == vend) return vend; #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK find_vmap_lowest_match_check(root, head, size, align); #endif return nva_start_addr; } /* * Free a region of KVA allocated by alloc_vmap_area */ static void free_vmap_area(struct vmap_area *va) { struct vmap_node *vn = addr_to_node(va->va_start); /* * Remove from the busy tree/list. */ spin_lock(&vn->busy.lock); unlink_va(va, &vn->busy.root); spin_unlock(&vn->busy.lock); /* * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } static inline void preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) { struct vmap_area *va = NULL, *tmp; /* * Preload this CPU with one extra vmap_area object. It is used * when fit type of free area is NE_FIT_TYPE. It guarantees that * a CPU that does an allocation is preloaded. * * We do it in non-atomic context, thus it allows us to use more * permissive allocation masks to be more stable under low memory * condition and high memory pressure. */ if (!this_cpu_read(ne_fit_preload_node)) va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); spin_lock(lock); tmp = NULL; if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) kmem_cache_free(vmap_area_cachep, va); } static struct vmap_pool * size_to_va_pool(struct vmap_node *vn, unsigned long size) { unsigned int idx = (size - 1) / PAGE_SIZE; if (idx < MAX_VA_SIZE_PAGES) return &vn->pool[idx]; return NULL; } static bool node_pool_add_va(struct vmap_node *n, struct vmap_area *va) { struct vmap_pool *vp; vp = size_to_va_pool(n, va_size(va)); if (!vp) return false; spin_lock(&n->pool_lock); list_add(&va->list, &vp->head); WRITE_ONCE(vp->len, vp->len + 1); spin_unlock(&n->pool_lock); return true; } static struct vmap_area * node_pool_del_va(struct vmap_node *vn, unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { struct vmap_area *va = NULL; struct vmap_pool *vp; int err = 0; vp = size_to_va_pool(vn, size); if (!vp || list_empty(&vp->head)) return NULL; spin_lock(&vn->pool_lock); if (!list_empty(&vp->head)) { va = list_first_entry(&vp->head, struct vmap_area, list); if (IS_ALIGNED(va->va_start, align)) { /* * Do some sanity check and emit a warning * if one of below checks detects an error. */ err |= (va_size(va) != size); err |= (va->va_start < vstart); err |= (va->va_end > vend); if (!WARN_ON_ONCE(err)) { list_del_init(&va->list); WRITE_ONCE(vp->len, vp->len - 1); } else { va = NULL; } } else { list_move_tail(&va->list, &vp->head); va = NULL; } } spin_unlock(&vn->pool_lock); return va; } static struct vmap_area * node_alloc(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, unsigned long *addr, unsigned int *vn_id) { struct vmap_area *va; *vn_id = 0; *addr = vend; /* * Fallback to a global heap if not vmalloc or there * is only one node. */ if (vstart != VMALLOC_START || vend != VMALLOC_END || nr_vmap_nodes == 1) return NULL; *vn_id = raw_smp_processor_id() % nr_vmap_nodes; va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); *vn_id = encode_vn_id(*vn_id); if (va) *addr = va->va_start; return va; } static inline void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va_size(va); vm->caller = caller; va->vm = vm; } /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. If vm is passed in, the two will also be bound. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask, unsigned long va_flags, struct vm_struct *vm) { struct vmap_node *vn; struct vmap_area *va; unsigned long freed; unsigned long addr; unsigned int vn_id; int purged = 0; int ret; if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) return ERR_PTR(-EINVAL); if (unlikely(!vmap_initialized)) return ERR_PTR(-EBUSY); might_sleep(); /* * If a VA is obtained from a global heap(if it fails here) * it is anyway marked with this "vn_id" so it is returned * to this pool's node later. Such way gives a possibility * to populate pools based on users demand. * * On success a ready to go VA is returned. */ va = node_alloc(size, align, vstart, vend, &addr, &vn_id); if (!va) { gfp_mask = gfp_mask & GFP_RECLAIM_MASK; va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); /* * Only scan the relevant parts containing pointers to other objects * to avoid false negatives. */ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); } retry: if (addr == vend) { preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, size, align, vstart, vend); spin_unlock(&free_vmap_area_lock); } trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); /* * If an allocation fails, the "vend" address is * returned. Therefore trigger the overflow path. */ if (unlikely(addr == vend)) goto overflow; va->va_start = addr; va->va_end = addr + size; va->vm = NULL; va->flags = (va_flags | vn_id); if (vm) { vm->addr = (void *)va->va_start; vm->size = va_size(va); va->vm = vm; } vn = addr_to_node(va->va_start); spin_lock(&vn->busy.lock); insert_vmap_area(va, &vn->busy.root, &vn->busy.head); spin_unlock(&vn->busy.lock); BUG_ON(!IS_ALIGNED(va->va_start, align)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); ret = kasan_populate_vmalloc(addr, size); if (ret) { free_vmap_area(va); return ERR_PTR(ret); } return va; overflow: if (!purged) { reclaim_and_purge_vmap_areas(); purged = 1; goto retry; } freed = 0; blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); if (freed > 0) { purged = 0; goto retry; } if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", size, vstart, vend); kmem_cache_free(vmap_area_cachep, va); return ERR_PTR(-EBUSY); } int register_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); int unregister_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * * There is a tradeoff here: a larger number will cover more kernel page tables * and take slightly longer to purge, but it will linearly reduce the number of * global TLB flushes that must be performed. It would seem natural to scale * this number up linearly with the number of CPUs (because vmapping activity * could also scale linearly with the number of CPUs), however it is likely * that in practice, workloads might be constrained in other ways that mean * vmap activity will not scale linearly with CPUs. Also, I want to be * conservative and not introduce a big latency on huge systems, so go with * a less aggressive log scale. It will still be an improvement over the old * code, and it will be simple to change the scale factor if we find that it * becomes a problem on bigger systems. */ static unsigned long lazy_max_pages(void) { unsigned int log; log = fls(num_online_cpus()); return log * (32UL * 1024 * 1024 / PAGE_SIZE); } static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); /* * Serialize vmap purging. There is no actual critical section protected * by this lock, but we want to avoid concurrent calls for performance * reasons and to make the pcpu_get_vm_areas more deterministic. */ static DEFINE_MUTEX(vmap_purge_lock); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); static cpumask_t purge_nodes; static void reclaim_list_global(struct list_head *head) { struct vmap_area *va, *n; if (list_empty(head)) return; spin_lock(&free_vmap_area_lock); list_for_each_entry_safe(va, n, head, list) merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } static void decay_va_pool_node(struct vmap_node *vn, bool full_decay) { LIST_HEAD(decay_list); struct rb_root decay_root = RB_ROOT; struct vmap_area *va, *nva; unsigned long n_decay; int i; for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { LIST_HEAD(tmp_list); if (list_empty(&vn->pool[i].head)) continue; /* Detach the pool, so no-one can access it. */ spin_lock(&vn->pool_lock); list_replace_init(&vn->pool[i].head, &tmp_list); spin_unlock(&vn->pool_lock); if (full_decay) WRITE_ONCE(vn->pool[i].len, 0); /* Decay a pool by ~25% out of left objects. */ n_decay = vn->pool[i].len >> 2; list_for_each_entry_safe(va, nva, &tmp_list, list) { list_del_init(&va->list); merge_or_add_vmap_area(va, &decay_root, &decay_list); if (!full_decay) { WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); if (!--n_decay) break; } } /* * Attach the pool back if it has been partly decayed. * Please note, it is supposed that nobody(other contexts) * can populate the pool therefore a simple list replace * operation takes place here. */ if (!full_decay && !list_empty(&tmp_list)) { spin_lock(&vn->pool_lock); list_replace_init(&tmp_list, &vn->pool[i].head); spin_unlock(&vn->pool_lock); } } reclaim_list_global(&decay_list); } static void purge_vmap_node(struct work_struct *work) { struct vmap_node *vn = container_of(work, struct vmap_node, purge_work); unsigned long nr_purged_pages = 0; struct vmap_area *va, *n_va; LIST_HEAD(local_list); vn->nr_purged = 0; list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { unsigned long nr = va_size(va) >> PAGE_SHIFT; unsigned long orig_start = va->va_start; unsigned long orig_end = va->va_end; unsigned int vn_id = decode_vn_id(va->flags); list_del_init(&va->list); if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); nr_purged_pages += nr; vn->nr_purged++; if (is_vn_id_valid(vn_id) && !vn->skip_populate) if (node_pool_add_va(vn, va)) continue; /* Go back to global. */ list_add(&va->list, &local_list); } atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); reclaim_list_global(&local_list); } /* * Purges all lazily-freed vmap areas. */ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, bool full_pool_decay) { unsigned long nr_purged_areas = 0; unsigned int nr_purge_helpers; unsigned int nr_purge_nodes; struct vmap_node *vn; int i; lockdep_assert_held(&vmap_purge_lock); /* * Use cpumask to mark which node has to be processed. */ purge_nodes = CPU_MASK_NONE; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; INIT_LIST_HEAD(&vn->purge_list); vn->skip_populate = full_pool_decay; decay_va_pool_node(vn, full_pool_decay); if (RB_EMPTY_ROOT(&vn->lazy.root)) continue; spin_lock(&vn->lazy.lock); WRITE_ONCE(vn->lazy.root.rb_node, NULL); list_replace_init(&vn->lazy.head, &vn->purge_list); spin_unlock(&vn->lazy.lock); start = min(start, list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start); end = max(end, list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end); cpumask_set_cpu(i, &purge_nodes); } nr_purge_nodes = cpumask_weight(&purge_nodes); if (nr_purge_nodes > 0) { flush_tlb_kernel_range(start, end); /* One extra worker is per a lazy_max_pages() full set minus one. */ nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; for_each_cpu(i, &purge_nodes) { vn = &vmap_nodes[i]; if (nr_purge_helpers > 0) { INIT_WORK(&vn->purge_work, purge_vmap_node); if (cpumask_test_cpu(i, cpu_online_mask)) schedule_work_on(i, &vn->purge_work); else schedule_work(&vn->purge_work); nr_purge_helpers--; } else { vn->purge_work.func = NULL; purge_vmap_node(&vn->purge_work); nr_purged_areas += vn->nr_purged; } } for_each_cpu(i, &purge_nodes) { vn = &vmap_nodes[i]; if (vn->purge_work.func) { flush_work(&vn->purge_work); nr_purged_areas += vn->nr_purged; } } } trace_purge_vmap_area_lazy(start, end, nr_purged_areas); return nr_purged_areas > 0; } /* * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. */ static void reclaim_and_purge_vmap_areas(void) { mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); __purge_vmap_area_lazy(ULONG_MAX, 0, true); mutex_unlock(&vmap_purge_lock); } static void drain_vmap_area_work(struct work_struct *work) { mutex_lock(&vmap_purge_lock); __purge_vmap_area_lazy(ULONG_MAX, 0, false); mutex_unlock(&vmap_purge_lock); } /* * Free a vmap area, caller ensuring that the area has been unmapped, * unlinked and flush_cache_vunmap had been called for the correct * range previously. */ static void free_vmap_area_noflush(struct vmap_area *va) { unsigned long nr_lazy_max = lazy_max_pages(); unsigned long va_start = va->va_start; unsigned int vn_id = decode_vn_id(va->flags); struct vmap_node *vn; unsigned long nr_lazy; if (WARN_ON_ONCE(!list_empty(&va->list))) return; nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT, &vmap_lazy_nr); /* * If it was request by a certain node we would like to * return it to that node, i.e. its pool for later reuse. */ vn = is_vn_id_valid(vn_id) ? id_to_node(vn_id):addr_to_node(va->va_start); spin_lock(&vn->lazy.lock); insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); spin_unlock(&vn->lazy.lock); trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); /* After this point, we may free va at any time */ if (unlikely(nr_lazy > nr_lazy_max)) schedule_work(&drain_vmap_work); } /* * Free and unmap a vmap area */ static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); vunmap_range_noflush(va->va_start, va->va_end); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(va->va_start, va->va_end); free_vmap_area_noflush(va); } struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_node *vn; struct vmap_area *va; int i, j; if (unlikely(!vmap_initialized)) return NULL; /* * An addr_to_node_id(addr) converts an address to a node index * where a VA is located. If VA spans several zones and passed * addr is not the same as va->va_start, what is not common, we * may need to scan extra nodes. See an example: * * <----va----> * -|-----|-----|-----|-----|- * 1 2 0 1 * * VA resides in node 1 whereas it spans 1, 2 an 0. If passed * addr is within 2 or 0 nodes we should do extra work. */ i = j = addr_to_node_id(addr); do { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); va = __find_vmap_area(addr, &vn->busy.root); spin_unlock(&vn->busy.lock); if (va) return va; } while ((i = (i + 1) % nr_vmap_nodes) != j); return NULL; } static struct vmap_area *find_unlink_vmap_area(unsigned long addr) { struct vmap_node *vn; struct vmap_area *va; int i, j; /* * Check the comment in the find_vmap_area() about the loop. */ i = j = addr_to_node_id(addr); do { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); va = __find_vmap_area(addr, &vn->busy.root); if (va) unlink_va(va, &vn->busy.root); spin_unlock(&vn->busy.lock); if (va) return va; } while ((i = (i + 1) % nr_vmap_nodes) != j); return NULL; } /*** Per cpu kva allocator ***/ /* * vmap space is limited especially on 32 bit architectures. Ensure there is * room for at least 16 percpu vmap blocks per CPU. */ /* * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess * instead (we just need a rough idea) */ #if BITS_PER_LONG == 32 #define VMALLOC_SPACE (128UL*1024*1024) #else #define VMALLOC_SPACE (128UL*1024*1024*1024) #endif #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ #define VMAP_BBMAP_BITS \ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) /* * Purge threshold to prevent overeager purging of fragmented blocks for * regular operations: Purge if vb->free is less than 1/4 of the capacity. */ #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ #define VMAP_FLAGS_MASK 0x3 struct vmap_block_queue { spinlock_t lock; struct list_head free; /* * An xarray requires an extra memory dynamically to * be allocated. If it is an issue, we can use rb-tree * instead. */ struct xarray vmap_blocks; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; unsigned long free, dirty; DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); unsigned long dirty_min, dirty_max; /*< dirty range */ struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; unsigned int cpu; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* * In order to fast access to any "vmap_block" associated with a * specific address, we use a hash. * * A per-cpu vmap_block_queue is used in both ways, to serialize * an access to free block chains among CPUs(alloc path) and it * also acts as a vmap_block hash(alloc/free paths). It means we * overload it, since we already have the per-cpu array which is * used as a hash table. When used as a hash a 'cpu' passed to * per_cpu() is not actually a CPU but rather a hash index. * * A hash function is addr_to_vb_xa() which hashes any address * to a specific index(in a hash) it belongs to. This then uses a * per_cpu() macro to access an array with generated index. * * An example: * * CPU_1 CPU_2 CPU_0 * | | | * V V V * 0 10 20 30 40 50 60 * |------|------|------|------|------|------|... * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 * * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; * * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; * * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. * * This technique almost always avoids lock contention on insert/remove, * however xarray spinlocks protect against any contention that remains. */ static struct xarray * addr_to_vb_xa(unsigned long addr) { int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; /* * Please note, nr_cpu_ids points on a highest set * possible bit, i.e. we never invoke cpumask_next() * if an index points on it which is nr_cpu_ids - 1. */ if (!cpu_possible(index)) index = cpumask_next(index, cpu_possible_mask); return &per_cpu(vmap_block_queue, index).vmap_blocks; } /* * We should probably have a fallback mechanism to allocate virtual memory * out of partially filled vmap blocks. However vmap block sizing should be * fairly reasonable according to the vmalloc size, so it shouldn't be a * big problem. */ static unsigned long addr_to_vb_idx(unsigned long addr) { addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); addr /= VMAP_BLOCK_SIZE; return addr; } static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) { unsigned long addr; addr = va_start + (pages_off << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); return (void *)addr; } /** * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this * block. Of course pages number can't exceed VMAP_BBMAP_BITS * @order: how many 2^order pages should be occupied in newly allocated block * @gfp_mask: flags for the page level allocator * * Return: virtual address in a newly allocated block or ERR_PTR(-errno) */ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; struct xarray *xa; unsigned long vb_idx; int node, err; void *vaddr; node = numa_node_id(); vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, node, gfp_mask, VMAP_RAM|VMAP_BLOCK, NULL); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; /* At least something should be left free */ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); vb->free = VMAP_BBMAP_BITS - (1UL << order); vb->dirty = 0; vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; bitmap_set(vb->used_map, 0, (1UL << order)); INIT_LIST_HEAD(&vb->free_list); vb->cpu = raw_smp_processor_id(); xa = addr_to_vb_xa(va->va_start); vb_idx = addr_to_vb_idx(va->va_start); err = xa_insert(xa, vb_idx, vb, gfp_mask); if (err) { kfree(vb); free_vmap_area(va); return ERR_PTR(err); } /* * list_add_tail_rcu could happened in another core * rather than vb->cpu due to task migration, which * is safe as list_add_tail_rcu will ensure the list's * integrity together with list_for_each_rcu from read * side. */ vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); return vaddr; } static void free_vmap_block(struct vmap_block *vb) { struct vmap_node *vn; struct vmap_block *tmp; struct xarray *xa; xa = addr_to_vb_xa(vb->va->va_start); tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); vn = addr_to_node(vb->va->va_start); spin_lock(&vn->busy.lock); unlink_va(vb->va, &vn->busy.root); spin_unlock(&vn->busy.lock); free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } static bool purge_fragmented_block(struct vmap_block *vb, struct list_head *purge_list, bool force_purge) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); if (vb->free + vb->dirty != VMAP_BBMAP_BITS || vb->dirty == VMAP_BBMAP_BITS) return false; /* Don't overeagerly purge usable blocks unless requested */ if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) return false; /* prevent further allocs after releasing lock */ WRITE_ONCE(vb->free, 0); /* prevent purging it again */ WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); vb->dirty_min = 0; vb->dirty_max = VMAP_BBMAP_BITS; spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); list_add_tail(&vb->purge, purge_list); return true; } static void free_purged_blocks(struct list_head *purge_list) { struct vmap_block *vb, *n_vb; list_for_each_entry_safe(vb, n_vb, purge_list, purge) { list_del(&vb->purge); free_vmap_block(vb); } } static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long free = READ_ONCE(vb->free); unsigned long dirty = READ_ONCE(vb->dirty); if (free + dirty != VMAP_BBMAP_BITS || dirty == VMAP_BBMAP_BITS) continue; spin_lock(&vb->lock); purge_fragmented_block(vb, &purge, true); spin_unlock(&vb->lock); } rcu_read_unlock(); free_purged_blocks(&purge); } static void purge_fragmented_blocks_allcpus(void) { int cpu; for_each_possible_cpu(cpu) purge_fragmented_blocks(cpu); } static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; void *vaddr = NULL; unsigned int order; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); if (WARN_ON(size == 0)) { /* * Allocating 0 bytes isn't what caller wants since * get_order(0) returns funny result. Just warn and terminate * early. */ return ERR_PTR(-EINVAL); } order = get_order(size); rcu_read_lock(); vbq = raw_cpu_ptr(&vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; if (READ_ONCE(vb->free) < (1UL << order)) continue; spin_lock(&vb->lock); if (vb->free < (1UL << order)) { spin_unlock(&vb->lock); continue; } pages_off = VMAP_BBMAP_BITS - vb->free; vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); WRITE_ONCE(vb->free, vb->free - (1UL << order)); bitmap_set(vb->used_map, pages_off, (1UL << order)); if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } spin_unlock(&vb->lock); break; } rcu_read_unlock(); /* Allocate new block if nothing was found */ if (!vaddr) vaddr = new_vmap_block(order, gfp_mask); return vaddr; } static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; unsigned int order; struct vmap_block *vb; struct xarray *xa; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); flush_cache_vunmap(addr, addr + size); order = get_order(size); offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; xa = addr_to_vb_xa(addr); vb = xa_load(xa, addr_to_vb_idx(addr)); spin_lock(&vb->lock); bitmap_clear(vb->used_map, offset, (1UL << order)); spin_unlock(&vb->lock); vunmap_range_noflush(addr, addr + size); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); /* Expand the not yet TLB flushed dirty range */ vb->dirty_min = min(vb->dirty_min, offset); vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); free_vmap_block(vb); } else spin_unlock(&vb->lock); } static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) { LIST_HEAD(purge_list); int cpu; if (unlikely(!vmap_initialized)) return; mutex_lock(&vmap_purge_lock); for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; unsigned long idx; rcu_read_lock(); xa_for_each(&vbq->vmap_blocks, idx, vb) { spin_lock(&vb->lock); /* * Try to purge a fragmented block first. If it's * not purgeable, check whether there is dirty * space to be flushed. */ if (!purge_fragmented_block(vb, &purge_list, false) && vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { unsigned long va_start = vb->va->va_start; unsigned long s, e; s = va_start + (vb->dirty_min << PAGE_SHIFT); e = va_start + (vb->dirty_max << PAGE_SHIFT); start = min(s, start); end = max(e, end); /* Prevent that this is flushed again */ vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; flush = 1; } spin_unlock(&vb->lock); } rcu_read_unlock(); } free_purged_blocks(&purge_list); if (!__purge_vmap_area_lazy(start, end, false) && flush) flush_tlb_kernel_range(start, end); mutex_unlock(&vmap_purge_lock); } /** * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer * * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily * to amortize TLB flushing overheads. What this means is that any page you * have now, may, in a former life, have been mapped into kernel virtual * address by the vmap layer and so there might be some CPUs with TLB entries * still referencing that page (additional to the regular 1:1 kernel mapping). * * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can * be sure that none of the pages we have control over will have any aliases * from the vmap layer. */ void vm_unmap_aliases(void) { unsigned long start = ULONG_MAX, end = 0; int flush = 0; _vm_unmap_aliases(start, end, flush); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); /** * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram * @mem: the pointer returned by vm_map_ram * @count: the count passed to that vm_map_ram call (cannot unmap partial) */ void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr = (unsigned long)kasan_reset_tag(mem); struct vmap_area *va; might_sleep(); BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); BUG_ON(!PAGE_ALIGNED(addr)); kasan_poison_vmalloc(mem, size); if (likely(count <= VMAP_MAX_ALLOC)) { debug_check_no_locks_freed(mem, size); vb_free(addr, size); return; } va = find_unlink_vmap_area(addr); if (WARN_ON_ONCE(!va)) return; debug_check_no_locks_freed((void *)va->va_start, va_size(va)); free_unmap_vmap_area(va); } EXPORT_SYMBOL(vm_unmap_ram); /** * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node * * If you use this function for less than VMAP_MAX_ALLOC pages, it could be * faster than vmap so it's good. But if you mix long-life and short-life * objects with vm_map_ram(), it could consume lots of address space through * fragmentation (especially on a 32bit machine). You could see failures in * the end. Please use this function for short-lived objects. * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ void *vm_map_ram(struct page **pages, unsigned int count, int node) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; void *mem; if (likely(count <= VMAP_MAX_ALLOC)) { mem = vb_alloc(size, GFP_KERNEL); if (IS_ERR(mem)) return NULL; addr = (unsigned long)mem; } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, VMALLOC_START, VMALLOC_END, node, GFP_KERNEL, VMAP_RAM, NULL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, pages, PAGE_SHIFT) < 0) { vm_unmap_ram(mem, count); return NULL; } /* * Mark the pages as accessible, now that they are mapped. * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; static inline unsigned int vm_area_page_order(struct vm_struct *vm) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC return vm->page_order; #else return 0; #endif } static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) { #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC vm->page_order = order; #else BUG_ON(order != 0); #endif } /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add * * This function is used to add fixed kernel vm area to vmlist before * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags * should contain proper values and the other fields should be zero. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_add_early(struct vm_struct *vm) { struct vm_struct *tmp, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { if (tmp->addr >= vm->addr) { BUG_ON(tmp->addr < vm->addr + vm->size); break; } else BUG_ON(tmp->addr + tmp->size > vm->addr); } vm->next = *p; *p = vm; } /** * vm_area_register_early - register vmap area early during boot * @vm: vm_struct to register * @align: requested alignment * * This function is used to register kernel vm area before * vmalloc_init() is called. @vm->size and @vm->flags should contain * proper values on entry and other fields should be zero. On return, * vm->addr contains the allocated address. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { unsigned long addr = ALIGN(VMALLOC_START, align); struct vm_struct *cur, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { if ((unsigned long)cur->addr - addr >= vm->size) break; addr = ALIGN((unsigned long)cur->addr + cur->size, align); } BUG_ON(addr > VMALLOC_END - vm->size); vm->addr = (void *)addr; vm->next = *p; *p = vm; kasan_populate_early_vm_area_shadow(vm->addr, vm->size); } static void clear_vm_uninitialized_flag(struct vm_struct *vm) { /* * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. * Pair with smp_rmb() in show_numa_info(). */ smp_wmb(); vm->flags &= ~VM_UNINITIALIZED; } static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long shift, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; unsigned long requested_size = size; BUG_ON(in_interrupt()); size = ALIGN(size, 1ul << shift); if (unlikely(!size)) return NULL; if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; if (!(flags & VM_NO_GUARD)) size += PAGE_SIZE; area->flags = flags; area->caller = caller; va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); if (IS_ERR(va)) { kfree(area); return NULL; } /* * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a * best-effort approach, as they can be mapped outside of vmalloc code. * For VM_ALLOC mappings, the pages are marked as accessible after * getting mapped in __vmalloc_node_range(). * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ if (!(flags & VM_ALLOC)) area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, KASAN_VMALLOC_PROT_NORMAL); return area; } struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * find_vm_area - find a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and return it. * It is up to the caller to do all required locking to keep the returned * pointer valid. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (!va) return NULL; return va->vm; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; struct vm_struct *vm; might_sleep(); if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", addr)) return NULL; va = find_unlink_vmap_area((unsigned long)addr); if (!va || !va->vm) return NULL; vm = va->vm; debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); kasan_free_module_shadow(vm); kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); free_unmap_vmap_area(va); return vm; } static inline void set_area_direct_map(const struct vm_struct *area, int (*set_direct_map)(struct page *page)) { int i; /* HUGE_VMALLOC passes small pages to set_direct_map */ for (i = 0; i < area->nr_pages; i++) if (page_address(area->pages[i])) set_direct_map(area->pages[i]); } /* * Flush the vm mapping and reset the direct map. */ static void vm_reset_perms(struct vm_struct *area) { unsigned long start = ULONG_MAX, end = 0; unsigned int page_order = vm_area_page_order(area); int flush_dmap = 0; int i; /* * Find the start and end range of the direct mappings to make sure that * the vm_unmap_aliases() flush includes the direct map. */ for (i = 0; i < area->nr_pages; i += 1U << page_order) { unsigned long addr = (unsigned long)page_address(area->pages[i]); if (addr) { unsigned long page_size; page_size = PAGE_SIZE << page_order; start = min(addr, start); end = max(addr + page_size, end); flush_dmap = 1; } } /* * Set direct map to something invalid so that it won't be cached if * there are any accesses after the TLB flush, then flush the TLB and * reset the direct map permissions to the default. */ set_area_direct_map(area, set_direct_map_invalid_noflush); _vm_unmap_aliases(start, end, flush_dmap); set_area_direct_map(area, set_direct_map_default_noflush); } static void delayed_vfree_work(struct work_struct *w) { struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); struct llist_node *t, *llnode; llist_for_each_safe(llnode, t, llist_del_all(&p->list)) vfree(llnode); } /** * vfree_atomic - release memory allocated by vmalloc() * @addr: memory base address * * This one is just like vfree() but can be called in any atomic context * except NMIs. */ void vfree_atomic(const void *addr) { struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); BUG_ON(in_nmi()); kmemleak_free(addr); /* * Use raw_cpu_ptr() because this can be called from preemptible * context. Preemption is absolutely fine here, because the llist_add() * implementation is lockless, so it works even if we are adding to * another cpu's list. schedule_work() should be fine with this too. */ if (addr && llist_add((struct llist_node *)addr, &p->list)) schedule_work(&p->wq); } /** * vfree - Release memory allocated by vmalloc() * @addr: Memory base address * * Free the virtually continuous memory area starting at @addr, as obtained * from one of the vmalloc() family of APIs. This will usually also free the * physical memory underlying the virtual allocation, but that memory is * reference counted, so it will not be freed until the last user goes away. * * If @addr is NULL, no operation is performed. * * Context: * May sleep if called *not* from interrupt context. * Must not be called in NMI context (strictly speaking, it could be * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling * conventions for vfree() arch-dependent would be a really bad idea). */ void vfree(const void *addr) { struct vm_struct *vm; int i; if (unlikely(in_interrupt())) { vfree_atomic(addr); return; } BUG_ON(in_nmi()); kmemleak_free(addr); might_sleep(); if (!addr) return; vm = remove_vm_area(addr); if (unlikely(!vm)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) vm_reset_perms(vm); for (i = 0; i < vm->nr_pages; i++) { struct page *page = vm->pages[i]; BUG_ON(!page); mod_memcg_page_state(page, MEMCG_VMALLOC, -1); /* * High-order allocs for huge vmallocs are split, so * can be freed as an array of order-0 allocations */ __free_page(page); cond_resched(); } atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); kvfree(vm->pages); kfree(vm); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { struct vm_struct *vm; BUG_ON(in_interrupt()); might_sleep(); if (!addr) return; vm = remove_vm_area(addr); if (unlikely(!vm)) { WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", addr); return; } kfree(vm); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual space. * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself * (which must be kmalloc or vmalloc memory) and one reference per pages in it * are transferred from the caller to vmap(), and will be freed / dropped when * vfree() is called on the return value. * * Return: the address of the area or %NULL on failure */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; unsigned long addr; unsigned long size; /* In bytes */ might_sleep(); if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) return NULL; /* * Your top guard is someone else's bottom guard. Not having a top * guard compromises someone else's mappings too. */ if (WARN_ON_ONCE(flags & VM_NO_GUARD)) flags &= ~VM_NO_GUARD; if (count > totalram_pages()) return NULL; size = (unsigned long)count << PAGE_SHIFT; area = get_vm_area_caller(size, flags, __builtin_return_address(0)); if (!area) return NULL; addr = (unsigned long)area->addr; if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), pages, PAGE_SHIFT) < 0) { vunmap(area->addr); return NULL; } if (flags & VM_MAP_PUT_PAGES) { area->pages = pages; area->nr_pages = count; } return area->addr; } EXPORT_SYMBOL(vmap); #ifdef CONFIG_VMAP_PFN struct vmap_pfn_data { unsigned long *pfns; pgprot_t prot; unsigned int idx; }; static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) { struct vmap_pfn_data *data = private; unsigned long pfn = data->pfns[data->idx]; pte_t ptent; if (WARN_ON_ONCE(pfn_valid(pfn))) return -EINVAL; ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); set_pte_at(&init_mm, addr, pte, ptent); data->idx++; return 0; } /** * vmap_pfn - map an array of PFNs into virtually contiguous space * @pfns: array of PFNs * @count: number of pages to map * @prot: page protection for the mapping * * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns * the start address of the mapping. */ void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) { struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; struct vm_struct *area; area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, __builtin_return_address(0)); if (!area) return NULL; if (apply_to_page_range(&init_mm, (unsigned long)area->addr, count * PAGE_SIZE, vmap_pfn_apply, &data)) { free_vm_area(area); return NULL; } flush_cache_vmap((unsigned long)area->addr, (unsigned long)area->addr + count * PAGE_SIZE); return area->addr; } EXPORT_SYMBOL_GPL(vmap_pfn); #endif /* CONFIG_VMAP_PFN */ static inline unsigned int vm_area_alloc_pages(gfp_t gfp, int nid, unsigned int order, unsigned int nr_pages, struct page **pages) { unsigned int nr_allocated = 0; struct page *page; int i; /* * For order-0 pages we make use of bulk allocator, if * the page array is partly or not at all populated due * to fails, fallback to a single page allocator that is * more permissive. */ if (!order) { while (nr_allocated < nr_pages) { unsigned int nr, nr_pages_request; /* * A maximum allowed request is hard-coded and is 100 * pages per call. That is done in order to prevent a * long preemption off scenario in the bulk-allocator * so the range is [1:100]. */ nr_pages_request = min(100U, nr_pages - nr_allocated); /* memory allocation should consider mempolicy, we can't * wrongly use nearest node when nid == NUMA_NO_NODE, * otherwise memory may be allocated in only one node, * but mempolicy wants to alloc memory by interleaving. */ if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) nr = alloc_pages_bulk_array_mempolicy_noprof(gfp, nr_pages_request, pages + nr_allocated); else nr = alloc_pages_bulk_array_node_noprof(gfp, nid, nr_pages_request, pages + nr_allocated); nr_allocated += nr; cond_resched(); /* * If zero or pages were obtained partly, * fallback to a single page allocator. */ if (nr != nr_pages_request) break; } } /* High-order pages or fallback path if "bulk" fails. */ while (nr_allocated < nr_pages) { if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) break; if (nid == NUMA_NO_NODE) page = alloc_pages_noprof(gfp, order); else page = alloc_pages_node_noprof(nid, gfp, order); if (unlikely(!page)) break; /* * High-order allocations must be able to be treated as * independent small pages by callers (as they can with * small-page vmallocs). Some drivers do their own refcounting * on vmalloc_to_page() pages, some use page->mapping, * page->lru, etc. */ if (order) split_page(page, order); /* * Careful, we allocate and map page-order pages, but * tracking is done per PAGE_SIZE page so as to keep the * vm_struct APIs independent of the physical/mapped size. */ for (i = 0; i < (1U << order); i++) pages[nr_allocated + i] = page + i; cond_resched(); nr_allocated += 1U << order; } return nr_allocated; } static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, unsigned int page_shift, int node) { const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; bool nofail = gfp_mask & __GFP_NOFAIL; unsigned long addr = (unsigned long)area->addr; unsigned long size = get_vm_area_size(area); unsigned long array_size; unsigned int nr_small_pages = size >> PAGE_SHIFT; unsigned int page_order; unsigned int flags; int ret; array_size = (unsigned long)nr_small_pages * sizeof(struct page *); if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) gfp_mask |= __GFP_HIGHMEM; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, area->caller); } else { area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); } if (!area->pages) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to allocated page array size %lu", nr_small_pages * PAGE_SIZE, array_size); free_vm_area(area); return NULL; } set_vm_area_page_order(area, page_shift - PAGE_SHIFT); page_order = vm_area_page_order(area); /* * High-order nofail allocations are really expensive and * potentially dangerous (pre-mature OOM, disruptive reclaim * and compaction etc. * * Please note, the __vmalloc_node_range_noprof() falls-back * to order-0 pages if high-order attempt is unsuccessful. */ area->nr_pages = vm_area_alloc_pages((page_order ? gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, node, page_order, nr_small_pages, area->pages); atomic_long_add(area->nr_pages, &nr_vmalloc_pages); if (gfp_mask & __GFP_ACCOUNT) { int i; for (i = 0; i < area->nr_pages; i++) mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); } /* * If not enough pages were obtained to accomplish an * allocation request, free them via vfree() if any. */ if (area->nr_pages != nr_small_pages) { /* * vm_area_alloc_pages() can fail due to insufficient memory but * also:- * * - a pending fatal signal * - insufficient huge page-order pages * * Since we always retry allocations at order-0 in the huge page * case a warning for either is spurious. */ if (!fatal_signal_pending(current) && page_order == 0) warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to allocate pages", area->nr_pages * PAGE_SIZE); goto fail; } /* * page tables allocations ignore external gfp mask, enforce it * by the scope API */ if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) flags = memalloc_nofs_save(); else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) flags = memalloc_noio_save(); do { ret = vmap_pages_range(addr, addr + size, prot, area->pages, page_shift); if (nofail && (ret < 0)) schedule_timeout_uninterruptible(1); } while (nofail && (ret < 0)); if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) memalloc_nofs_restore(flags); else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) memalloc_noio_restore(flags); if (ret < 0) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, failed to map pages", area->nr_pages * PAGE_SIZE); goto fail; } return area->addr; fail: vfree(area->addr); return NULL; } /** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Please note that the full set of gfp * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all * supported. * Zone modifiers are not supported. From the reclaim modifiers * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and * __GFP_RETRY_MAYFAIL are not supported). * * __GFP_NOWARN can be used to suppress failures messages. * * Map them into contiguous kernel virtual space, using a pagetable * protection of @prot. * * Return: the address of the area or %NULL on failure */ void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller) { struct vm_struct *area; void *ret; kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; unsigned long real_size = size; unsigned long real_align = align; unsigned int shift = PAGE_SHIFT; if (WARN_ON_ONCE(!size)) return NULL; if ((size >> PAGE_SHIFT) > totalram_pages()) { warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, exceeds total pages", real_size); return NULL; } if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { unsigned long size_per_node; /* * Try huge pages. Only try for PAGE_KERNEL allocations, * others like modules don't yet expect huge pages in * their allocations due to apply_to_page_range not * supporting them. */ size_per_node = size; if (node == NUMA_NO_NODE) size_per_node /= num_online_nodes(); if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) shift = PMD_SHIFT; else shift = arch_vmap_pte_supported_shift(size_per_node); align = max(real_align, 1UL << shift); size = ALIGN(real_size, 1UL << shift); } again: area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | VM_UNINITIALIZED | vm_flags, start, end, node, gfp_mask, caller); if (!area) { bool nofail = gfp_mask & __GFP_NOFAIL; warn_alloc(gfp_mask, NULL, "vmalloc error: size %lu, vm_struct allocation failed%s", real_size, (nofail) ? ". Retrying." : ""); if (nofail) { schedule_timeout_uninterruptible(1); goto again; } goto fail; } /* * Prepare arguments for __vmalloc_area_node() and * kasan_unpoison_vmalloc(). */ if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { if (kasan_hw_tags_enabled()) { /* * Modify protection bits to allow tagging. * This must be done before mapping. */ prot = arch_vmap_pgprot_tagged(prot); /* * Skip page_alloc poisoning and zeroing for physical * pages backing VM_ALLOC mapping. Memory is instead * poisoned and zeroed by kasan_unpoison_vmalloc(). */ gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; } /* Take note that the mapping is PAGE_KERNEL. */ kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; } /* Allocate physical pages and map them into vmalloc space. */ ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); if (!ret) goto fail; /* * Mark the pages as accessible, now that they are mapped. * The condition for setting KASAN_VMALLOC_INIT should complement the * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check * to make sure that memory is initialized under the same conditions. * Tag-based KASAN modes only assign tags to normal non-executable * allocations, see __kasan_unpoison_vmalloc(). */ kasan_flags |= KASAN_VMALLOC_VM_ALLOC; if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && (gfp_mask & __GFP_SKIP_ZERO)) kasan_flags |= KASAN_VMALLOC_INIT; /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_uninitialized_flag(area); size = PAGE_ALIGN(size); if (!(vm_flags & VM_DEFER_KMEMLEAK)) kmemleak_vmalloc(area, size, gfp_mask); return area->addr; fail: if (shift > PAGE_SHIFT) { shift = PAGE_SHIFT; align = real_align; size = real_size; goto again; } return NULL; } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level allocator with * @gfp_mask flags. Map them into contiguous kernel virtual space. * * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL * and __GFP_NOFAIL are not supported * * Any use of gfp flags outside of GFP_KERNEL should be consulted * with mm people. * * Return: pointer to the allocated memory or %NULL on error */ void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller) { return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, 0, node, caller); } /* * This is only for performance analysis of vmalloc and stress purpose. * It is required by vmalloc test module, therefore do not use it other * than that. */ #ifdef CONFIG_TEST_VMALLOC_MODULE EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); #endif void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc_noprof); /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_noprof); /** * vmalloc_huge - allocate virtually contiguous memory, allow huge pages * @size: allocation size * @gfp_mask: flags for the page level allocator * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * If @size is greater than or equal to PMD_SIZE, allow using * huge pages for the memory * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); /** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_noprof); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_user_noprof(unsigned long size) { return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_user_noprof); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_node_noprof(unsigned long size, int node) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node_noprof); /** * vzalloc_node - allocate memory on a specific node with zero fill * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_node_noprof(unsigned long size, int node) { return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_node_noprof); /** * vrealloc - reallocate virtually contiguous memory; contents remain unchanged * @p: object to reallocate memory for * @size: the size to reallocate * @flags: the flags for the page level allocator * * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and * @p is not a %NULL pointer, the object pointed to is freed. * * If __GFP_ZERO logic is requested, callers must ensure that, starting with the * initial memory allocation, every subsequent call to this API for the same * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that * __GFP_ZERO is not fully honored by this API. * * In any case, the contents of the object pointed to are preserved up to the * lesser of the new and old sizes. * * This function must not be called concurrently with itself or vfree() for the * same memory allocation. * * Return: pointer to the allocated memory; %NULL if @size is zero or in case of * failure */ void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) { size_t old_size = 0; void *n; if (!size) { vfree(p); return NULL; } if (p) { struct vm_struct *vm; vm = find_vm_area(p); if (unlikely(!vm)) { WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); return NULL; } old_size = get_vm_area_size(vm); } /* * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What * would be a good heuristic for when to shrink the vm_area? */ if (size <= old_size) { /* Zero out spare memory. */ if (want_init_on_alloc(flags)) memset((void *)p + size, 0, old_size - size); return (void *)p; } /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ n = __vmalloc_noprof(size, flags); if (!n) return NULL; if (p) { memcpy(n, p, old_size); vfree(p); } return n; } #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) #else /* * 64b systems should always have either DMA or DMA32 zones. For others * GFP_DMA32 should do the right thing and use the normal zone. */ #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_noprof(unsigned long size) { return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_noprof); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_user_noprof(unsigned long size) { return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_user_noprof); /* * Atomically zero bytes in the iterator. * * Returns the number of zeroed bytes. */ static size_t zero_iter(struct iov_iter *iter, size_t count) { size_t remains = count; while (remains > 0) { size_t num, copied; num = min_t(size_t, remains, PAGE_SIZE); copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); remains -= copied; if (copied < num) break; } return count - remains; } /* * small helper routine, copy contents to iter from addr. * If the page is not present, fill zero. * * Returns the number of copied bytes. */ static size_t aligned_vread_iter(struct iov_iter *iter, const char *addr, size_t count) { size_t remains = count; struct page *page; while (remains > 0) { unsigned long offset, length; size_t copied = 0; offset = offset_in_page(addr); length = PAGE_SIZE - offset; if (length > remains) length = remains; page = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need lock. But * adding lock here means that we need to add overhead of * vmalloc()/vfree() calls for this _debug_ interface, rarely * used. Instead of that, we'll use an local mapping via * copy_page_to_iter_nofault() and accept a small overhead in * this access function. */ if (page) copied = copy_page_to_iter_nofault(page, offset, length, iter); else copied = zero_iter(iter, length); addr += copied; remains -= copied; if (copied != length) break; } return count - remains; } /* * Read from a vm_map_ram region of memory. * * Returns the number of copied bytes. */ static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, size_t count, unsigned long flags) { char *start; struct vmap_block *vb; struct xarray *xa; unsigned long offset; unsigned int rs, re; size_t remains, n; /* * If it's area created by vm_map_ram() interface directly, but * not further subdividing and delegating management to vmap_block, * handle it here. */ if (!(flags & VMAP_BLOCK)) return aligned_vread_iter(iter, addr, count); remains = count; /* * Area is split into regions and tracked with vmap_block, read out * each region and zero fill the hole between regions. */ xa = addr_to_vb_xa((unsigned long) addr); vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); if (!vb) goto finished_zero; spin_lock(&vb->lock); if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { spin_unlock(&vb->lock); goto finished_zero; } for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { size_t copied; if (remains == 0) goto finished; start = vmap_block_vaddr(vb->va->va_start, rs); if (addr < start) { size_t to_zero = min_t(size_t, start - addr, remains); size_t zeroed = zero_iter(iter, to_zero); addr += zeroed; remains -= zeroed; if (remains == 0 || zeroed != to_zero) goto finished; } /*it could start reading from the middle of used region*/ offset = offset_in_page(addr); n = ((re - rs + 1) << PAGE_SHIFT) - offset; if (n > remains) n = remains; copied = aligned_vread_iter(iter, start + offset, n); addr += copied; remains -= copied; if (copied != n) goto finished; } spin_unlock(&vb->lock); finished_zero: /* zero-fill the left dirty or free regions */ return count - remains + zero_iter(iter, remains); finished: /* We couldn't copy/zero everything */ spin_unlock(&vb->lock); return count - remains; } /** * vread_iter() - read vmalloc area in a safe way to an iterator. * @iter: the iterator to which data should be written. * @addr: vm address. * @count: number of bytes to be read. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from that area to a given buffer. If the given memory range * of [addr...addr+count) includes some valid address, data is copied to * proper area of @buf. If there are memory holes, they'll be zero-filled. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. @buf should be kernel's buffer. * * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any information, as /proc/kcore. * * Return: number of bytes for which addr and buf should be increased * (same number as @count) or %0 if [addr...addr+count) doesn't * include any intersection with valid vmalloc area */ long vread_iter(struct iov_iter *iter, const char *addr, size_t count) { struct vmap_node *vn; struct vmap_area *va; struct vm_struct *vm; char *vaddr; size_t n, size, flags, remains; unsigned long next; addr = kasan_reset_tag(addr); /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; remains = count; vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); if (!vn) goto finished_zero; /* no intersects with alive vmap_area */ if ((unsigned long)addr + remains <= va->va_start) goto finished_zero; do { size_t copied; if (remains == 0) goto finished; vm = va->vm; flags = va->flags & VMAP_FLAGS_MASK; /* * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need * be set together with VMAP_RAM. */ WARN_ON(flags == VMAP_BLOCK); if (!vm && !flags) goto next_va; if (vm && (vm->flags & VM_UNINITIALIZED)) goto next_va; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); vaddr = (char *) va->va_start; size = vm ? get_vm_area_size(vm) : va_size(va); if (addr >= vaddr + size) goto next_va; if (addr < vaddr) { size_t to_zero = min_t(size_t, vaddr - addr, remains); size_t zeroed = zero_iter(iter, to_zero); addr += zeroed; remains -= zeroed; if (remains == 0 || zeroed != to_zero) goto finished; } n = vaddr + size - addr; if (n > remains) n = remains; if (flags & VMAP_RAM) copied = vmap_ram_vread_iter(iter, addr, n, flags); else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) copied = aligned_vread_iter(iter, addr, n); else /* IOREMAP | SPARSE area is treated as memory hole */ copied = zero_iter(iter, n); addr += copied; remains -= copied; if (copied != n) goto finished; next_va: next = va->va_end; spin_unlock(&vn->busy.lock); } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); finished_zero: if (vn) spin_unlock(&vn->busy.lock); /* zero-fill memory holes */ return count - remains + zero_iter(iter, remains); finished: /* Nothing remains, or We couldn't copy/zero everything. */ if (vn) spin_unlock(&vn->busy.lock); return count - remains; } /** * remap_vmalloc_range_partial - map vmalloc pages to userspace * @vma: vma to cover * @uaddr: target user address to start at * @kaddr: virtual address of vmalloc kernel memory * @pgoff: offset from @kaddr to start at * @size: size of map area * * Returns: 0 for success, -Exxx on failure * * This function checks that @kaddr is a valid vmalloc'ed area, * and that it is big enough to cover the range starting at * @uaddr in @vma. Will return failure if that criteria isn't * met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size) { struct vm_struct *area; unsigned long off; unsigned long end_index; if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) return -EINVAL; size = PAGE_ALIGN(size); if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) return -EINVAL; area = find_vm_area(kaddr); if (!area) return -EINVAL; if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; if (check_add_overflow(size, off, &end_index) || end_index > get_vm_area_size(area)) return -EINVAL; kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); int ret; ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; kaddr += PAGE_SIZE; size -= PAGE_SIZE; } while (size > 0); vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); return 0; } /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * * Returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { return rb_entry_safe(n, struct vmap_area, rb_node); } /** * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to * @addr: target address * * Returns: vmap_area if it is found. If there is no such area * the first highest(reverse order) vmap_area is returned * i.e. va->va_start < addr && va->va_end < addr or NULL * if there are no any areas before @addr. */ static struct vmap_area * pvm_find_va_enclose_addr(unsigned long addr) { struct vmap_area *va, *tmp; struct rb_node *n; n = free_vmap_area_root.rb_node; va = NULL; while (n) { tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_start <= addr) { va = tmp; if (tmp->va_end >= addr) break; n = n->rb_right; } else { n = n->rb_left; } } return va; } /** * pvm_determine_end_from_reverse - find the highest aligned address * of free block below VMALLOC_END * @va: * in - the VA we start the search(reverse order); * out - the VA with the highest aligned end address. * @align: alignment for required highest address * * Returns: determined end address within vmap_area */ static unsigned long pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) { unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; if (likely(*va)) { list_for_each_entry_from_reverse((*va), &free_vmap_area_list, list) { addr = min((*va)->va_end & ~(align - 1), vmalloc_end); if ((*va)->va_start < addr) return addr; } } return 0; } /** * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator * @offsets: array containing offset of each area * @sizes: array containing size of each area * @nr_vms: the number of areas to allocate * @align: alignment, all entries in @offsets and @sizes must be aligned to this * * Returns: kmalloc'd vm_struct pointer array pointing to allocated * vm_structs on success, %NULL on failure * * Percpu allocator wants to use congruent vm areas so that it can * maintain the offsets among percpu areas. This function allocates * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to * be scattered pretty far, distance between two areas easily going up * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * * Despite its complicated look, this allocator is rather simple. It * does everything top-down and scans free blocks from the end looking * for matching base. While scanning, if any of the areas do not fit the * base address is pulled down to fit the area. Scanning is repeated till * all the areas fit and then all necessary data structures are inserted * and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); struct vmap_area **vas, *va; struct vm_struct **vms; int area, area2, last_area, term_area; unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; /* verify parameters and allocate data structures */ BUG_ON(offset_in_page(align) || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; /* is everything aligned properly? */ BUG_ON(!IS_ALIGNED(offsets[area], align)); BUG_ON(!IS_ALIGNED(sizes[area], align)); /* detect the area with the highest address */ if (start > offsets[last_area]) last_area = area; for (area2 = area + 1; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; BUG_ON(start2 < end && start < end2); } } last_end = offsets[last_area] + sizes[last_area]; if (vmalloc_end - vmalloc_start < last_end) { WARN_ON(true); return NULL; } vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); if (!vas || !vms) goto err_free2; for (area = 0; area < nr_vms; area++) { vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(vmalloc_end); base = pvm_determine_end_from_reverse(&va, align) - end; while (true) { /* * base might have underflowed, add last_end before * comparing. */ if (base + last_end < vmalloc_start + last_end) goto overflow; /* * Fitting base has not been found. */ if (va == NULL) goto overflow; /* * If required width exceeds current VA block, move * base downwards and then recheck. */ if (base + end > va->va_end) { base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * If this VA does not fit, move base downwards and recheck. */ if (base + start < va->va_start) { va = node_to_va(rb_prev(&va->rb_node)); base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * This area fits, move on to the previous one. If * the previous one is the terminal one, we're done. */ area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(base + end); } /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { int ret; start = base + offsets[area]; size = sizes[area]; va = pvm_find_va_enclose_addr(start); if (WARN_ON_ONCE(va == NULL)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; ret = va_clip(&free_vmap_area_root, &free_vmap_area_list, va, start, size); if (WARN_ON_ONCE(unlikely(ret))) /* It is a BUG(), but trigger recovery instead. */ goto recovery; /* Allocated area. */ va = vas[area]; va->va_start = start; va->va_end = start + size; } spin_unlock(&free_vmap_area_lock); /* populate the kasan shadow space */ for (area = 0; area < nr_vms; area++) { if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) goto err_free_shadow; } /* insert all vm's */ for (area = 0; area < nr_vms; area++) { struct vmap_node *vn = addr_to_node(vas[area]->va_start); spin_lock(&vn->busy.lock); insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); spin_unlock(&vn->busy.lock); } /* * Mark allocated areas as accessible. Do it now as a best-effort * approach, as they can be mapped outside of vmalloc code. * With hardware tag-based KASAN, marking is skipped for * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). */ for (area = 0; area < nr_vms; area++) vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); kfree(vas); return vms; recovery: /* * Remove previously allocated areas. There is no * need in removing these areas from the busy tree, * because they are inserted only on the final step * and when pcpu_get_vm_areas() is success. */ while (area--) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; } overflow: spin_unlock(&free_vmap_area_lock); if (!purged) { reclaim_and_purge_vmap_areas(); purged = true; /* Before "retry", check if we recover. */ for (area = 0; area < nr_vms; area++) { if (vas[area]) continue; vas[area] = kmem_cache_zalloc( vmap_area_cachep, GFP_KERNEL); if (!vas[area]) goto err_free; } goto retry; } err_free: for (area = 0; area < nr_vms; area++) { if (vas[area]) kmem_cache_free(vmap_area_cachep, vas[area]); kfree(vms[area]); } err_free2: kfree(vas); kfree(vms); return NULL; err_free_shadow: spin_lock(&free_vmap_area_lock); /* * We release all the vmalloc shadows, even the ones for regions that * hadn't been successfully added. This relies on kasan_release_vmalloc * being able to tolerate this case. */ for (area = 0; area < nr_vms; area++) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } spin_unlock(&free_vmap_area_lock); kfree(vas); kfree(vms); return NULL; } /** * pcpu_free_vm_areas - free vmalloc areas for percpu allocator * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() * @nr_vms: the number of allocated areas * * Free vm_structs and the array allocated by pcpu_get_vm_areas(). */ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { int i; for (i = 0; i < nr_vms; i++) free_vm_area(vms[i]); kfree(vms); } #endif /* CONFIG_SMP */ #ifdef CONFIG_PRINTK bool vmalloc_dump_obj(void *object) { const void *caller; struct vm_struct *vm; struct vmap_area *va; struct vmap_node *vn; unsigned long addr; unsigned int nr_pages; addr = PAGE_ALIGN((unsigned long) object); vn = addr_to_node(addr); if (!spin_trylock(&vn->busy.lock)) return false; va = __find_vmap_area(addr, &vn->busy.root); if (!va || !va->vm) { spin_unlock(&vn->busy.lock); return false; } vm = va->vm; addr = (unsigned long) vm->addr; caller = vm->caller; nr_pages = vm->nr_pages; spin_unlock(&vn->busy.lock); pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", nr_pages, addr, caller); return true; } #endif #ifdef CONFIG_PROC_FS static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (IS_ENABLED(CONFIG_NUMA)) { unsigned int nr, *counters = m->private; unsigned int step = 1U << vm_area_page_order(v); if (!counters) return; if (v->flags & VM_UNINITIALIZED) return; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr += step) counters[page_to_nid(v->pages[nr])] += step; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); } } static void show_purge_info(struct seq_file *m) { struct vmap_node *vn; struct vmap_area *va; int i; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->lazy.lock); list_for_each_entry(va, &vn->lazy.head, list) { seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", (void *)va->va_start, (void *)va->va_end, va_size(va)); } spin_unlock(&vn->lazy.lock); } } static int vmalloc_info_show(struct seq_file *m, void *p) { struct vmap_node *vn; struct vmap_area *va; struct vm_struct *v; int i; for (i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; spin_lock(&vn->busy.lock); list_for_each_entry(va, &vn->busy.head, list) { if (!va->vm) { if (va->flags & VMAP_RAM) seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", (void *)va->va_start, (void *)va->va_end, va_size(va)); continue; } v = va->vm; seq_printf(m, "0x%pK-0x%pK %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) seq_printf(m, " %pS", v->caller); if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%pa", &v->phys_addr); if (v->flags & VM_IOREMAP) seq_puts(m, " ioremap"); if (v->flags & VM_SPARSE) seq_puts(m, " sparse"); if (v->flags & VM_ALLOC) seq_puts(m, " vmalloc"); if (v->flags & VM_MAP) seq_puts(m, " vmap"); if (v->flags & VM_USERMAP) seq_puts(m, " user"); if (v->flags & VM_DMA_COHERENT) seq_puts(m, " dma-coherent"); if (is_vmalloc_addr(v->pages)) seq_puts(m, " vpages"); show_numa_info(m, v); seq_putc(m, '\n'); } spin_unlock(&vn->busy.lock); } /* * As a final step, dump "unpurged" areas. */ show_purge_info(m); return 0; } static int __init proc_vmalloc_init(void) { void *priv_data = NULL; if (IS_ENABLED(CONFIG_NUMA)) priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); proc_create_single_data("vmallocinfo", 0400, NULL, vmalloc_info_show, priv_data); return 0; } module_init(proc_vmalloc_init); #endif static void __init vmap_init_free_space(void) { unsigned long vmap_start = 1; const unsigned long vmap_end = ULONG_MAX; struct vmap_area *free; struct vm_struct *busy; /* * B F B B B F * -|-----|.....|-----|-----|-----|.....|- * | The KVA space | * |<--------------------------------->| */ for (busy = vmlist; busy; busy = busy->next) { if ((unsigned long) busy->addr - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = (unsigned long) busy->addr; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } vmap_start = (unsigned long) busy->addr + busy->size; } if (vmap_end - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = vmap_end; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } } static void vmap_init_nodes(void) { struct vmap_node *vn; int i, n; #if BITS_PER_LONG == 64 /* * A high threshold of max nodes is fixed and bound to 128, * thus a scale factor is 1 for systems where number of cores * are less or equal to specified threshold. * * As for NUMA-aware notes. For bigger systems, for example * NUMA with multi-sockets, where we can end-up with thousands * of cores in total, a "sub-numa-clustering" should be added. * * In this case a NUMA domain is considered as a single entity * with dedicated sub-nodes in it which describe one group or * set of cores. Therefore a per-domain purging is supposed to * be added as well as a per-domain balancing. */ n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); if (n > 1) { vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); if (vn) { /* Node partition is 16 pages. */ vmap_zone_size = (1 << 4) * PAGE_SIZE; nr_vmap_nodes = n; vmap_nodes = vn; } else { pr_err("Failed to allocate an array. Disable a node layer\n"); } } #endif for (n = 0; n < nr_vmap_nodes; n++) { vn = &vmap_nodes[n]; vn->busy.root = RB_ROOT; INIT_LIST_HEAD(&vn->busy.head); spin_lock_init(&vn->busy.lock); vn->lazy.root = RB_ROOT; INIT_LIST_HEAD(&vn->lazy.head); spin_lock_init(&vn->lazy.lock); for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { INIT_LIST_HEAD(&vn->pool[i].head); WRITE_ONCE(vn->pool[i].len, 0); } spin_lock_init(&vn->pool_lock); } } static unsigned long vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long count; struct vmap_node *vn; int i, j; for (count = 0, i = 0; i < nr_vmap_nodes; i++) { vn = &vmap_nodes[i]; for (j = 0; j < MAX_VA_SIZE_PAGES; j++) count += READ_ONCE(vn->pool[j].len); } return count ? count : SHRINK_EMPTY; } static unsigned long vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { int i; for (i = 0; i < nr_vmap_nodes; i++) decay_va_pool_node(&vmap_nodes[i], true); return SHRINK_STOP; } void __init vmalloc_init(void) { struct shrinker *vmap_node_shrinker; struct vmap_area *va; struct vmap_node *vn; struct vm_struct *tmp; int i; /* * Create the cache for vmap_area objects. */ vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); for_each_possible_cpu(i) { struct vmap_block_queue *vbq; struct vfree_deferred *p; vbq = &per_cpu(vmap_block_queue, i); spin_lock_init(&vbq->lock); INIT_LIST_HEAD(&vbq->free); p = &per_cpu(vfree_deferred, i); init_llist_head(&p->list); INIT_WORK(&p->wq, delayed_vfree_work); xa_init(&vbq->vmap_blocks); } /* * Setup nodes before importing vmlist. */ vmap_init_nodes(); /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (WARN_ON_ONCE(!va)) continue; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; va->vm = tmp; vn = addr_to_node(va->va_start); insert_vmap_area(va, &vn->busy.root, &vn->busy.head); } /* * Now we can initialize a free vmap space. */ vmap_init_free_space(); vmap_initialized = true; vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); if (!vmap_node_shrinker) { pr_err("Failed to allocate vmap-node shrinker!\n"); return; } vmap_node_shrinker->count_objects = vmap_node_shrink_count; vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; shrinker_register(vmap_node_shrinker); }