// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../lib/kstrtox.h" /* If kernel subsystem is allowing eBPF programs to call this function, * inside its own verifier_ops->get_func_proto() callback it should return * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock * if program is allowed to access maps, so check rcu_read_lock_held() or * rcu_read_lock_trace_held() in all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } const struct bpf_func_proto bpf_map_lookup_elem_proto = { .func = bpf_map_lookup_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return map->ops->map_update_elem(map, key, value, flags); } const struct bpf_func_proto bpf_map_update_elem_proto = { .func = bpf_map_update_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_PTR_TO_MAP_VALUE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); return map->ops->map_delete_elem(map, key); } const struct bpf_func_proto bpf_map_delete_elem_proto = { .func = bpf_map_delete_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) { return map->ops->map_push_elem(map, value, flags); } const struct bpf_func_proto bpf_map_push_elem_proto = { .func = bpf_map_push_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) { return map->ops->map_pop_elem(map, value); } const struct bpf_func_proto bpf_map_pop_elem_proto = { .func = bpf_map_pop_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) { return map->ops->map_peek_elem(map, value); } const struct bpf_func_proto bpf_map_peek_elem_proto = { .func = bpf_map_peek_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); } const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { .func = bpf_map_lookup_percpu_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_get_prandom_u32_proto = { .func = bpf_user_rnd_u32, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_smp_processor_id) { return smp_processor_id(); } const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, .allow_fastcall = true, }; BPF_CALL_0(bpf_get_numa_node_id) { return numa_node_id(); } const struct bpf_func_proto bpf_get_numa_node_id_proto = { .func = bpf_get_numa_node_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_boot_ns) { /* NMI safe access to clock boottime */ return ktime_get_boot_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { .func = bpf_ktime_get_boot_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_coarse_ns) { return ktime_get_coarse_ns(); } const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { .func = bpf_ktime_get_coarse_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_tai_ns) { /* NMI safe access to clock tai */ return ktime_get_tai_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { .func = bpf_ktime_get_tai_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_pid_tgid) { struct task_struct *task = current; if (unlikely(!task)) return -EINVAL; return (u64) task->tgid << 32 | task->pid; } const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { .func = bpf_get_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_uid_gid) { struct task_struct *task = current; kuid_t uid; kgid_t gid; if (unlikely(!task)) return -EINVAL; current_uid_gid(&uid, &gid); return (u64) from_kgid(&init_user_ns, gid) << 32 | from_kuid(&init_user_ns, uid); } const struct bpf_func_proto bpf_get_current_uid_gid_proto = { .func = bpf_get_current_uid_gid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) { struct task_struct *task = current; if (unlikely(!task)) goto err_clear; /* Verifier guarantees that size > 0 */ strscpy_pad(buf, task->comm, size); return 0; err_clear: memset(buf, 0, size); return -EINVAL; } const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE, }; #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; union { __u32 val; arch_spinlock_t lock; } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); preempt_disable(); arch_spin_lock(l); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); preempt_enable(); } #else static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); do { atomic_cond_read_relaxed(l, !VAL); } while (atomic_xchg(l, 1)); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; atomic_set_release(l, 0); } #endif static DEFINE_PER_CPU(unsigned long, irqsave_flags); static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) { unsigned long flags; local_irq_save(flags); __bpf_spin_lock(lock); __this_cpu_write(irqsave_flags, flags); } NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; } const struct bpf_func_proto bpf_spin_lock_proto = { .func = bpf_spin_lock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) { unsigned long flags; flags = __this_cpu_read(irqsave_flags); __bpf_spin_unlock(lock); local_irq_restore(flags); } NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; } const struct bpf_func_proto bpf_spin_unlock_proto = { .func = bpf_spin_unlock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src) { struct bpf_spin_lock *lock; if (lock_src) lock = src + map->record->spin_lock_off; else lock = dst + map->record->spin_lock_off; preempt_disable(); __bpf_spin_lock_irqsave(lock); copy_map_value(map, dst, src); __bpf_spin_unlock_irqrestore(lock); preempt_enable(); } BPF_CALL_0(bpf_jiffies64) { return get_jiffies_64(); } const struct bpf_func_proto bpf_jiffies64_proto = { .func = bpf_jiffies64, .gpl_only = false, .ret_type = RET_INTEGER, }; #ifdef CONFIG_CGROUPS BPF_CALL_0(bpf_get_current_cgroup_id) { struct cgroup *cgrp; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); cgrp_id = cgroup_id(cgrp); rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { .func = bpf_get_current_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp; struct cgroup *ancestor; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); ancestor = cgroup_ancestor(cgrp, ancestor_level); cgrp_id = ancestor ? cgroup_id(ancestor) : 0; rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { .func = bpf_get_current_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; #endif /* CONFIG_CGROUPS */ #define BPF_STRTOX_BASE_MASK 0x1F static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, unsigned long long *res, bool *is_negative) { unsigned int base = flags & BPF_STRTOX_BASE_MASK; const char *cur_buf = buf; size_t cur_len = buf_len; unsigned int consumed; size_t val_len; char str[64]; if (!buf || !buf_len || !res || !is_negative) return -EINVAL; if (base != 0 && base != 8 && base != 10 && base != 16) return -EINVAL; if (flags & ~BPF_STRTOX_BASE_MASK) return -EINVAL; while (cur_buf < buf + buf_len && isspace(*cur_buf)) ++cur_buf; *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); if (*is_negative) ++cur_buf; consumed = cur_buf - buf; cur_len -= consumed; if (!cur_len) return -EINVAL; cur_len = min(cur_len, sizeof(str) - 1); memcpy(str, cur_buf, cur_len); str[cur_len] = '\0'; cur_buf = str; cur_buf = _parse_integer_fixup_radix(cur_buf, &base); val_len = _parse_integer(cur_buf, base, res); if (val_len & KSTRTOX_OVERFLOW) return -ERANGE; if (val_len == 0) return -EINVAL; cur_buf += val_len; consumed += cur_buf - str; return consumed; } static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, long long *res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) { if ((long long)-_res > 0) return -ERANGE; *res = -_res; } else { if ((long long)_res < 0) return -ERANGE; *res = _res; } return err; } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, s64 *, res) { long long _res; int err; *res = 0; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; *res = _res; return err; } const struct bpf_func_proto bpf_strtol_proto = { .func = bpf_strtol, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, .arg4_size = sizeof(s64), }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, u64 *, res) { unsigned long long _res; bool is_negative; int err; *res = 0; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; *res = _res; return err; } const struct bpf_func_proto bpf_strtoul_proto = { .func = bpf_strtoul, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, .arg4_size = sizeof(u64), }; BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) { return strncmp(s1, s2, s1_sz); } static const struct bpf_func_proto bpf_strncmp_proto = { .func = bpf_strncmp, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_CONST_STR, }; BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, struct bpf_pidns_info *, nsdata, u32, size) { struct task_struct *task = current; struct pid_namespace *pidns; int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_pidns_info))) goto clear; if (unlikely((u64)(dev_t)dev != dev)) goto clear; if (unlikely(!task)) goto clear; pidns = task_active_pid_ns(task); if (unlikely(!pidns)) { err = -ENOENT; goto clear; } if (!ns_match(&pidns->ns, (dev_t)dev, ino)) goto clear; nsdata->pid = task_pid_nr_ns(task, pidns); nsdata->tgid = task_tgid_nr_ns(task, pidns); return 0; clear: memset((void *)nsdata, 0, (size_t) size); return err; } const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { .func = bpf_get_ns_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags, void *, data, u64, size) { if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; return bpf_event_output(map, flags, data, size, NULL, 0, NULL); } const struct bpf_func_proto bpf_event_output_data_proto = { .func = bpf_event_output_data, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, const void __user *, user_ptr) { int ret = copy_from_user(dst, user_ptr, size); if (unlikely(ret)) { memset(dst, 0, size); ret = -EFAULT; } return ret; } const struct bpf_func_proto bpf_copy_from_user_proto = { .func = bpf_copy_from_user, .gpl_only = false, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) { int ret; /* flags is not used yet */ if (unlikely(flags)) return -EINVAL; if (unlikely(!size)) return 0; ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); if (ret == size) return 0; memset(dst, 0, size); /* Return -EFAULT for partial read */ return ret < 0 ? ret : -EFAULT; } const struct bpf_func_proto bpf_copy_from_user_task_proto = { .func = bpf_copy_from_user_task, .gpl_only = true, .might_sleep = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_BTF_ID, .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], .arg5_type = ARG_ANYTHING }; BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) { if (cpu >= nr_cpu_ids) return (unsigned long)NULL; return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { .func = bpf_per_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { .func = bpf_this_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, }; static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) return strncpy_from_user_nofault(buf, user_ptr, bufsz); fallthrough; #endif case 'k': return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); case 'u': return strncpy_from_user_nofault(buf, user_ptr, bufsz); } return -EINVAL; } /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary * arguments representation. */ #define MAX_BPRINTF_BIN_ARGS 512 /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 struct bpf_bprintf_buffers { char bin_args[MAX_BPRINTF_BIN_ARGS]; char buf[MAX_BPRINTF_BUF]; }; static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); static int try_get_buffers(struct bpf_bprintf_buffers **bufs) { int nest_level; preempt_disable(); nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); return -EBUSY; } *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); return 0; } void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) { if (!data->bin_args && !data->buf) return; if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) return; this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); } /* * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers * * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: * - Format string verification only: when data->get_bin_args is false * - Arguments preparation: in addition to the above verification, it writes in * data->bin_args a binary representation of arguments usable by bstr_printf * where pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 num_args, struct bpf_bprintf_data *data) { bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; struct bpf_bprintf_buffers *buffers = NULL; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; fmt_end = strnchr(fmt, fmt_size, 0); if (!fmt_end) return -EINVAL; fmt_size = fmt_end - fmt; if (get_buffers && try_get_buffers(&buffers)) return -EBUSY; if (data->get_bin_args) { if (num_args) tmp_buf = buffers->bin_args; tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; data->bin_args = (u32 *)tmp_buf; } if (data->get_buf) data->buf = buffers->buf; for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (num_spec >= num_args) { err = -EINVAL; goto out; } /* The string is zero-terminated so if fmt[i] != 0, we can * always access fmt[i + 1], in the worst case it will be a 0 */ i++; /* skip optional "[0 +-][num]" width formatting field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; goto nocopy_fmt; } if (fmt[i + 1] == 'B') { if (tmp_buf) { err = snprintf(tmp_buf, (tmp_buf_end - tmp_buf), "%pB", (void *)(long)raw_args[num_spec]); tmp_buf += (err + 1); } i++; num_spec++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { err = -EINVAL; goto out; } i += 2; if (!tmp_buf) goto nocopy_fmt; sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, sizeof_cur_ip); if (err < 0) memset(cur_ip, 0, sizeof_cur_ip); /* hack: bstr_printf expects IP addresses to be * pre-formatted as strings, ironically, the easiest way * to do that is to call snprintf. */ ip_spec[2] = fmt[i - 1]; ip_spec[3] = fmt[i]; err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, ip_spec, &cur_ip); tmp_buf += err + 1; num_spec++; continue; } else if (fmt[i] == 's') { fmt_ptype = fmt[i]; fmt_str: if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) { err = -EINVAL; goto out; } if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, fmt_ptype, tmp_buf_end - tmp_buf); if (err < 0) { tmp_buf[0] = '\0'; err = 1; } tmp_buf += err; num_spec++; continue; } else if (fmt[i] == 'c') { if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } *tmp_buf = raw_args[num_spec]; tmp_buf++; num_spec++; continue; } sizeof_cur_arg = sizeof(int); if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long); i++; } if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long long); i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } if (tmp_buf) cur_arg = raw_args[num_spec]; nocopy_fmt: if (tmp_buf) { tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { err = -ENOSPC; goto out; } if (sizeof_cur_arg == 8) { *(u32 *)tmp_buf = *(u32 *)&cur_arg; *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); } else { *(u32 *)tmp_buf = (u32)(long)cur_arg; } tmp_buf += sizeof_cur_arg; } num_spec++; } err = 0; out: if (err) bpf_bprintf_cleanup(data); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, const void *, args, u32, data_len) { struct bpf_bprintf_data data = { .get_bin_args = true, }; int err, num_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || (data_len && !args)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); if (err < 0) return err; err = bstr_printf(str, str_size, fmt, data.bin_args); bpf_bprintf_cleanup(&data); return err + 1; } const struct bpf_func_proto bpf_snprintf_proto = { .func = bpf_snprintf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_CONST_STR, .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; struct bpf_async_cb { struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; union { struct rcu_head rcu; struct work_struct delete_work; }; u64 flags; }; /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. * That space is used to keep 'struct bpf_async_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. * bpf_timer_start() arms the timer. * If user space reference to a map goes to zero at this point * ops->map_release_uref callback is responsible for cancelling the timers, * freeing their memory, and decrementing prog's refcnts. * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { struct bpf_async_cb cb; struct hrtimer timer; atomic_t cancelling; }; struct bpf_work { struct bpf_async_cb cb; struct work_struct work; struct work_struct delete_work; }; /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ struct bpf_async_kern { union { struct bpf_async_cb *cb; struct bpf_hrtimer *timer; struct bpf_work *work; }; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space reserved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. */ struct bpf_spin_lock lock; } __attribute__((aligned(8))); enum bpf_async_type { BPF_ASYNC_TYPE_TIMER = 0, BPF_ASYNC_TYPE_WQ, }; static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); struct bpf_map *map = t->cb.map; void *value = t->cb.value; bpf_callback_t callback_fn; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_timer); callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and * cannot be preempted by another bpf_timer_cb() on the same cpu. * Remember the timer this callback is servicing to prevent * deadlock if callback_fn() calls bpf_timer_cancel() or * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); out: return HRTIMER_NORESTART; } static void bpf_wq_work(struct work_struct *work) { struct bpf_work *w = container_of(work, struct bpf_work, work); struct bpf_async_cb *cb = &w->cb; struct bpf_map *map = cb->map; bpf_callback_t callback_fn; void *value = cb->value; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_wq); callback_fn = READ_ONCE(cb->callback_fn); if (!callback_fn) return; if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } rcu_read_lock_trace(); migrate_disable(); callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); migrate_enable(); rcu_read_unlock_trace(); } static void bpf_wq_delete_work(struct work_struct *work) { struct bpf_work *w = container_of(work, struct bpf_work, delete_work); cancel_work_sync(&w->work); kfree_rcu(w, cb.rcu); } static void bpf_timer_delete_work(struct work_struct *work) { struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); /* Cancel the timer and wait for callback to complete if it was running. * If hrtimer_cancel() can be safely called it's safe to call * kfree_rcu(t) right after for both preallocated and non-preallocated * maps. The async->cb = NULL was already done and no code path can see * address 't' anymore. Timer if armed for existing bpf_hrtimer before * bpf_timer_cancel_and_free will have been cancelled. */ hrtimer_cancel(&t->timer); kfree_rcu(t, cb.rcu); } static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, enum bpf_async_type type) { struct bpf_async_cb *cb; struct bpf_hrtimer *t; struct bpf_work *w; clockid_t clockid; size_t size; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; switch (type) { case BPF_ASYNC_TYPE_TIMER: size = sizeof(struct bpf_hrtimer); break; case BPF_ASYNC_TYPE_WQ: size = sizeof(struct bpf_work); break; default: return -EINVAL; } __bpf_spin_lock_irqsave(&async->lock); t = async->timer; if (t) { ret = -EBUSY; goto out; } /* allocate hrtimer via map_kmalloc to use memcg accounting */ cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); if (!cb) { ret = -ENOMEM; goto out; } switch (type) { case BPF_ASYNC_TYPE_TIMER: clockid = flags & (MAX_CLOCKS - 1); t = (struct bpf_hrtimer *)cb; atomic_set(&t->cancelling, 0); INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; cb->value = (void *)async - map->record->timer_off; break; case BPF_ASYNC_TYPE_WQ: w = (struct bpf_work *)cb; INIT_WORK(&w->work, bpf_wq_work); INIT_WORK(&w->delete_work, bpf_wq_delete_work); cb->value = (void *)async - map->record->wq_off; break; } cb->map = map; cb->prog = NULL; cb->flags = flags; rcu_assign_pointer(cb->callback_fn, NULL); WRITE_ONCE(async->cb, cb); /* Guarantee the order between async->cb and map->usercnt. So * when there are concurrent uref release and bpf timer init, either * bpf_timer_cancel_and_free() called by uref release reads a no-NULL * timer or atomic64_read() below returns a zero usercnt. */ smp_mb(); if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ WRITE_ONCE(async->cb, NULL); kfree(cb); ret = -EPERM; } out: __bpf_spin_unlock_irqrestore(&async->lock); return ret; } BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, u64, flags) { clock_t clockid = flags & (MAX_CLOCKS - 1); BUILD_BUG_ON(MAX_CLOCKS != 16); BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); if (flags >= MAX_CLOCKS || /* similar to timerfd except _ALARM variants are not supported */ (clockid != CLOCK_MONOTONIC && clockid != CLOCK_REALTIME && clockid != CLOCK_BOOTTIME)) return -EINVAL; return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); } static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, struct bpf_prog_aux *aux, unsigned int flags, enum bpf_async_type type) { struct bpf_prog *prev, *prog = aux->prog; struct bpf_async_cb *cb; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&async->lock); cb = async->cb; if (!cb) { ret = -EINVAL; goto out; } if (!atomic64_read(&cb->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space * is gone, since map_release_uref won't ever be called. */ ret = -EPERM; goto out; } prev = cb->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. */ prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { ret = PTR_ERR(prog); goto out; } if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); cb->prog = prog; } rcu_assign_pointer(cb->callback_fn, callback_fn); out: __bpf_spin_unlock_irqrestore(&async->lock); return ret; } BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, struct bpf_prog_aux *, aux) { return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); } static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_PTR_TO_FUNC, }; BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; enum hrtimer_mode mode; if (in_nmi()) return -EOPNOTSUPP; if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t || !t->cb.prog) { ret = -EINVAL; goto out; } if (flags & BPF_F_TIMER_ABS) mode = HRTIMER_MODE_ABS_SOFT; else mode = HRTIMER_MODE_REL_SOFT; if (flags & BPF_F_TIMER_CPU_PIN) mode |= HRTIMER_MODE_PINNED; hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_start_proto = { .func = bpf_timer_start, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static void drop_prog_refcnt(struct bpf_async_cb *async) { struct bpf_prog *prog = async->prog; if (prog) { bpf_prog_put(prog); async->prog = NULL; rcu_assign_pointer(async->callback_fn, NULL); } } BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) { struct bpf_hrtimer *t, *cur_t; bool inc = false; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; rcu_read_lock(); __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } cur_t = this_cpu_read(hrtimer_running); if (cur_t == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock * since it waits for callback_fn to finish. */ ret = -EDEADLK; goto out; } /* Only account in-flight cancellations when invoked from a timer * callback, since we want to avoid waiting only if other _callbacks_ * are waiting on us, to avoid introducing lockups. Non-callback paths * are ok, since nobody would synchronously wait for their completion. */ if (!cur_t) goto drop; atomic_inc(&t->cancelling); /* Need full barrier after relaxed atomic_inc */ smp_mb__after_atomic(); inc = true; if (atomic_read(&cur_t->cancelling)) { /* We're cancelling timer t, while some other timer callback is * attempting to cancel us. In such a case, it might be possible * that timer t belongs to the other callback, or some other * callback waiting upon it (creating transitive dependencies * upon us), and we will enter a deadlock if we continue * cancelling and waiting for it synchronously, since it might * do the same. Bail! */ ret = -EDEADLK; goto out; } drop: drop_prog_refcnt(&t->cb); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); if (inc) atomic_dec(&t->cancelling); rcu_read_unlock(); return ret; } static const struct bpf_func_proto bpf_timer_cancel_proto = { .func = bpf_timer_cancel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, }; static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) { struct bpf_async_cb *cb; /* Performance optimization: read async->cb without lock first. */ if (!READ_ONCE(async->cb)) return NULL; __bpf_spin_lock_irqsave(&async->lock); /* re-read it under lock */ cb = async->cb; if (!cb) goto out; drop_prog_refcnt(cb); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ WRITE_ONCE(async->cb, NULL); out: __bpf_spin_unlock_irqrestore(&async->lock); return cb; } /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_timer_cancel_and_free(void *val) { struct bpf_hrtimer *t; t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); if (!t) return; /* We check that bpf_map_delete/update_elem() was called from timer * callback_fn. In such case we don't call hrtimer_cancel() (since it * will deadlock) and don't call hrtimer_try_to_cancel() (since it will * just return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since async->cb = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. * * However, it is possible the timer callback_fn calling us armed the * timer _before_ calling us, such that failing to cancel it here will * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. * Therefore, we _need_ to cancel any outstanding timers before we do * kfree_rcu, even though no more timers can be armed. * * Moreover, we need to schedule work even if timer does not belong to * the calling callback_fn, as on two different CPUs, we can end up in a * situation where both sides run in parallel, try to cancel one * another, and we end up waiting on both sides in hrtimer_cancel * without making forward progress, since timer1 depends on time2 * callback to finish, and vice versa. * * CPU 1 (timer1_cb) CPU 2 (timer2_cb) * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) * * To avoid these issues, punt to workqueue context when we are in a * timer callback. */ if (this_cpu_read(hrtimer_running)) queue_work(system_unbound_wq, &t->cb.delete_work); else bpf_timer_delete_work(&t->cb.delete_work); } /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_wq_cancel_and_free(void *val) { struct bpf_work *work; BTF_TYPE_EMIT(struct bpf_wq); work = (struct bpf_work *)__bpf_async_cancel_and_free(val); if (!work) return; /* Trigger cancel of the sleepable work, but *do not* wait for * it to finish if it was running as we might not be in a * sleepable context. * kfree will be called once the work has finished. */ schedule_work(&work->delete_work); } BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) { unsigned long *kptr = dst; /* This helper may be inlined by verifier. */ return xchg(kptr, (unsigned long)ptr); } /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to * denote type that verifier will determine. */ static const struct bpf_func_proto bpf_kptr_xchg_proto = { .func = bpf_kptr_xchg, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = BPF_PTR_POISON, .arg1_type = ARG_KPTR_XCHG_DEST, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, .arg2_btf_id = BPF_PTR_POISON, }; /* Since the upper 8 bits of dynptr->size is reserved, the * maximum supported size is 2^24 - 1. */ #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) #define DYNPTR_TYPE_SHIFT 28 #define DYNPTR_SIZE_MASK 0xFFFFFF #define DYNPTR_RDONLY_BIT BIT(31) bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_RDONLY_BIT; } void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) { ptr->size |= DYNPTR_RDONLY_BIT; } static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) { ptr->size |= type << DYNPTR_TYPE_SHIFT; } static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) { return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; } u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_SIZE_MASK; } static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) { u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; ptr->size = new_size | metadata; } int bpf_dynptr_check_size(u32 size) { return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; } void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { ptr->data = data; ptr->offset = offset; ptr->size = size; bpf_dynptr_set_type(ptr, type); } void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) { memset(ptr, 0, sizeof(*ptr)); } static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) { u32 size = __bpf_dynptr_size(ptr); if (len > size || offset > size - len) return -E2BIG; return 0; } BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { int err; BTF_TYPE_EMIT(struct bpf_dynptr); err = bpf_dynptr_check_size(size); if (err) goto error; /* flags is currently unsupported */ if (flags) { err = -EINVAL; goto error; } bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); return 0; error: bpf_dynptr_set_null(ptr); return err; } static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { .func = bpf_dynptr_from_mem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, u32, offset, u64, flags) { enum bpf_dynptr_type type; int err; if (!src->data || flags) return -EINVAL; err = bpf_dynptr_check_off_len(src, offset, len); if (err) return err; type = bpf_dynptr_get_type(src); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst, src->data + src->offset + offset, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); case BPF_DYNPTR_TYPE_XDP: return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); default: WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_read_proto = { .func = bpf_dynptr_read, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len, u64, flags) { enum bpf_dynptr_type type; int err; if (!dst->data || __bpf_dynptr_is_rdonly(dst)) return -EINVAL; err = bpf_dynptr_check_off_len(dst, offset, len); if (err) return err; type = bpf_dynptr_get_type(dst); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: if (flags) return -EINVAL; /* Source and destination may possibly overlap, hence use memmove to * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr * pointing to overlapping PTR_TO_MAP_VALUE regions. */ memmove(dst->data + dst->offset + offset, src, len); return 0; case BPF_DYNPTR_TYPE_SKB: return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, flags); case BPF_DYNPTR_TYPE_XDP: if (flags) return -EINVAL; return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); default: WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); return -EFAULT; } } static const struct bpf_func_proto bpf_dynptr_write_proto = { .func = bpf_dynptr_write, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) { enum bpf_dynptr_type type; int err; if (!ptr->data) return 0; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return 0; if (__bpf_dynptr_is_rdonly(ptr)) return 0; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return (unsigned long)(ptr->data + ptr->offset + offset); case BPF_DYNPTR_TYPE_SKB: case BPF_DYNPTR_TYPE_XDP: /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ return 0; default: WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); return 0; } } static const struct bpf_func_proto bpf_dynptr_data_proto = { .func = bpf_dynptr_data, .gpl_only = false, .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, }; const struct bpf_func_proto bpf_get_current_task_proto __weak; const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; const struct bpf_func_proto bpf_probe_read_user_proto __weak; const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_map_lookup_percpu_elem: return &bpf_map_lookup_percpu_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_ktime_get_tai_ns: return &bpf_ktime_get_tai_ns_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_strncmp: return &bpf_strncmp_proto; case BPF_FUNC_strtol: return &bpf_strtol_proto; case BPF_FUNC_strtoul: return &bpf_strtoul_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_get_ns_current_pid_tgid: return &bpf_get_ns_current_pid_tgid_proto; default: break; } if (!bpf_token_capable(prog->aux->token, CAP_BPF)) return NULL; switch (func_id) { case BPF_FUNC_spin_lock: return &bpf_spin_lock_proto; case BPF_FUNC_spin_unlock: return &bpf_spin_unlock_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; case BPF_FUNC_timer_init: return &bpf_timer_init_proto; case BPF_FUNC_timer_set_callback: return &bpf_timer_set_callback_proto; case BPF_FUNC_timer_start: return &bpf_timer_start_proto; case BPF_FUNC_timer_cancel: return &bpf_timer_cancel_proto; case BPF_FUNC_kptr_xchg: return &bpf_kptr_xchg_proto; case BPF_FUNC_for_each_map_elem: return &bpf_for_each_map_elem_proto; case BPF_FUNC_loop: return &bpf_loop_proto; case BPF_FUNC_user_ringbuf_drain: return &bpf_user_ringbuf_drain_proto; case BPF_FUNC_ringbuf_reserve_dynptr: return &bpf_ringbuf_reserve_dynptr_proto; case BPF_FUNC_ringbuf_submit_dynptr: return &bpf_ringbuf_submit_dynptr_proto; case BPF_FUNC_ringbuf_discard_dynptr: return &bpf_ringbuf_discard_dynptr_proto; case BPF_FUNC_dynptr_from_mem: return &bpf_dynptr_from_mem_proto; case BPF_FUNC_dynptr_read: return &bpf_dynptr_read_proto; case BPF_FUNC_dynptr_write: return &bpf_dynptr_write_proto; case BPF_FUNC_dynptr_data: return &bpf_dynptr_data_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_cgrp_storage_get: return &bpf_cgrp_storage_get_proto; case BPF_FUNC_cgrp_storage_delete: return &bpf_cgrp_storage_delete_proto; case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif default: break; } if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) return NULL; switch (func_id) { case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: return &bpf_snprintf_proto; case BPF_FUNC_task_pt_regs: return &bpf_task_pt_regs_proto; case BPF_FUNC_trace_vprintk: return bpf_get_trace_vprintk_proto(); default: return NULL; } } EXPORT_SYMBOL_GPL(bpf_base_func_proto); void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock) { struct list_head *head = list_head, *orig_head = list_head; BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); /* Do the actual list draining outside the lock to not hold the lock for * too long, and also prevent deadlocks if tracing programs end up * executing on entry/exit of functions called inside the critical * section, and end up doing map ops that call bpf_list_head_free for * the same map value again. */ __bpf_spin_lock_irqsave(spin_lock); if (!head->next || list_empty(head)) goto unlock; head = head->next; unlock: INIT_LIST_HEAD(orig_head); __bpf_spin_unlock_irqrestore(spin_lock); while (head != orig_head) { void *obj = head; obj -= field->graph_root.node_offset; head = head->next; /* The contained type can also have resources, including a * bpf_list_head which needs to be freed. */ migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); migrate_enable(); } } /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are * 'rb_node *', so field name of rb_node within containing struct is not * needed. * * Since bpf_rb_tree's node type has a corresponding struct btf_field with * graph_root.node_offset, it's not necessary to know field name * or type of node struct */ #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ for (pos = rb_first_postorder(root); \ pos && ({ n = rb_next_postorder(pos); 1; }); \ pos = n) void bpf_rb_root_free(const struct btf_field *field, void *rb_root, struct bpf_spin_lock *spin_lock) { struct rb_root_cached orig_root, *root = rb_root; struct rb_node *pos, *n; void *obj; BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); __bpf_spin_lock_irqsave(spin_lock); orig_root = *root; *root = RB_ROOT_CACHED; __bpf_spin_unlock_irqrestore(spin_lock); bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { obj = pos; obj -= field->graph_root.node_offset; migrate_disable(); __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); migrate_enable(); } } __bpf_kfunc_start_defs(); __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; u64 size = local_type_id__k; void *p; p = bpf_mem_alloc(&bpf_global_ma, size); if (!p) return NULL; if (meta) bpf_obj_init(meta->record, p); return p; } __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) { u64 size = local_type_id__k; /* The verifier has ensured that meta__ign must be NULL */ return bpf_mem_alloc(&bpf_global_percpu_ma, size); } /* Must be called under migrate_disable(), as required by bpf_mem_free */ void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) { struct bpf_mem_alloc *ma; if (rec && rec->refcount_off >= 0 && !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { /* Object is refcounted and refcount_dec didn't result in 0 * refcount. Return without freeing the object */ return; } if (rec) bpf_obj_free_fields(rec, p); if (percpu) ma = &bpf_global_percpu_ma; else ma = &bpf_global_ma; bpf_mem_free_rcu(ma, p); } __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; void *p = p__alloc; __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); } __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) { /* The verifier has ensured that meta__ign must be NULL */ bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); } __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; struct bpf_refcount *ref; /* Could just cast directly to refcount_t *, but need some code using * bpf_refcount type so that it is emitted in vmlinux BTF */ ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); if (!refcount_inc_not_zero((refcount_t *)ref)) return NULL; /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null * in verifier.c */ return (void *)p__refcounted_kptr; } static int __bpf_list_add(struct bpf_list_node_kern *node, struct bpf_list_head *head, bool tail, struct btf_record *rec, u64 off) { struct list_head *n = &node->list_head, *h = (void *)head; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); /* node->owner != NULL implies !list_empty(n), no need to separately * check the latter */ if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl((void *)n - off, rec, false); return -EINVAL; } tail ? list_add_tail(n, h) : list_add(n, h); WRITE_ONCE(node->owner, head); return 0; } __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct bpf_list_node_kern *n = (void *)node; struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); } __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, struct bpf_list_node *node, void *meta__ign, u64 off) { struct bpf_list_node_kern *n = (void *)node; struct btf_struct_meta *meta = meta__ign; return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); } static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) { struct list_head *n, *h = (void *)head; struct bpf_list_node_kern *node; /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't * called on its fields, so init here */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (list_empty(h)) return NULL; n = tail ? h->prev : h->next; node = container_of(n, struct bpf_list_node_kern, list_head); if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) return NULL; list_del_init(n); WRITE_ONCE(node->owner, NULL); return (struct bpf_list_node *)n; } __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) { return __bpf_list_del(head, false); } __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) { return __bpf_list_del(head, true); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, struct bpf_rb_node *node) { struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; struct rb_root_cached *r = (struct rb_root_cached *)root; struct rb_node *n = &node_internal->rb_node; /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) */ if (READ_ONCE(node_internal->owner) != root) return NULL; rb_erase_cached(n, r); RB_CLEAR_NODE(n); WRITE_ONCE(node_internal->owner, NULL); return (struct bpf_rb_node *)n; } /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF * program */ static int __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node_kern *node, void *less, struct btf_record *rec, u64 off) { struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; struct rb_node *parent = NULL, *n = &node->rb_node; bpf_callback_t cb = (bpf_callback_t)less; bool leftmost = true; /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately * check the latter */ if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { /* Only called from BPF prog, no need to migrate_disable */ __bpf_obj_drop_impl((void *)n - off, rec, false); return -EINVAL; } while (*link) { parent = *link; if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { link = &parent->rb_left; } else { link = &parent->rb_right; leftmost = false; } } rb_link_node(n, parent, link); rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); WRITE_ONCE(node->owner, root); return 0; } __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), void *meta__ign, u64 off) { struct btf_struct_meta *meta = meta__ign; struct bpf_rb_node_kern *n = (void *)node; return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); } __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) { struct rb_root_cached *r = (struct rb_root_cached *)root; return (struct bpf_rb_node *)rb_first_cached(r); } /** * bpf_task_acquire - Acquire a reference to a task. A task acquired by this * kfunc which is not stored in a map as a kptr, must be released by calling * bpf_task_release(). * @p: The task on which a reference is being acquired. */ __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) { if (refcount_inc_not_zero(&p->rcu_users)) return p; return NULL; } /** * bpf_task_release - Release the reference acquired on a task. * @p: The task on which a reference is being released. */ __bpf_kfunc void bpf_task_release(struct task_struct *p) { put_task_struct_rcu_user(p); } __bpf_kfunc void bpf_task_release_dtor(void *p) { put_task_struct_rcu_user(p); } CFI_NOSEAL(bpf_task_release_dtor); #ifdef CONFIG_CGROUPS /** * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by * this kfunc which is not stored in a map as a kptr, must be released by * calling bpf_cgroup_release(). * @cgrp: The cgroup on which a reference is being acquired. */ __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) { return cgroup_tryget(cgrp) ? cgrp : NULL; } /** * bpf_cgroup_release - Release the reference acquired on a cgroup. * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to * not be freed until the current grace period has ended, even if its refcount * drops to 0. * @cgrp: The cgroup on which a reference is being released. */ __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) { cgroup_put(cgrp); } __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) { cgroup_put(cgrp); } CFI_NOSEAL(bpf_cgroup_release_dtor); /** * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor * array. A cgroup returned by this kfunc which is not subsequently stored in a * map, must be released by calling bpf_cgroup_release(). * @cgrp: The cgroup for which we're performing a lookup. * @level: The level of ancestor to look up. */ __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) { struct cgroup *ancestor; if (level > cgrp->level || level < 0) return NULL; /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ ancestor = cgrp->ancestors[level]; if (!cgroup_tryget(ancestor)) return NULL; return ancestor; } /** * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this * kfunc which is not subsequently stored in a map, must be released by calling * bpf_cgroup_release(). * @cgid: cgroup id. */ __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) { struct cgroup *cgrp; cgrp = cgroup_get_from_id(cgid); if (IS_ERR(cgrp)) return NULL; return cgrp; } /** * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test * task's membership of cgroup ancestry. * @task: the task to be tested * @ancestor: possible ancestor of @task's cgroup * * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. * It follows all the same rules as cgroup_is_descendant, and only applies * to the default hierarchy. */ __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, struct cgroup *ancestor) { long ret; rcu_read_lock(); ret = task_under_cgroup_hierarchy(task, ancestor); rcu_read_unlock(); return ret; } BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct cgroup *cgrp; if (unlikely(idx >= array->map.max_entries)) return -E2BIG; cgrp = READ_ONCE(array->ptrs[idx]); if (unlikely(!cgrp)) return -EAGAIN; return task_under_cgroup_hierarchy(current, cgrp); } const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { .func = bpf_current_task_under_cgroup, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; /** * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its * hierarchy ID. * @task: The target task * @hierarchy_id: The ID of a cgroup1 hierarchy * * On success, the cgroup is returen. On failure, NULL is returned. */ __bpf_kfunc struct cgroup * bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) { struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); if (IS_ERR(cgrp)) return NULL; return cgrp; } #endif /* CONFIG_CGROUPS */ /** * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up * in the root pid namespace idr. If a task is returned, it must either be * stored in a map, or released with bpf_task_release(). * @pid: The pid of the task being looked up. */ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) { struct task_struct *p; rcu_read_lock(); p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) p = bpf_task_acquire(p); rcu_read_unlock(); return p; } /** * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up * in the pid namespace of the current task. If a task is returned, it must * either be stored in a map, or released with bpf_task_release(). * @vpid: The vpid of the task being looked up. */ __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) { struct task_struct *p; rcu_read_lock(); p = find_task_by_vpid(vpid); if (p) p = bpf_task_acquire(p); rcu_read_unlock(); return p; } /** * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. * @p: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer__opt: User-provided buffer to copy contents into. May be NULL * @buffer__szk: Size (in bytes) of the buffer if present. This is the * length of the requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * If buffer__opt is NULL, the call will fail if buffer_opt was needed. * * If the intention is to write to the data slice, please use * bpf_dynptr_slice_rdwr. * * The user must check that the returned pointer is not null before using it. * * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset, void *buffer__opt, u32 buffer__szk) { const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; enum bpf_dynptr_type type; u32 len = buffer__szk; int err; if (!ptr->data) return NULL; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return NULL; type = bpf_dynptr_get_type(ptr); switch (type) { case BPF_DYNPTR_TYPE_LOCAL: case BPF_DYNPTR_TYPE_RINGBUF: return ptr->data + ptr->offset + offset; case BPF_DYNPTR_TYPE_SKB: if (buffer__opt) return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); else return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); case BPF_DYNPTR_TYPE_XDP: { void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); if (!IS_ERR_OR_NULL(xdp_ptr)) return xdp_ptr; if (!buffer__opt) return NULL; bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); return buffer__opt; } default: WARN_ONCE(true, "unknown dynptr type %d\n", type); return NULL; } } /** * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. * @p: The dynptr whose data slice to retrieve * @offset: Offset into the dynptr * @buffer__opt: User-provided buffer to copy contents into. May be NULL * @buffer__szk: Size (in bytes) of the buffer if present. This is the * length of the requested slice. This must be a constant. * * For non-skb and non-xdp type dynptrs, there is no difference between * bpf_dynptr_slice and bpf_dynptr_data. * * If buffer__opt is NULL, the call will fail if buffer_opt was needed. * * The returned pointer is writable and may point to either directly the dynptr * data at the requested offset or to the buffer if unable to obtain a direct * data pointer to (example: the requested slice is to the paged area of an skb * packet). In the case where the returned pointer is to the buffer, the user * is responsible for persisting writes through calling bpf_dynptr_write(). This * usually looks something like this pattern: * * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); * if (!eth) * return TC_ACT_SHOT; * * // mutate eth header // * * if (eth == buffer) * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); * * Please note that, as in the example above, the user must check that the * returned pointer is not null before using it. * * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr * does not change the underlying packet data pointers, so a call to * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in * the bpf program. * * Return: NULL if the call failed (eg invalid dynptr), pointer to a * data slice (can be either direct pointer to the data or a pointer to the user * provided buffer, with its contents containing the data, if unable to obtain * direct pointer) */ __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset, void *buffer__opt, u32 buffer__szk) { const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) return NULL; /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. * * For skb-type dynptrs, it is safe to write into the returned pointer * if the bpf program allows skb data writes. There are two possibilities * that may occur when calling bpf_dynptr_slice_rdwr: * * 1) The requested slice is in the head of the skb. In this case, the * returned pointer is directly to skb data, and if the skb is cloned, the * verifier will have uncloned it (see bpf_unclone_prologue()) already. * The pointer can be directly written into. * * 2) Some portion of the requested slice is in the paged buffer area. * In this case, the requested data will be copied out into the buffer * and the returned pointer will be a pointer to the buffer. The skb * will not be pulled. To persist the write, the user will need to call * bpf_dynptr_write(), which will pull the skb and commit the write. * * Similarly for xdp programs, if the requested slice is not across xdp * fragments, then a direct pointer will be returned, otherwise the data * will be copied out into the buffer and the user will need to call * bpf_dynptr_write() to commit changes. */ return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); } __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; u32 size; if (!ptr->data || start > end) return -EINVAL; size = __bpf_dynptr_size(ptr); if (start > size || end > size) return -ERANGE; ptr->offset += start; bpf_dynptr_set_size(ptr, end - start); return 0; } __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; return !ptr->data; } __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) return false; return __bpf_dynptr_is_rdonly(ptr); } __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) return -EINVAL; return __bpf_dynptr_size(ptr); } __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, struct bpf_dynptr *clone__uninit) { struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; if (!ptr->data) { bpf_dynptr_set_null(clone); return -EINVAL; } *clone = *ptr; return 0; } __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) { return obj; } __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) { return (void *)obj__ign; } __bpf_kfunc void bpf_rcu_read_lock(void) { rcu_read_lock(); } __bpf_kfunc void bpf_rcu_read_unlock(void) { rcu_read_unlock(); } struct bpf_throw_ctx { struct bpf_prog_aux *aux; u64 sp; u64 bp; int cnt; }; static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) { struct bpf_throw_ctx *ctx = cookie; struct bpf_prog *prog; if (!is_bpf_text_address(ip)) return !ctx->cnt; prog = bpf_prog_ksym_find(ip); ctx->cnt++; if (bpf_is_subprog(prog)) return true; ctx->aux = prog->aux; ctx->sp = sp; ctx->bp = bp; return false; } __bpf_kfunc void bpf_throw(u64 cookie) { struct bpf_throw_ctx ctx = {}; arch_bpf_stack_walk(bpf_stack_walker, &ctx); WARN_ON_ONCE(!ctx.aux); if (ctx.aux) WARN_ON_ONCE(!ctx.aux->exception_boundary); WARN_ON_ONCE(!ctx.bp); WARN_ON_ONCE(!ctx.cnt); /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning * deeper stack depths than ctx.sp as we do not return from bpf_throw, * which skips compiler generated instrumentation to do the same. */ kasan_unpoison_task_stack_below((void *)(long)ctx.sp); ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); WARN(1, "A call to BPF exception callback should never return\n"); } __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) { struct bpf_async_kern *async = (struct bpf_async_kern *)wq; struct bpf_map *map = p__map; BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); if (flags) return -EINVAL; return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); } __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) { struct bpf_async_kern *async = (struct bpf_async_kern *)wq; struct bpf_work *w; if (in_nmi()) return -EOPNOTSUPP; if (flags) return -EINVAL; w = READ_ONCE(async->work); if (!w || !READ_ONCE(w->cb.prog)) return -EINVAL; schedule_work(&w->work); return 0; } __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, int (callback_fn)(void *map, int *key, void *value), unsigned int flags, void *aux__ign) { struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign; struct bpf_async_kern *async = (struct bpf_async_kern *)wq; if (flags) return -EINVAL; return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); } __bpf_kfunc void bpf_preempt_disable(void) { preempt_disable(); } __bpf_kfunc void bpf_preempt_enable(void) { preempt_enable(); } struct bpf_iter_bits { __u64 __opaque[2]; } __aligned(8); #define BITS_ITER_NR_WORDS_MAX 511 struct bpf_iter_bits_kern { union { __u64 *bits; __u64 bits_copy; }; int nr_bits; int bit; } __aligned(8); /* On 64-bit hosts, unsigned long and u64 have the same size, so passing * a u64 pointer and an unsigned long pointer to find_next_bit() will * return the same result, as both point to the same 8-byte area. * * For 32-bit little-endian hosts, using a u64 pointer or unsigned long * pointer also makes no difference. This is because the first iterated * unsigned long is composed of bits 0-31 of the u64 and the second unsigned * long is composed of bits 32-63 of the u64. * * However, for 32-bit big-endian hosts, this is not the case. The first * iterated unsigned long will be bits 32-63 of the u64, so swap these two * ulong values within the u64. */ static void swap_ulong_in_u64(u64 *bits, unsigned int nr) { #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) unsigned int i; for (i = 0; i < nr; i++) bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); #endif } /** * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area * @it: The new bpf_iter_bits to be created * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over * @nr_words: The size of the specified memory area, measured in 8-byte units. * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be * further reduced by the BPF memory allocator implementation. * * This function initializes a new bpf_iter_bits structure for iterating over * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It * copies the data of the memory area to the newly created bpf_iter_bits @it for * subsequent iteration operations. * * On success, 0 is returned. On failure, ERR is returned. */ __bpf_kfunc int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) { struct bpf_iter_bits_kern *kit = (void *)it; u32 nr_bytes = nr_words * sizeof(u64); u32 nr_bits = BYTES_TO_BITS(nr_bytes); int err; BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != __alignof__(struct bpf_iter_bits)); kit->nr_bits = 0; kit->bits_copy = 0; kit->bit = -1; if (!unsafe_ptr__ign || !nr_words) return -EINVAL; if (nr_words > BITS_ITER_NR_WORDS_MAX) return -E2BIG; /* Optimization for u64 mask */ if (nr_bits == 64) { err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); if (err) return -EFAULT; swap_ulong_in_u64(&kit->bits_copy, nr_words); kit->nr_bits = nr_bits; return 0; } if (bpf_mem_alloc_check_size(false, nr_bytes)) return -E2BIG; /* Fallback to memalloc */ kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); if (!kit->bits) return -ENOMEM; err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); if (err) { bpf_mem_free(&bpf_global_ma, kit->bits); return err; } swap_ulong_in_u64(kit->bits, nr_words); kit->nr_bits = nr_bits; return 0; } /** * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits * @it: The bpf_iter_bits to be checked * * This function returns a pointer to a number representing the value of the * next bit in the bits. * * If there are no further bits available, it returns NULL. */ __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) { struct bpf_iter_bits_kern *kit = (void *)it; int bit = kit->bit, nr_bits = kit->nr_bits; const void *bits; if (!nr_bits || bit >= nr_bits) return NULL; bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; bit = find_next_bit(bits, nr_bits, bit + 1); if (bit >= nr_bits) { kit->bit = bit; return NULL; } kit->bit = bit; return &kit->bit; } /** * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits * @it: The bpf_iter_bits to be destroyed * * Destroy the resource associated with the bpf_iter_bits. */ __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) { struct bpf_iter_bits_kern *kit = (void *)it; if (kit->nr_bits <= 64) return; bpf_mem_free(&bpf_global_ma, kit->bits); } /** * bpf_copy_from_user_str() - Copy a string from an unsafe user address * @dst: Destination address, in kernel space. This buffer must be * at least @dst__sz bytes long. * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. * @unsafe_ptr__ign: Source address, in user space. * @flags: The only supported flag is BPF_F_PAD_ZEROS * * Copies a NUL-terminated string from userspace to BPF space. If user string is * too long this will still ensure zero termination in the dst buffer unless * buffer size is 0. * * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and * memset all of @dst on failure. */ __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) { int ret; if (unlikely(flags & ~BPF_F_PAD_ZEROS)) return -EINVAL; if (unlikely(!dst__sz)) return 0; ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); if (ret < 0) { if (flags & BPF_F_PAD_ZEROS) memset((char *)dst, 0, dst__sz); return ret; } if (flags & BPF_F_PAD_ZEROS) memset((char *)dst + ret, 0, dst__sz - ret); else ((char *)dst)[ret] = '\0'; return ret + 1; } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(generic_btf_ids) #ifdef CONFIG_CRASH_DUMP BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) #endif BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) BTF_ID_FLAGS(func, bpf_list_push_front_impl) BTF_ID_FLAGS(func, bpf_list_push_back_impl) BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_rbtree_add_impl) BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) #ifdef CONFIG_CGROUPS BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) #endif BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_throw) BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) BTF_KFUNCS_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { .owner = THIS_MODULE, .set = &generic_btf_ids, }; BTF_ID_LIST(generic_dtor_ids) BTF_ID(struct, task_struct) BTF_ID(func, bpf_task_release_dtor) #ifdef CONFIG_CGROUPS BTF_ID(struct, cgroup) BTF_ID(func, bpf_cgroup_release_dtor) #endif BTF_KFUNCS_START(common_btf_ids) BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) BTF_ID_FLAGS(func, bpf_rcu_read_lock) BTF_ID_FLAGS(func, bpf_rcu_read_unlock) BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) #ifdef CONFIG_CGROUPS BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) #endif BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_dynptr_adjust) BTF_ID_FLAGS(func, bpf_dynptr_is_null) BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) BTF_ID_FLAGS(func, bpf_dynptr_size) BTF_ID_FLAGS(func, bpf_dynptr_clone) BTF_ID_FLAGS(func, bpf_modify_return_test_tp) BTF_ID_FLAGS(func, bpf_wq_init) BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) BTF_ID_FLAGS(func, bpf_wq_start) BTF_ID_FLAGS(func, bpf_preempt_disable) BTF_ID_FLAGS(func, bpf_preempt_enable) BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) BTF_ID_FLAGS(func, bpf_get_kmem_cache) BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) BTF_KFUNCS_END(common_btf_ids) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, .set = &common_btf_ids, }; static int __init kfunc_init(void) { int ret; const struct btf_id_dtor_kfunc generic_dtors[] = { { .btf_id = generic_dtor_ids[0], .kfunc_btf_id = generic_dtor_ids[1] }, #ifdef CONFIG_CGROUPS { .btf_id = generic_dtor_ids[2], .kfunc_btf_id = generic_dtor_ids[3] }, #endif }; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, ARRAY_SIZE(generic_dtors), THIS_MODULE); return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); } late_initcall(kfunc_init); /* Get a pointer to dynptr data up to len bytes for read only access. If * the dynptr doesn't have continuous data up to len bytes, return NULL. */ const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len) { const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; return bpf_dynptr_slice(p, 0, NULL, len); } /* Get a pointer to dynptr data up to len bytes for read write access. If * the dynptr doesn't have continuous data up to len bytes, or the dynptr * is read only, return NULL. */ void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len) { if (__bpf_dynptr_is_rdonly(ptr)) return NULL; return (void *)__bpf_dynptr_data(ptr, len); }