// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause // // AMD SPI controller driver // // Copyright (c) 2020, Advanced Micro Devices, Inc. // // Author: Sanjay R Mehta #include #include #include #include #include #include #include #include #include #include #define AMD_SPI_CTRL0_REG 0x00 #define AMD_SPI_EXEC_CMD BIT(16) #define AMD_SPI_FIFO_CLEAR BIT(20) #define AMD_SPI_BUSY BIT(31) #define AMD_SPI_OPCODE_REG 0x45 #define AMD_SPI_CMD_TRIGGER_REG 0x47 #define AMD_SPI_TRIGGER_CMD BIT(7) #define AMD_SPI_OPCODE_MASK 0xFF #define AMD_SPI_ALT_CS_REG 0x1D #define AMD_SPI_ALT_CS_MASK 0x3 #define AMD_SPI_FIFO_BASE 0x80 #define AMD_SPI_TX_COUNT_REG 0x48 #define AMD_SPI_RX_COUNT_REG 0x4B #define AMD_SPI_STATUS_REG 0x4C #define AMD_SPI_ADDR32CTRL_REG 0x50 #define AMD_SPI_FIFO_SIZE 70 #define AMD_SPI_MEM_SIZE 200 #define AMD_SPI_MAX_DATA 64 #define AMD_SPI_HID2_DMA_SIZE 4096 #define AMD_SPI_ENA_REG 0x20 #define AMD_SPI_ALT_SPD_SHIFT 20 #define AMD_SPI_ALT_SPD_MASK GENMASK(23, AMD_SPI_ALT_SPD_SHIFT) #define AMD_SPI_SPI100_SHIFT 0 #define AMD_SPI_SPI100_MASK GENMASK(AMD_SPI_SPI100_SHIFT, AMD_SPI_SPI100_SHIFT) #define AMD_SPI_SPEED_REG 0x6C #define AMD_SPI_SPD7_SHIFT 8 #define AMD_SPI_SPD7_MASK GENMASK(13, AMD_SPI_SPD7_SHIFT) #define AMD_SPI_HID2_INPUT_RING_BUF0 0X100 #define AMD_SPI_HID2_CNTRL 0x150 #define AMD_SPI_HID2_INT_STATUS 0x154 #define AMD_SPI_HID2_CMD_START 0x156 #define AMD_SPI_HID2_INT_MASK 0x158 #define AMD_SPI_HID2_READ_CNTRL0 0x170 #define AMD_SPI_HID2_READ_CNTRL1 0x174 #define AMD_SPI_HID2_READ_CNTRL2 0x180 #define AMD_SPI_MAX_HZ 100000000 #define AMD_SPI_MIN_HZ 800000 #define AMD_SPI_IO_SLEEP_US 20 #define AMD_SPI_IO_TIMEOUT_US 2000000 /* SPI read command opcodes */ #define AMD_SPI_OP_READ 0x03 /* Read data bytes (low frequency) */ #define AMD_SPI_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */ #define AMD_SPI_OP_READ_1_1_2 0x3b /* Read data bytes (Dual Output SPI) */ #define AMD_SPI_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */ #define AMD_SPI_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */ #define AMD_SPI_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */ /* SPI read command opcodes - 4B address */ #define AMD_SPI_OP_READ_FAST_4B 0x0c /* Read data bytes (high frequency) */ #define AMD_SPI_OP_READ_1_1_2_4B 0x3c /* Read data bytes (Dual Output SPI) */ #define AMD_SPI_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */ #define AMD_SPI_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */ #define AMD_SPI_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */ /** * enum amd_spi_versions - SPI controller versions * @AMD_SPI_V1: AMDI0061 hardware version * @AMD_SPI_V2: AMDI0062 hardware version * @AMD_HID2_SPI: AMDI0063 hardware version */ enum amd_spi_versions { AMD_SPI_V1 = 1, AMD_SPI_V2, AMD_HID2_SPI, }; enum amd_spi_speed { F_66_66MHz, F_33_33MHz, F_22_22MHz, F_16_66MHz, F_100MHz, F_800KHz, SPI_SPD7 = 0x7, F_50MHz = 0x4, F_4MHz = 0x32, F_3_17MHz = 0x3F }; /** * struct amd_spi_freq - Matches device speed with values to write in regs * @speed_hz: Device frequency * @enable_val: Value to be written to "enable register" * @spd7_val: Some frequencies requires to have a value written at SPISPEED register */ struct amd_spi_freq { u32 speed_hz; u32 enable_val; u32 spd7_val; }; /** * struct amd_spi - SPI driver instance * @io_remap_addr: Start address of the SPI controller registers * @phy_dma_buf: Physical address of DMA buffer * @dma_virt_addr: Virtual address of DMA buffer * @version: SPI controller hardware version * @speed_hz: Device frequency */ struct amd_spi { void __iomem *io_remap_addr; dma_addr_t phy_dma_buf; void *dma_virt_addr; enum amd_spi_versions version; unsigned int speed_hz; }; static inline u8 amd_spi_readreg8(struct amd_spi *amd_spi, int idx) { return readb((u8 __iomem *)amd_spi->io_remap_addr + idx); } static inline void amd_spi_writereg8(struct amd_spi *amd_spi, int idx, u8 val) { writeb(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx)); } static void amd_spi_setclear_reg8(struct amd_spi *amd_spi, int idx, u8 set, u8 clear) { u8 tmp = amd_spi_readreg8(amd_spi, idx); tmp = (tmp & ~clear) | set; amd_spi_writereg8(amd_spi, idx, tmp); } static inline u16 amd_spi_readreg16(struct amd_spi *amd_spi, int idx) { return readw((u8 __iomem *)amd_spi->io_remap_addr + idx); } static inline void amd_spi_writereg16(struct amd_spi *amd_spi, int idx, u16 val) { writew(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx)); } static inline u32 amd_spi_readreg32(struct amd_spi *amd_spi, int idx) { return readl((u8 __iomem *)amd_spi->io_remap_addr + idx); } static inline void amd_spi_writereg32(struct amd_spi *amd_spi, int idx, u32 val) { writel(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx)); } static inline u64 amd_spi_readreg64(struct amd_spi *amd_spi, int idx) { return readq((u8 __iomem *)amd_spi->io_remap_addr + idx); } static inline void amd_spi_writereg64(struct amd_spi *amd_spi, int idx, u64 val) { writeq(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx)); } static inline void amd_spi_setclear_reg32(struct amd_spi *amd_spi, int idx, u32 set, u32 clear) { u32 tmp = amd_spi_readreg32(amd_spi, idx); tmp = (tmp & ~clear) | set; amd_spi_writereg32(amd_spi, idx, tmp); } static void amd_spi_select_chip(struct amd_spi *amd_spi, u8 cs) { amd_spi_setclear_reg8(amd_spi, AMD_SPI_ALT_CS_REG, cs, AMD_SPI_ALT_CS_MASK); } static inline void amd_spi_clear_chip(struct amd_spi *amd_spi, u8 chip_select) { amd_spi_writereg8(amd_spi, AMD_SPI_ALT_CS_REG, chip_select & ~AMD_SPI_ALT_CS_MASK); } static void amd_spi_clear_fifo_ptr(struct amd_spi *amd_spi) { amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, AMD_SPI_FIFO_CLEAR, AMD_SPI_FIFO_CLEAR); } static int amd_spi_set_opcode(struct amd_spi *amd_spi, u8 cmd_opcode) { switch (amd_spi->version) { case AMD_SPI_V1: amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, cmd_opcode, AMD_SPI_OPCODE_MASK); return 0; case AMD_SPI_V2: case AMD_HID2_SPI: amd_spi_writereg8(amd_spi, AMD_SPI_OPCODE_REG, cmd_opcode); return 0; default: return -ENODEV; } } static inline void amd_spi_set_rx_count(struct amd_spi *amd_spi, u8 rx_count) { amd_spi_writereg8(amd_spi, AMD_SPI_RX_COUNT_REG, rx_count); } static inline void amd_spi_set_tx_count(struct amd_spi *amd_spi, u8 tx_count) { amd_spi_writereg8(amd_spi, AMD_SPI_TX_COUNT_REG, tx_count); } static int amd_spi_busy_wait(struct amd_spi *amd_spi) { u32 val; int reg; switch (amd_spi->version) { case AMD_SPI_V1: reg = AMD_SPI_CTRL0_REG; break; case AMD_SPI_V2: case AMD_HID2_SPI: reg = AMD_SPI_STATUS_REG; break; default: return -ENODEV; } return readl_poll_timeout(amd_spi->io_remap_addr + reg, val, !(val & AMD_SPI_BUSY), 20, 2000000); } static int amd_spi_execute_opcode(struct amd_spi *amd_spi) { int ret; ret = amd_spi_busy_wait(amd_spi); if (ret) return ret; switch (amd_spi->version) { case AMD_SPI_V1: /* Set ExecuteOpCode bit in the CTRL0 register */ amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, AMD_SPI_EXEC_CMD, AMD_SPI_EXEC_CMD); return 0; case AMD_SPI_V2: case AMD_HID2_SPI: /* Trigger the command execution */ amd_spi_setclear_reg8(amd_spi, AMD_SPI_CMD_TRIGGER_REG, AMD_SPI_TRIGGER_CMD, AMD_SPI_TRIGGER_CMD); return 0; default: return -ENODEV; } } static int amd_spi_host_setup(struct spi_device *spi) { struct amd_spi *amd_spi = spi_controller_get_devdata(spi->controller); amd_spi_clear_fifo_ptr(amd_spi); return 0; } static const struct amd_spi_freq amd_spi_freq[] = { { AMD_SPI_MAX_HZ, F_100MHz, 0}, { 66660000, F_66_66MHz, 0}, { 50000000, SPI_SPD7, F_50MHz}, { 33330000, F_33_33MHz, 0}, { 22220000, F_22_22MHz, 0}, { 16660000, F_16_66MHz, 0}, { 4000000, SPI_SPD7, F_4MHz}, { 3170000, SPI_SPD7, F_3_17MHz}, { AMD_SPI_MIN_HZ, F_800KHz, 0}, }; static int amd_set_spi_freq(struct amd_spi *amd_spi, u32 speed_hz) { unsigned int i, spd7_val, alt_spd; if (speed_hz < AMD_SPI_MIN_HZ) return -EINVAL; for (i = 0; i < ARRAY_SIZE(amd_spi_freq); i++) if (speed_hz >= amd_spi_freq[i].speed_hz) break; if (amd_spi->speed_hz == amd_spi_freq[i].speed_hz) return 0; amd_spi->speed_hz = amd_spi_freq[i].speed_hz; alt_spd = (amd_spi_freq[i].enable_val << AMD_SPI_ALT_SPD_SHIFT) & AMD_SPI_ALT_SPD_MASK; amd_spi_setclear_reg32(amd_spi, AMD_SPI_ENA_REG, alt_spd, AMD_SPI_ALT_SPD_MASK); if (amd_spi->speed_hz == AMD_SPI_MAX_HZ) amd_spi_setclear_reg32(amd_spi, AMD_SPI_ENA_REG, 1, AMD_SPI_SPI100_MASK); if (amd_spi_freq[i].spd7_val) { spd7_val = (amd_spi_freq[i].spd7_val << AMD_SPI_SPD7_SHIFT) & AMD_SPI_SPD7_MASK; amd_spi_setclear_reg32(amd_spi, AMD_SPI_SPEED_REG, spd7_val, AMD_SPI_SPD7_MASK); } return 0; } static inline int amd_spi_fifo_xfer(struct amd_spi *amd_spi, struct spi_controller *host, struct spi_message *message) { struct spi_transfer *xfer = NULL; struct spi_device *spi = message->spi; u8 cmd_opcode = 0, fifo_pos = AMD_SPI_FIFO_BASE; u8 *buf = NULL; u32 i = 0; u32 tx_len = 0, rx_len = 0; list_for_each_entry(xfer, &message->transfers, transfer_list) { if (xfer->speed_hz) amd_set_spi_freq(amd_spi, xfer->speed_hz); else amd_set_spi_freq(amd_spi, spi->max_speed_hz); if (xfer->tx_buf) { buf = (u8 *)xfer->tx_buf; if (!tx_len) { cmd_opcode = *(u8 *)xfer->tx_buf; buf++; xfer->len--; } tx_len += xfer->len; /* Write data into the FIFO. */ for (i = 0; i < xfer->len; i++) amd_spi_writereg8(amd_spi, fifo_pos + i, buf[i]); fifo_pos += xfer->len; } /* Store no. of bytes to be received from FIFO */ if (xfer->rx_buf) rx_len += xfer->len; } if (!buf) { message->status = -EINVAL; goto fin_msg; } amd_spi_set_opcode(amd_spi, cmd_opcode); amd_spi_set_tx_count(amd_spi, tx_len); amd_spi_set_rx_count(amd_spi, rx_len); /* Execute command */ message->status = amd_spi_execute_opcode(amd_spi); if (message->status) goto fin_msg; if (rx_len) { message->status = amd_spi_busy_wait(amd_spi); if (message->status) goto fin_msg; list_for_each_entry(xfer, &message->transfers, transfer_list) if (xfer->rx_buf) { buf = (u8 *)xfer->rx_buf; /* Read data from FIFO to receive buffer */ for (i = 0; i < xfer->len; i++) buf[i] = amd_spi_readreg8(amd_spi, fifo_pos + i); fifo_pos += xfer->len; } } /* Update statistics */ message->actual_length = tx_len + rx_len + 1; fin_msg: switch (amd_spi->version) { case AMD_SPI_V1: break; case AMD_SPI_V2: case AMD_HID2_SPI: amd_spi_clear_chip(amd_spi, spi_get_chipselect(message->spi, 0)); break; default: return -ENODEV; } spi_finalize_current_message(host); return message->status; } static inline bool amd_is_spi_read_cmd_4b(const u16 op) { switch (op) { case AMD_SPI_OP_READ_FAST_4B: case AMD_SPI_OP_READ_1_1_2_4B: case AMD_SPI_OP_READ_1_2_2_4B: case AMD_SPI_OP_READ_1_1_4_4B: case AMD_SPI_OP_READ_1_4_4_4B: return true; default: return false; } } static inline bool amd_is_spi_read_cmd(const u16 op) { switch (op) { case AMD_SPI_OP_READ: case AMD_SPI_OP_READ_FAST: case AMD_SPI_OP_READ_1_1_2: case AMD_SPI_OP_READ_1_2_2: case AMD_SPI_OP_READ_1_1_4: case AMD_SPI_OP_READ_1_4_4: return true; default: return amd_is_spi_read_cmd_4b(op); } } static bool amd_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct amd_spi *amd_spi = spi_controller_get_devdata(mem->spi->controller); /* bus width is number of IO lines used to transmit */ if (op->cmd.buswidth > 1 || op->addr.buswidth > 4) return false; /* AMD SPI controllers support quad mode only for read operations */ if (amd_is_spi_read_cmd(op->cmd.opcode)) { if (op->data.buswidth > 4) return false; /* * HID2 SPI controller supports DMA read up to 4K bytes and * doesn't support 4-byte address commands. */ if (amd_spi->version == AMD_HID2_SPI) { if (amd_is_spi_read_cmd_4b(op->cmd.opcode) || op->data.nbytes > AMD_SPI_HID2_DMA_SIZE) return false; } else if (op->data.nbytes > AMD_SPI_MAX_DATA) { return false; } } else if (op->data.buswidth > 1 || op->data.nbytes > AMD_SPI_MAX_DATA) { return false; } return spi_mem_default_supports_op(mem, op); } static int amd_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct amd_spi *amd_spi = spi_controller_get_devdata(mem->spi->controller); /* * HID2 SPI controller DMA read mode supports reading up to 4k * bytes in single transaction, where as SPI0 and HID2 SPI * controller index mode supports maximum of 64 bytes in a single * transaction. */ if (amd_spi->version == AMD_HID2_SPI && amd_is_spi_read_cmd(op->cmd.opcode)) op->data.nbytes = clamp_val(op->data.nbytes, 0, AMD_SPI_HID2_DMA_SIZE); else op->data.nbytes = clamp_val(op->data.nbytes, 0, AMD_SPI_MAX_DATA); return 0; } static void amd_spi_set_addr(struct amd_spi *amd_spi, const struct spi_mem_op *op) { u8 nbytes = op->addr.nbytes; u64 addr_val = op->addr.val; int base_addr, i; base_addr = AMD_SPI_FIFO_BASE + nbytes; for (i = 0; i < nbytes; i++) { amd_spi_writereg8(amd_spi, base_addr - i - 1, addr_val & GENMASK(7, 0)); addr_val >>= 8; } } static void amd_spi_mem_data_out(struct amd_spi *amd_spi, const struct spi_mem_op *op) { int base_addr = AMD_SPI_FIFO_BASE + op->addr.nbytes; u64 *buf_64 = (u64 *)op->data.buf.out; u32 nbytes = op->data.nbytes; u32 left_data = nbytes; u8 *buf; int i; amd_spi_set_opcode(amd_spi, op->cmd.opcode); amd_spi_set_addr(amd_spi, op); for (i = 0; left_data >= 8; i++, left_data -= 8) amd_spi_writereg64(amd_spi, base_addr + op->dummy.nbytes + (i * 8), *buf_64++); buf = (u8 *)buf_64; for (i = 0; i < left_data; i++) { amd_spi_writereg8(amd_spi, base_addr + op->dummy.nbytes + nbytes + i - left_data, buf[i]); } amd_spi_set_tx_count(amd_spi, op->addr.nbytes + op->data.nbytes); amd_spi_set_rx_count(amd_spi, 0); amd_spi_clear_fifo_ptr(amd_spi); amd_spi_execute_opcode(amd_spi); } static void amd_spi_hiddma_read(struct amd_spi *amd_spi, const struct spi_mem_op *op) { u16 hid_cmd_start, val; u32 hid_regval; /* Set the opcode in hid2_read_control0 register */ hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL0); hid_regval = (hid_regval & ~GENMASK(7, 0)) | op->cmd.opcode; /* * Program the address in the hid2_read_control0 register [8:31]. The address should * be written starting from the 8th bit of the register, requiring an 8-bit shift. * Additionally, to convert a 2-byte spinand address to a 3-byte address, another * 8-bit shift is needed. Therefore, a total shift of 16 bits is required. */ hid_regval = (hid_regval & ~GENMASK(31, 8)) | (op->addr.val << 16); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL0, hid_regval); /* Configure dummy clock cycles for fast read, dual, quad I/O commands */ hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL2); /* Fast read dummy cycle */ hid_regval &= ~GENMASK(4, 0); /* Fast read Dual I/O dummy cycle */ hid_regval &= ~GENMASK(12, 8); /* Fast read Quad I/O dummy cycle */ hid_regval = (hid_regval & ~GENMASK(20, 16)) | BIT(17); /* Set no of preamble bytecount */ hid_regval &= ~GENMASK(27, 24); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL2, hid_regval); /* * Program the HID2 Input Ring Buffer0. 4k aligned buf_memory_addr[31:12], * buf_size[4:0], end_input_ring[5]. */ hid_regval = amd_spi->phy_dma_buf | BIT(5) | BIT(0); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_INPUT_RING_BUF0, hid_regval); /* Program max read length(no of DWs) in hid2_read_control1 register */ hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL1); hid_regval = (hid_regval & ~GENMASK(15, 0)) | ((op->data.nbytes / 4) - 1); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL1, hid_regval); /* Set cmd start bit in hid2_cmd_start register to trigger HID basic read operation */ hid_cmd_start = amd_spi_readreg16(amd_spi, AMD_SPI_HID2_CMD_START); amd_spi_writereg16(amd_spi, AMD_SPI_HID2_CMD_START, (hid_cmd_start | BIT(3))); /* Check interrupt status of HIDDMA basic read operation in hid2_int_status register */ readw_poll_timeout(amd_spi->io_remap_addr + AMD_SPI_HID2_INT_STATUS, val, (val & BIT(3)), AMD_SPI_IO_SLEEP_US, AMD_SPI_IO_TIMEOUT_US); /* Clear the interrupts by writing to hid2_int_status register */ val = amd_spi_readreg16(amd_spi, AMD_SPI_HID2_INT_STATUS); amd_spi_writereg16(amd_spi, AMD_SPI_HID2_INT_STATUS, val); } static void amd_spi_mem_data_in(struct amd_spi *amd_spi, const struct spi_mem_op *op) { int base_addr = AMD_SPI_FIFO_BASE + op->addr.nbytes; u64 *buf_64 = (u64 *)op->data.buf.in; u32 nbytes = op->data.nbytes; u32 left_data = nbytes; u32 data; u8 *buf; int i; /* * Condition for using HID read mode. Only for reading complete page data, use HID read. * Use index mode otherwise. */ if (amd_spi->version == AMD_HID2_SPI && amd_is_spi_read_cmd(op->cmd.opcode)) { amd_spi_hiddma_read(amd_spi, op); for (i = 0; left_data >= 8; i++, left_data -= 8) *buf_64++ = readq((u8 __iomem *)amd_spi->dma_virt_addr + (i * 8)); buf = (u8 *)buf_64; for (i = 0; i < left_data; i++) buf[i] = readb((u8 __iomem *)amd_spi->dma_virt_addr + (nbytes - left_data + i)); /* Reset HID RX memory logic */ data = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_CNTRL); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_CNTRL, data | BIT(5)); } else { /* Index mode */ amd_spi_set_opcode(amd_spi, op->cmd.opcode); amd_spi_set_addr(amd_spi, op); amd_spi_set_tx_count(amd_spi, op->addr.nbytes + op->dummy.nbytes); for (i = 0; i < op->dummy.nbytes; i++) amd_spi_writereg8(amd_spi, (base_addr + i), 0xff); amd_spi_set_rx_count(amd_spi, op->data.nbytes); amd_spi_clear_fifo_ptr(amd_spi); amd_spi_execute_opcode(amd_spi); amd_spi_busy_wait(amd_spi); for (i = 0; left_data >= 8; i++, left_data -= 8) *buf_64++ = amd_spi_readreg64(amd_spi, base_addr + op->dummy.nbytes + (i * 8)); buf = (u8 *)buf_64; for (i = 0; i < left_data; i++) buf[i] = amd_spi_readreg8(amd_spi, base_addr + op->dummy.nbytes + nbytes + i - left_data); } } static void amd_set_spi_addr_mode(struct amd_spi *amd_spi, const struct spi_mem_op *op) { u32 val = amd_spi_readreg32(amd_spi, AMD_SPI_ADDR32CTRL_REG); if (amd_is_spi_read_cmd_4b(op->cmd.opcode)) amd_spi_writereg32(amd_spi, AMD_SPI_ADDR32CTRL_REG, val | BIT(0)); else amd_spi_writereg32(amd_spi, AMD_SPI_ADDR32CTRL_REG, val & ~BIT(0)); } static int amd_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct amd_spi *amd_spi; int ret; amd_spi = spi_controller_get_devdata(mem->spi->controller); ret = amd_set_spi_freq(amd_spi, mem->spi->max_speed_hz); if (ret) return ret; if (amd_spi->version == AMD_SPI_V2) amd_set_spi_addr_mode(amd_spi, op); switch (op->data.dir) { case SPI_MEM_DATA_IN: amd_spi_mem_data_in(amd_spi, op); break; case SPI_MEM_DATA_OUT: fallthrough; case SPI_MEM_NO_DATA: amd_spi_mem_data_out(amd_spi, op); break; default: ret = -EOPNOTSUPP; } return ret; } static const struct spi_controller_mem_ops amd_spi_mem_ops = { .exec_op = amd_spi_exec_mem_op, .adjust_op_size = amd_spi_adjust_op_size, .supports_op = amd_spi_supports_op, }; static int amd_spi_host_transfer(struct spi_controller *host, struct spi_message *msg) { struct amd_spi *amd_spi = spi_controller_get_devdata(host); struct spi_device *spi = msg->spi; amd_spi_select_chip(amd_spi, spi_get_chipselect(spi, 0)); /* * Extract spi_transfers from the spi message and * program the controller. */ return amd_spi_fifo_xfer(amd_spi, host, msg); } static size_t amd_spi_max_transfer_size(struct spi_device *spi) { return AMD_SPI_FIFO_SIZE; } static int amd_spi_setup_hiddma(struct amd_spi *amd_spi, struct device *dev) { u32 hid_regval; /* Allocate DMA buffer to use for HID basic read operation */ amd_spi->dma_virt_addr = dma_alloc_coherent(dev, AMD_SPI_HID2_DMA_SIZE, &amd_spi->phy_dma_buf, GFP_KERNEL); if (!amd_spi->dma_virt_addr) return -ENOMEM; /* * Enable interrupts and set mask bits in hid2_int_mask register to generate interrupt * properly for HIDDMA basic read operations. */ hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_INT_MASK); hid_regval = (hid_regval & GENMASK(31, 8)) | BIT(19); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_INT_MASK, hid_regval); /* Configure buffer unit(4k) in hid2_control register */ hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_CNTRL); amd_spi_writereg32(amd_spi, AMD_SPI_HID2_CNTRL, hid_regval & ~BIT(3)); return 0; } static int amd_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *host; struct amd_spi *amd_spi; int err; /* Allocate storage for host and driver private data */ host = devm_spi_alloc_host(dev, sizeof(struct amd_spi)); if (!host) return dev_err_probe(dev, -ENOMEM, "Error allocating SPI host\n"); amd_spi = spi_controller_get_devdata(host); amd_spi->io_remap_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(amd_spi->io_remap_addr)) return dev_err_probe(dev, PTR_ERR(amd_spi->io_remap_addr), "ioremap of SPI registers failed\n"); dev_dbg(dev, "io_remap_address: %p\n", amd_spi->io_remap_addr); amd_spi->version = (uintptr_t) device_get_match_data(dev); /* Initialize the spi_controller fields */ host->bus_num = (amd_spi->version == AMD_HID2_SPI) ? 2 : 0; host->num_chipselect = 4; host->mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD; host->flags = SPI_CONTROLLER_HALF_DUPLEX; host->max_speed_hz = AMD_SPI_MAX_HZ; host->min_speed_hz = AMD_SPI_MIN_HZ; host->setup = amd_spi_host_setup; host->transfer_one_message = amd_spi_host_transfer; host->mem_ops = &amd_spi_mem_ops; host->max_transfer_size = amd_spi_max_transfer_size; host->max_message_size = amd_spi_max_transfer_size; /* Register the controller with SPI framework */ err = devm_spi_register_controller(dev, host); if (err) return dev_err_probe(dev, err, "error registering SPI controller\n"); if (amd_spi->version == AMD_HID2_SPI) err = amd_spi_setup_hiddma(amd_spi, dev); return err; } #ifdef CONFIG_ACPI static const struct acpi_device_id spi_acpi_match[] = { { "AMDI0061", AMD_SPI_V1 }, { "AMDI0062", AMD_SPI_V2 }, { "AMDI0063", AMD_HID2_SPI }, {}, }; MODULE_DEVICE_TABLE(acpi, spi_acpi_match); #endif static struct platform_driver amd_spi_driver = { .driver = { .name = "amd_spi", .acpi_match_table = ACPI_PTR(spi_acpi_match), }, .probe = amd_spi_probe, }; module_platform_driver(amd_spi_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Sanjay Mehta "); MODULE_DESCRIPTION("AMD SPI Master Controller Driver");