Current code uses many different types when dealing with a port of a RDMA
device: u8, unsigned int and u32. Switch to u32 to clean up the logic.
This allows us to make (at least) the core view consistent and use the
same type. Unfortunately not all places can be converted. Many uverbs
functions expect port to be u8 so keep those places in order not to break
UAPIs. HW/Spec defined values must also not be changed.
With the switch to u32 we now can support devices with more than 255
ports. U32_MAX is reserved to make control logic a bit easier to deal
with. As a device with U32_MAX ports probably isn't going to happen any
time soon this seems like a non issue.
When a device with more than 255 ports is created uverbs will report the
RDMA device as having 255 ports as this is the max currently supported.
The verbs interface is not changed yet because the IBTA spec limits the
port size in too many places to be u8 and all applications that relies in
verbs won't be able to cope with this change. At this stage, we are
extending the interfaces that are using vendor channel solely
Once the limitation is lifted mlx5 in switchdev mode will be able to have
thousands of SFs created by the device. As the only instance of an RDMA
device that reports more than 255 ports will be a representor device and
it exposes itself as a RAW Ethernet only device CM/MAD/IPoIB and other
ULPs aren't effected by this change and their sysfs/interfaces that are
exposes to userspace can remain unchanged.
While here cleanup some alignment issues and remove unneeded sanity
checks (mainly in rdmavt),
Link: https://lore.kernel.org/r/20210301070420.439400-1-leon@kernel.org
Signed-off-by: Mark Bloch <mbloch@nvidia.com>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl0Os1seHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGtx4H/j6i482XzcGFKTBm
A7mBoQpy+kLtoUov4EtBAR62OuwI8rsahW9di37QKndPoQrczWaKBmr3De6LCdPe
v3pl3O6wBbvH5ru+qBPFX9PdNbDvimEChh7LHxmMxNQq3M+AjZAZVJyfpoiFnx35
Fbge+LZaH/k8HMwZmkMr5t9Mpkip715qKg2o9Bua6dkH0AqlcpLlC8d9a+HIVw/z
aAsyGSU8jRwhoAOJsE9bJf0acQ/pZSqmFp0rDKqeFTSDMsbDRKLGq/dgv4nW0RiW
s7xqsjb/rdcvirRj3rv9+lcTVkOtEqwk0PVdL9WOf7g4iYrb3SOIZh8ZyViaDSeH
VTS5zps=
=huBY
-----END PGP SIGNATURE-----
Merge tag 'v5.2-rc6' into rdma.git for-next
For dependencies in next patches.
Resolve conflicts:
- Use uverbs_get_cleared_udata() with new cq allocation flow
- Continue to delete nes despite SPDX conflict
- Resolve list appends in mlx5_command_str()
- Use u16 for vport_rule stuff
- Resolve list appends in struct ib_client
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Replace the old signature handover API with the new one. The new API
simplifes PI handover code complexity for ULPs and improve performance.
For RW API it will reduce the maximum number of work requests per task
and the need of dealing with multiple MRs (and their registrations and
invalidations) per task. All the mappings and registration of the data
and the protection buffers is done by the LLD using a single WR and a
special MR type (IB_MR_TYPE_INTEGRITY) for the PI handover operation.
The setup of the tested benchmark (using iSER ULP):
- 2 servers with 24 cores (1 initiator and 1 target)
- ConnectX-4/ConnectX-5 adapters
- 24 target sessions with 1 LUN each
- ramdisk backstore
- PI active
Performance results running fio (24 jobs, 128 iodepth) using
write_generate=1 and read_verify=1 (w/w.o patch):
bs IOPS(read) IOPS(write)
---- ---------- ----------
512 1243.3K/1182.3K 1725.1K/1680.2K
4k 571233/528835 743293/748259
32k 72388/71086 71789/93573
Using write_generate=0 and read_verify=0 (w/w.o patch):
bs IOPS(read) IOPS(write)
---- ---------- ----------
512 1572.1K/1427.2K 1823.5K/1724.3K
4k 921992/916194 753772/768267
32k 75052/73960 73180/95484
There is a performance degradation when writing big block sizes.
Degradation is caused by the complexity of combining multiple
indirections and perform RDMA READ operation from it. This will be
fixed in the following patches by reducing the indirections if
possible.
Signed-off-by: Israel Rukshin <israelr@mellanox.com>
Reviewed-by: Max Gurtovoy <maxg@mellanox.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 263 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The amount of payload per MR depends on device capabilities and
the memory registration mode in use. The new rdma_rw API hides both,
making it difficult for ULPs to determine how large their transport
send queues need to be.
Expose the MR payload information via a new API.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This supports both manual mapping of lots of SGEs, as well as using MRs
from the QP's MR pool, for iWarp or other cases where it's more optimal.
For now, MRs are only used for iWARP transports. The user of the RDMA-RW
API must allocate the QP MR pool as well as size the SQ accordingly.
Thanks to Steve Wise for testing, fixing and rewriting the iWarp support,
and to Sagi Grimberg for ideas, reviews and fixes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Doug Ledford <dledford@redhat.com>