crypto: sig - Introduce sig_alg backend

Commit 6cb8815f41 ("crypto: sig - Add interface for sign/verify")
began a transition of asymmetric sign/verify operations from
crypto_akcipher to a new crypto_sig frontend.

Internally, the crypto_sig frontend still uses akcipher_alg as backend,
however:

   "The link between sig and akcipher is meant to be temporary.  The
    plan is to create a new low-level API for sig and then migrate
    the signature code over to that from akcipher."
    https://lore.kernel.org/r/ZrG6w9wsb-iiLZIF@gondor.apana.org.au/

   "having a separate alg for sig is definitely where we want to
    be since there is very little that the two types actually share."
    https://lore.kernel.org/r/ZrHlpz4qnre0zWJO@gondor.apana.org.au/

Take the next step of that migration and augment the crypto_sig frontend
with a sig_alg backend to which all algorithms can be moved.

During the migration, there will briefly be signature algorithms that
are still based on crypto_akcipher, whilst others are already based on
crypto_sig.  Allow for that by building a fork into crypto_sig_*() API
calls (i.e. crypto_sig_maxsize() and friends) such that one of the two
backends is selected based on the transform's cra_type.

Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Lukas Wunner 2024-09-10 16:30:12 +02:00 committed by Herbert Xu
parent beea320112
commit 65c4c93caa
9 changed files with 432 additions and 2 deletions

View File

@ -0,0 +1,14 @@
Asymmetric Signature Algorithm Definitions
------------------------------------------
.. kernel-doc:: include/crypto/sig.h
:functions: sig_alg
Asymmetric Signature API
------------------------
.. kernel-doc:: include/crypto/sig.h
:doc: Generic Public Key Signature API
.. kernel-doc:: include/crypto/sig.h
:functions: crypto_alloc_sig crypto_free_sig crypto_sig_set_pubkey crypto_sig_set_privkey crypto_sig_maxsize crypto_sig_sign crypto_sig_verify

View File

@ -10,4 +10,5 @@ Programming Interface
api-digest api-digest
api-rng api-rng
api-akcipher api-akcipher
api-sig
api-kpp api-kpp

View File

@ -214,6 +214,8 @@ the aforementioned cipher types:
- CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher - CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher
- CRYPTO_ALG_TYPE_SIG Asymmetric signature
- CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of - CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of
CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression / CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression /
decompression instead of performing the operation on one segment decompression instead of performing the operation on one segment

View File

@ -21,14 +21,38 @@
static const struct crypto_type crypto_sig_type; static const struct crypto_type crypto_sig_type;
static void crypto_sig_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_sig *sig = __crypto_sig_tfm(tfm);
struct sig_alg *alg = crypto_sig_alg(sig);
alg->exit(sig);
}
static int crypto_sig_init_tfm(struct crypto_tfm *tfm) static int crypto_sig_init_tfm(struct crypto_tfm *tfm)
{ {
if (tfm->__crt_alg->cra_type != &crypto_sig_type) if (tfm->__crt_alg->cra_type != &crypto_sig_type)
return crypto_init_akcipher_ops_sig(tfm); return crypto_init_akcipher_ops_sig(tfm);
struct crypto_sig *sig = __crypto_sig_tfm(tfm);
struct sig_alg *alg = crypto_sig_alg(sig);
if (alg->exit)
sig->base.exit = crypto_sig_exit_tfm;
if (alg->init)
return alg->init(sig);
return 0; return 0;
} }
static void crypto_sig_free_instance(struct crypto_instance *inst)
{
struct sig_instance *sig = sig_instance(inst);
sig->free(sig);
}
static void __maybe_unused crypto_sig_show(struct seq_file *m, static void __maybe_unused crypto_sig_show(struct seq_file *m,
struct crypto_alg *alg) struct crypto_alg *alg)
{ {
@ -38,16 +62,17 @@ static void __maybe_unused crypto_sig_show(struct seq_file *m,
static int __maybe_unused crypto_sig_report(struct sk_buff *skb, static int __maybe_unused crypto_sig_report(struct sk_buff *skb,
struct crypto_alg *alg) struct crypto_alg *alg)
{ {
struct crypto_report_akcipher rsig = {}; struct crypto_report_sig rsig = {};
strscpy(rsig.type, "sig", sizeof(rsig.type)); strscpy(rsig.type, "sig", sizeof(rsig.type));
return nla_put(skb, CRYPTOCFGA_REPORT_AKCIPHER, sizeof(rsig), &rsig); return nla_put(skb, CRYPTOCFGA_REPORT_SIG, sizeof(rsig), &rsig);
} }
static const struct crypto_type crypto_sig_type = { static const struct crypto_type crypto_sig_type = {
.extsize = crypto_alg_extsize, .extsize = crypto_alg_extsize,
.init_tfm = crypto_sig_init_tfm, .init_tfm = crypto_sig_init_tfm,
.free = crypto_sig_free_instance,
#ifdef CONFIG_PROC_FS #ifdef CONFIG_PROC_FS
.show = crypto_sig_show, .show = crypto_sig_show,
#endif #endif
@ -68,6 +93,14 @@ EXPORT_SYMBOL_GPL(crypto_alloc_sig);
int crypto_sig_maxsize(struct crypto_sig *tfm) int crypto_sig_maxsize(struct crypto_sig *tfm)
{ {
if (crypto_sig_tfm(tfm)->__crt_alg->cra_type != &crypto_sig_type)
goto akcipher;
struct sig_alg *alg = crypto_sig_alg(tfm);
return alg->max_size(tfm);
akcipher:
struct crypto_akcipher **ctx = crypto_sig_ctx(tfm); struct crypto_akcipher **ctx = crypto_sig_ctx(tfm);
return crypto_akcipher_maxsize(*ctx); return crypto_akcipher_maxsize(*ctx);
@ -78,6 +111,14 @@ int crypto_sig_sign(struct crypto_sig *tfm,
const void *src, unsigned int slen, const void *src, unsigned int slen,
void *dst, unsigned int dlen) void *dst, unsigned int dlen)
{ {
if (crypto_sig_tfm(tfm)->__crt_alg->cra_type != &crypto_sig_type)
goto akcipher;
struct sig_alg *alg = crypto_sig_alg(tfm);
return alg->sign(tfm, src, slen, dst, dlen);
akcipher:
struct crypto_akcipher **ctx = crypto_sig_ctx(tfm); struct crypto_akcipher **ctx = crypto_sig_ctx(tfm);
struct crypto_akcipher_sync_data data = { struct crypto_akcipher_sync_data data = {
.tfm = *ctx, .tfm = *ctx,
@ -97,6 +138,14 @@ int crypto_sig_verify(struct crypto_sig *tfm,
const void *src, unsigned int slen, const void *src, unsigned int slen,
const void *digest, unsigned int dlen) const void *digest, unsigned int dlen)
{ {
if (crypto_sig_tfm(tfm)->__crt_alg->cra_type != &crypto_sig_type)
goto akcipher;
struct sig_alg *alg = crypto_sig_alg(tfm);
return alg->verify(tfm, src, slen, digest, dlen);
akcipher:
struct crypto_akcipher **ctx = crypto_sig_ctx(tfm); struct crypto_akcipher **ctx = crypto_sig_ctx(tfm);
struct crypto_akcipher_sync_data data = { struct crypto_akcipher_sync_data data = {
.tfm = *ctx, .tfm = *ctx,
@ -120,6 +169,14 @@ EXPORT_SYMBOL_GPL(crypto_sig_verify);
int crypto_sig_set_pubkey(struct crypto_sig *tfm, int crypto_sig_set_pubkey(struct crypto_sig *tfm,
const void *key, unsigned int keylen) const void *key, unsigned int keylen)
{ {
if (crypto_sig_tfm(tfm)->__crt_alg->cra_type != &crypto_sig_type)
goto akcipher;
struct sig_alg *alg = crypto_sig_alg(tfm);
return alg->set_pub_key(tfm, key, keylen);
akcipher:
struct crypto_akcipher **ctx = crypto_sig_ctx(tfm); struct crypto_akcipher **ctx = crypto_sig_ctx(tfm);
return crypto_akcipher_set_pub_key(*ctx, key, keylen); return crypto_akcipher_set_pub_key(*ctx, key, keylen);
@ -129,11 +186,93 @@ EXPORT_SYMBOL_GPL(crypto_sig_set_pubkey);
int crypto_sig_set_privkey(struct crypto_sig *tfm, int crypto_sig_set_privkey(struct crypto_sig *tfm,
const void *key, unsigned int keylen) const void *key, unsigned int keylen)
{ {
if (crypto_sig_tfm(tfm)->__crt_alg->cra_type != &crypto_sig_type)
goto akcipher;
struct sig_alg *alg = crypto_sig_alg(tfm);
return alg->set_priv_key(tfm, key, keylen);
akcipher:
struct crypto_akcipher **ctx = crypto_sig_ctx(tfm); struct crypto_akcipher **ctx = crypto_sig_ctx(tfm);
return crypto_akcipher_set_priv_key(*ctx, key, keylen); return crypto_akcipher_set_priv_key(*ctx, key, keylen);
} }
EXPORT_SYMBOL_GPL(crypto_sig_set_privkey); EXPORT_SYMBOL_GPL(crypto_sig_set_privkey);
static void sig_prepare_alg(struct sig_alg *alg)
{
struct crypto_alg *base = &alg->base;
base->cra_type = &crypto_sig_type;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
base->cra_flags |= CRYPTO_ALG_TYPE_SIG;
}
static int sig_default_sign(struct crypto_sig *tfm,
const void *src, unsigned int slen,
void *dst, unsigned int dlen)
{
return -ENOSYS;
}
static int sig_default_verify(struct crypto_sig *tfm,
const void *src, unsigned int slen,
const void *dst, unsigned int dlen)
{
return -ENOSYS;
}
static int sig_default_set_key(struct crypto_sig *tfm,
const void *key, unsigned int keylen)
{
return -ENOSYS;
}
int crypto_register_sig(struct sig_alg *alg)
{
struct crypto_alg *base = &alg->base;
if (!alg->sign)
alg->sign = sig_default_sign;
if (!alg->verify)
alg->verify = sig_default_verify;
if (!alg->set_priv_key)
alg->set_priv_key = sig_default_set_key;
if (!alg->set_pub_key)
return -EINVAL;
if (!alg->max_size)
return -EINVAL;
sig_prepare_alg(alg);
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_sig);
void crypto_unregister_sig(struct sig_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_sig);
int sig_register_instance(struct crypto_template *tmpl,
struct sig_instance *inst)
{
if (WARN_ON(!inst->free))
return -EINVAL;
sig_prepare_alg(&inst->alg);
return crypto_register_instance(tmpl, sig_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(sig_register_instance);
int crypto_grab_sig(struct crypto_sig_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_sig_type;
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_sig);
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Public Key Signature Algorithms"); MODULE_DESCRIPTION("Public Key Signature Algorithms");

View File

@ -33,6 +33,7 @@
#include <crypto/akcipher.h> #include <crypto/akcipher.h>
#include <crypto/kpp.h> #include <crypto/kpp.h>
#include <crypto/acompress.h> #include <crypto/acompress.h>
#include <crypto/sig.h>
#include <crypto/internal/cipher.h> #include <crypto/internal/cipher.h>
#include <crypto/internal/simd.h> #include <crypto/internal/simd.h>
@ -131,6 +132,11 @@ struct akcipher_test_suite {
unsigned int count; unsigned int count;
}; };
struct sig_test_suite {
const struct sig_testvec *vecs;
unsigned int count;
};
struct kpp_test_suite { struct kpp_test_suite {
const struct kpp_testvec *vecs; const struct kpp_testvec *vecs;
unsigned int count; unsigned int count;
@ -151,6 +157,7 @@ struct alg_test_desc {
struct cprng_test_suite cprng; struct cprng_test_suite cprng;
struct drbg_test_suite drbg; struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher; struct akcipher_test_suite akcipher;
struct sig_test_suite sig;
struct kpp_test_suite kpp; struct kpp_test_suite kpp;
} suite; } suite;
}; };
@ -4338,6 +4345,114 @@ static int alg_test_akcipher(const struct alg_test_desc *desc,
return err; return err;
} }
static int test_sig_one(struct crypto_sig *tfm, const struct sig_testvec *vecs)
{
u8 *ptr, *key __free(kfree);
int err, sig_size;
key = kmalloc(vecs->key_len + 2 * sizeof(u32) + vecs->param_len,
GFP_KERNEL);
if (!key)
return -ENOMEM;
/* ecrdsa expects additional parameters appended to the key */
memcpy(key, vecs->key, vecs->key_len);
ptr = key + vecs->key_len;
ptr = test_pack_u32(ptr, vecs->algo);
ptr = test_pack_u32(ptr, vecs->param_len);
memcpy(ptr, vecs->params, vecs->param_len);
if (vecs->public_key_vec)
err = crypto_sig_set_pubkey(tfm, key, vecs->key_len);
else
err = crypto_sig_set_privkey(tfm, key, vecs->key_len);
if (err)
return err;
/*
* Run asymmetric signature verification first
* (which does not require a private key)
*/
err = crypto_sig_verify(tfm, vecs->c, vecs->c_size,
vecs->m, vecs->m_size);
if (err) {
pr_err("alg: sig: verify test failed: err %d\n", err);
return err;
}
/*
* Don't invoke sign test (which requires a private key)
* for vectors with only a public key.
*/
if (vecs->public_key_vec)
return 0;
sig_size = crypto_sig_maxsize(tfm);
if (sig_size < vecs->c_size) {
pr_err("alg: sig: invalid maxsize %u\n", sig_size);
return -EINVAL;
}
u8 *sig __free(kfree) = kzalloc(sig_size, GFP_KERNEL);
if (!sig)
return -ENOMEM;
/* Run asymmetric signature generation */
err = crypto_sig_sign(tfm, vecs->m, vecs->m_size, sig, sig_size);
if (err) {
pr_err("alg: sig: sign test failed: err %d\n", err);
return err;
}
/* Verify that generated signature equals cooked signature */
if (memcmp(sig, vecs->c, vecs->c_size) ||
memchr_inv(sig + vecs->c_size, 0, sig_size - vecs->c_size)) {
pr_err("alg: sig: sign test failed: invalid output\n");
hexdump(sig, sig_size);
return -EINVAL;
}
return 0;
}
static int test_sig(struct crypto_sig *tfm, const char *alg,
const struct sig_testvec *vecs, unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_sig_tfm(tfm));
int ret, i;
for (i = 0; i < tcount; i++) {
ret = test_sig_one(tfm, vecs++);
if (ret) {
pr_err("alg: sig: test %d failed for %s: err %d\n",
i + 1, algo, ret);
return ret;
}
}
return 0;
}
__maybe_unused
static int alg_test_sig(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_sig *tfm;
int err = 0;
tfm = crypto_alloc_sig(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: sig: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.sig.vecs)
err = test_sig(tfm, desc->alg, desc->suite.sig.vecs,
desc->suite.sig.count);
crypto_free_sig(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc, static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask) const char *driver, u32 type, u32 mask)
{ {

View File

@ -162,6 +162,19 @@ struct akcipher_testvec {
enum OID algo; enum OID algo;
}; };
struct sig_testvec {
const unsigned char *key;
const unsigned char *params;
const unsigned char *m;
const unsigned char *c;
unsigned int key_len;
unsigned int param_len;
unsigned int m_size;
unsigned int c_size;
bool public_key_vec;
enum OID algo;
};
struct kpp_testvec { struct kpp_testvec {
const unsigned char *secret; const unsigned char *secret;
const unsigned char *b_secret; const unsigned char *b_secret;

View File

@ -10,8 +10,88 @@
#include <crypto/algapi.h> #include <crypto/algapi.h>
#include <crypto/sig.h> #include <crypto/sig.h>
struct sig_instance {
void (*free)(struct sig_instance *inst);
union {
struct {
char head[offsetof(struct sig_alg, base)];
struct crypto_instance base;
};
struct sig_alg alg;
};
};
struct crypto_sig_spawn {
struct crypto_spawn base;
};
static inline void *crypto_sig_ctx(struct crypto_sig *tfm) static inline void *crypto_sig_ctx(struct crypto_sig *tfm)
{ {
return crypto_tfm_ctx(&tfm->base); return crypto_tfm_ctx(&tfm->base);
} }
/**
* crypto_register_sig() -- Register public key signature algorithm
*
* Function registers an implementation of a public key signature algorithm
*
* @alg: algorithm definition
*
* Return: zero on success; error code in case of error
*/
int crypto_register_sig(struct sig_alg *alg);
/**
* crypto_unregister_sig() -- Unregister public key signature algorithm
*
* Function unregisters an implementation of a public key signature algorithm
*
* @alg: algorithm definition
*/
void crypto_unregister_sig(struct sig_alg *alg);
int sig_register_instance(struct crypto_template *tmpl,
struct sig_instance *inst);
static inline struct sig_instance *sig_instance(struct crypto_instance *inst)
{
return container_of(&inst->alg, struct sig_instance, alg.base);
}
static inline struct sig_instance *sig_alg_instance(struct crypto_sig *tfm)
{
return sig_instance(crypto_tfm_alg_instance(&tfm->base));
}
static inline struct crypto_instance *sig_crypto_instance(struct sig_instance
*inst)
{
return container_of(&inst->alg.base, struct crypto_instance, alg);
}
static inline void *sig_instance_ctx(struct sig_instance *inst)
{
return crypto_instance_ctx(sig_crypto_instance(inst));
}
int crypto_grab_sig(struct crypto_sig_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask);
static inline struct crypto_sig *crypto_spawn_sig(struct crypto_sig_spawn
*spawn)
{
return crypto_spawn_tfm2(&spawn->base);
}
static inline void crypto_drop_sig(struct crypto_sig_spawn *spawn)
{
crypto_drop_spawn(&spawn->base);
}
static inline struct sig_alg *crypto_spawn_sig_alg(struct crypto_sig_spawn
*spawn)
{
return container_of(spawn->base.alg, struct sig_alg, base);
}
#endif #endif

View File

@ -19,6 +19,52 @@ struct crypto_sig {
struct crypto_tfm base; struct crypto_tfm base;
}; };
/**
* struct sig_alg - generic public key signature algorithm
*
* @sign: Function performs a sign operation as defined by public key
* algorithm. Optional.
* @verify: Function performs a complete verify operation as defined by
* public key algorithm, returning verification status. Optional.
* @set_pub_key: Function invokes the algorithm specific set public key
* function, which knows how to decode and interpret
* the BER encoded public key and parameters. Mandatory.
* @set_priv_key: Function invokes the algorithm specific set private key
* function, which knows how to decode and interpret
* the BER encoded private key and parameters. Optional.
* @max_size: Function returns key size. Mandatory.
* @init: Initialize the cryptographic transformation object.
* This function is used to initialize the cryptographic
* transformation object. This function is called only once at
* the instantiation time, right after the transformation context
* was allocated. In case the cryptographic hardware has some
* special requirements which need to be handled by software, this
* function shall check for the precise requirement of the
* transformation and put any software fallbacks in place.
* @exit: Deinitialize the cryptographic transformation object. This is a
* counterpart to @init, used to remove various changes set in
* @init.
*
* @base: Common crypto API algorithm data structure
*/
struct sig_alg {
int (*sign)(struct crypto_sig *tfm,
const void *src, unsigned int slen,
void *dst, unsigned int dlen);
int (*verify)(struct crypto_sig *tfm,
const void *src, unsigned int slen,
const void *digest, unsigned int dlen);
int (*set_pub_key)(struct crypto_sig *tfm,
const void *key, unsigned int keylen);
int (*set_priv_key)(struct crypto_sig *tfm,
const void *key, unsigned int keylen);
unsigned int (*max_size)(struct crypto_sig *tfm);
int (*init)(struct crypto_sig *tfm);
void (*exit)(struct crypto_sig *tfm);
struct crypto_alg base;
};
/** /**
* DOC: Generic Public Key Signature API * DOC: Generic Public Key Signature API
* *
@ -47,6 +93,21 @@ static inline struct crypto_tfm *crypto_sig_tfm(struct crypto_sig *tfm)
return &tfm->base; return &tfm->base;
} }
static inline struct crypto_sig *__crypto_sig_tfm(struct crypto_tfm *tfm)
{
return container_of(tfm, struct crypto_sig, base);
}
static inline struct sig_alg *__crypto_sig_alg(struct crypto_alg *alg)
{
return container_of(alg, struct sig_alg, base);
}
static inline struct sig_alg *crypto_sig_alg(struct crypto_sig *tfm)
{
return __crypto_sig_alg(crypto_sig_tfm(tfm)->__crt_alg);
}
/** /**
* crypto_free_sig() - free signature tfm handle * crypto_free_sig() - free signature tfm handle
* *

View File

@ -64,6 +64,7 @@ enum crypto_attr_type_t {
CRYPTOCFGA_STAT_AKCIPHER, /* No longer supported, do not use. */ CRYPTOCFGA_STAT_AKCIPHER, /* No longer supported, do not use. */
CRYPTOCFGA_STAT_KPP, /* No longer supported, do not use. */ CRYPTOCFGA_STAT_KPP, /* No longer supported, do not use. */
CRYPTOCFGA_STAT_ACOMP, /* No longer supported, do not use. */ CRYPTOCFGA_STAT_ACOMP, /* No longer supported, do not use. */
CRYPTOCFGA_REPORT_SIG, /* struct crypto_report_sig */
__CRYPTOCFGA_MAX __CRYPTOCFGA_MAX
#define CRYPTOCFGA_MAX (__CRYPTOCFGA_MAX - 1) #define CRYPTOCFGA_MAX (__CRYPTOCFGA_MAX - 1)
@ -207,6 +208,10 @@ struct crypto_report_acomp {
char type[CRYPTO_MAX_NAME]; char type[CRYPTO_MAX_NAME];
}; };
struct crypto_report_sig {
char type[CRYPTO_MAX_NAME];
};
#define CRYPTO_REPORT_MAXSIZE (sizeof(struct crypto_user_alg) + \ #define CRYPTO_REPORT_MAXSIZE (sizeof(struct crypto_user_alg) + \
sizeof(struct crypto_report_blkcipher)) sizeof(struct crypto_report_blkcipher))