ptp: add ToD device driver for Intel FPGA cards

Adding a DFL (Device Feature List) device driver of ToD device for
Intel FPGA cards.

The Intel FPGA Time of Day(ToD) IP within the FPGA DFL bus is exposed
as PTP Hardware clock(PHC) device to the Linux PTP stack to synchronize
the system clock to its ToD information using phc2sys utility of the
Linux PTP stack. The DFL is a hardware List within FPGA, which defines
a linked list of feature headers within the device MMIO space to provide
an extensible way of adding subdevice features.

Signed-off-by: Raghavendra Khadatare <raghavendrax.anand.khadatare@intel.com>
Signed-off-by: Tianfei Zhang <tianfei.zhang@intel.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230328142455.481146-1-tianfei.zhang@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit is contained in:
Tianfei Zhang 2023-03-28 10:24:55 -04:00 committed by Jakub Kicinski
parent 3b064f541b
commit 615927f1a4
4 changed files with 354 additions and 0 deletions

View File

@ -15630,6 +15630,13 @@ L: netdev@vger.kernel.org
S: Maintained
F: drivers/ptp/ptp_ocp.c
INTEL PTP DFL ToD DRIVER
M: Tianfei Zhang <tianfei.zhang@intel.com>
L: linux-fpga@vger.kernel.org
L: netdev@vger.kernel.org
S: Maintained
F: drivers/ptp/ptp_dfl_tod.c
OPENCORES I2C BUS DRIVER
M: Peter Korsgaard <peter@korsgaard.com>
M: Andrew Lunn <andrew@lunn.ch>

View File

@ -186,4 +186,18 @@ config PTP_1588_CLOCK_OCP
More information is available at http://www.timingcard.com/
config PTP_DFL_TOD
tristate "FPGA DFL ToD Driver"
depends on FPGA_DFL
depends on PTP_1588_CLOCK
help
The DFL (Device Feature List) device driver for the Intel ToD
(Time-of-Day) device in FPGA card. The ToD IP within the FPGA
is exposed as PTP Hardware Clock (PHC) device to the Linux PTP
stack to synchronize the system clock to its ToD information
using phc2sys utility of the Linux PTP stack.
To compile this driver as a module, choose M here: the module
will be called ptp_dfl_tod.
endmenu

View File

@ -18,3 +18,4 @@ obj-$(CONFIG_PTP_1588_CLOCK_IDTCM) += ptp_clockmatrix.o
obj-$(CONFIG_PTP_1588_CLOCK_IDT82P33) += ptp_idt82p33.o
obj-$(CONFIG_PTP_1588_CLOCK_VMW) += ptp_vmw.o
obj-$(CONFIG_PTP_1588_CLOCK_OCP) += ptp_ocp.o
obj-$(CONFIG_PTP_DFL_TOD) += ptp_dfl_tod.o

332
drivers/ptp/ptp_dfl_tod.c Normal file
View File

@ -0,0 +1,332 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* DFL device driver for Time-of-Day (ToD) private feature
*
* Copyright (C) 2023 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dfl.h>
#include <linux/gcd.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/spinlock.h>
#include <linux/units.h>
#define FME_FEATURE_ID_TOD 0x22
/* ToD clock register space. */
#define TOD_CLK_FREQ 0x038
/*
* The read sequence of ToD timestamp registers: TOD_NANOSEC, TOD_SECONDSL and
* TOD_SECONDSH, because there is a hardware snapshot whenever the TOD_NANOSEC
* register is read.
*
* The ToD IP requires writing registers in the reverse order to the read sequence.
* The timestamp is corrected when the TOD_NANOSEC register is written, so the
* sequence of write TOD registers: TOD_SECONDSH, TOD_SECONDSL and TOD_NANOSEC.
*/
#define TOD_SECONDSH 0x100
#define TOD_SECONDSL 0x104
#define TOD_NANOSEC 0x108
#define TOD_PERIOD 0x110
#define TOD_ADJUST_PERIOD 0x114
#define TOD_ADJUST_COUNT 0x118
#define TOD_DRIFT_ADJUST 0x11c
#define TOD_DRIFT_ADJUST_RATE 0x120
#define PERIOD_FRAC_OFFSET 16
#define SECONDS_MSB GENMASK_ULL(47, 32)
#define SECONDS_LSB GENMASK_ULL(31, 0)
#define TOD_SECONDSH_SEC_MSB GENMASK_ULL(15, 0)
#define CAL_SECONDS(m, l) ((FIELD_GET(TOD_SECONDSH_SEC_MSB, (m)) << 32) | (l))
#define TOD_PERIOD_MASK GENMASK_ULL(19, 0)
#define TOD_PERIOD_MAX FIELD_MAX(TOD_PERIOD_MASK)
#define TOD_PERIOD_MIN 0
#define TOD_DRIFT_ADJUST_MASK GENMASK_ULL(15, 0)
#define TOD_DRIFT_ADJUST_FNS_MAX FIELD_MAX(TOD_DRIFT_ADJUST_MASK)
#define TOD_DRIFT_ADJUST_RATE_MAX TOD_DRIFT_ADJUST_FNS_MAX
#define TOD_ADJUST_COUNT_MASK GENMASK_ULL(19, 0)
#define TOD_ADJUST_COUNT_MAX FIELD_MAX(TOD_ADJUST_COUNT_MASK)
#define TOD_ADJUST_INTERVAL_US 10
#define TOD_ADJUST_MS \
(((TOD_PERIOD_MAX >> 16) + 1) * (TOD_ADJUST_COUNT_MAX + 1))
#define TOD_ADJUST_MS_MAX (TOD_ADJUST_MS / MICRO)
#define TOD_ADJUST_MAX_US (TOD_ADJUST_MS_MAX * USEC_PER_MSEC)
#define TOD_MAX_ADJ (500 * MEGA)
struct dfl_tod {
struct ptp_clock_info ptp_clock_ops;
struct device *dev;
struct ptp_clock *ptp_clock;
/* ToD Clock address space */
void __iomem *tod_ctrl;
/* ToD clock registers protection */
spinlock_t tod_lock;
};
/*
* A fine ToD HW clock offset adjustment. To perform the fine offset adjustment, the
* adjust_period and adjust_count argument are used to update the TOD_ADJUST_PERIOD
* and TOD_ADJUST_COUNT register for in hardware. The dt->tod_lock spinlock must be
* held when calling this function.
*/
static int fine_adjust_tod_clock(struct dfl_tod *dt, u32 adjust_period,
u32 adjust_count)
{
void __iomem *base = dt->tod_ctrl;
u32 val;
writel(adjust_period, base + TOD_ADJUST_PERIOD);
writel(adjust_count, base + TOD_ADJUST_COUNT);
/* Wait for present offset adjustment update to complete */
return readl_poll_timeout_atomic(base + TOD_ADJUST_COUNT, val, !val, TOD_ADJUST_INTERVAL_US,
TOD_ADJUST_MAX_US);
}
/*
* A coarse ToD HW clock offset adjustment. The coarse time adjustment performs by
* adding or subtracting the delta value from the current ToD HW clock time.
*/
static int coarse_adjust_tod_clock(struct dfl_tod *dt, s64 delta)
{
u32 seconds_msb, seconds_lsb, nanosec;
void __iomem *base = dt->tod_ctrl;
u64 seconds, now;
if (delta == 0)
return 0;
nanosec = readl(base + TOD_NANOSEC);
seconds_lsb = readl(base + TOD_SECONDSL);
seconds_msb = readl(base + TOD_SECONDSH);
/* Calculate new time */
seconds = CAL_SECONDS(seconds_msb, seconds_lsb);
now = seconds * NSEC_PER_SEC + nanosec + delta;
seconds = div_u64_rem(now, NSEC_PER_SEC, &nanosec);
seconds_msb = FIELD_GET(SECONDS_MSB, seconds);
seconds_lsb = FIELD_GET(SECONDS_LSB, seconds);
writel(seconds_msb, base + TOD_SECONDSH);
writel(seconds_lsb, base + TOD_SECONDSL);
writel(nanosec, base + TOD_NANOSEC);
return 0;
}
static int dfl_tod_adjust_fine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
u32 tod_period, tod_rem, tod_drift_adjust_fns, tod_drift_adjust_rate;
void __iomem *base = dt->tod_ctrl;
unsigned long flags, rate;
u64 ppb;
/* Get the clock rate from clock frequency register offset */
rate = readl(base + TOD_CLK_FREQ);
/* add GIGA as nominal ppb */
ppb = scaled_ppm_to_ppb(scaled_ppm) + GIGA;
tod_period = div_u64_rem(ppb << PERIOD_FRAC_OFFSET, rate, &tod_rem);
if (tod_period > TOD_PERIOD_MAX)
return -ERANGE;
/*
* The drift of ToD adjusted periodically by adding a drift_adjust_fns
* correction value every drift_adjust_rate count of clock cycles.
*/
tod_drift_adjust_fns = tod_rem / gcd(tod_rem, rate);
tod_drift_adjust_rate = rate / gcd(tod_rem, rate);
while ((tod_drift_adjust_fns > TOD_DRIFT_ADJUST_FNS_MAX) ||
(tod_drift_adjust_rate > TOD_DRIFT_ADJUST_RATE_MAX)) {
tod_drift_adjust_fns >>= 1;
tod_drift_adjust_rate >>= 1;
}
if (tod_drift_adjust_fns == 0)
tod_drift_adjust_rate = 0;
spin_lock_irqsave(&dt->tod_lock, flags);
writel(tod_period, base + TOD_PERIOD);
writel(0, base + TOD_ADJUST_PERIOD);
writel(0, base + TOD_ADJUST_COUNT);
writel(tod_drift_adjust_fns, base + TOD_DRIFT_ADJUST);
writel(tod_drift_adjust_rate, base + TOD_DRIFT_ADJUST_RATE);
spin_unlock_irqrestore(&dt->tod_lock, flags);
return 0;
}
static int dfl_tod_adjust_time(struct ptp_clock_info *ptp, s64 delta)
{
struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
u32 period, diff, rem, rem_period, adj_period;
void __iomem *base = dt->tod_ctrl;
unsigned long flags;
bool neg_adj;
u64 count;
int ret;
neg_adj = delta < 0;
if (neg_adj)
delta = -delta;
spin_lock_irqsave(&dt->tod_lock, flags);
/*
* Get the maximum possible value of the Period register offset
* adjustment in nanoseconds scale. This depends on the current
* Period register setting and the maximum and minimum possible
* values of the Period register.
*/
period = readl(base + TOD_PERIOD);
if (neg_adj) {
diff = (period - TOD_PERIOD_MIN) >> PERIOD_FRAC_OFFSET;
adj_period = period - (diff << PERIOD_FRAC_OFFSET);
count = div_u64_rem(delta, diff, &rem);
rem_period = period - (rem << PERIOD_FRAC_OFFSET);
} else {
diff = (TOD_PERIOD_MAX - period) >> PERIOD_FRAC_OFFSET;
adj_period = period + (diff << PERIOD_FRAC_OFFSET);
count = div_u64_rem(delta, diff, &rem);
rem_period = period + (rem << PERIOD_FRAC_OFFSET);
}
ret = 0;
if (count > TOD_ADJUST_COUNT_MAX) {
ret = coarse_adjust_tod_clock(dt, delta);
} else {
/* Adjust the period by count cycles to adjust the time */
if (count)
ret = fine_adjust_tod_clock(dt, adj_period, count);
/* If there is a remainder, adjust the period for an additional cycle */
if (rem)
ret = fine_adjust_tod_clock(dt, rem_period, 1);
}
spin_unlock_irqrestore(&dt->tod_lock, flags);
return ret;
}
static int dfl_tod_get_timex(struct ptp_clock_info *ptp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
u32 seconds_msb, seconds_lsb, nanosec;
void __iomem *base = dt->tod_ctrl;
unsigned long flags;
u64 seconds;
spin_lock_irqsave(&dt->tod_lock, flags);
ptp_read_system_prets(sts);
nanosec = readl(base + TOD_NANOSEC);
seconds_lsb = readl(base + TOD_SECONDSL);
seconds_msb = readl(base + TOD_SECONDSH);
ptp_read_system_postts(sts);
spin_unlock_irqrestore(&dt->tod_lock, flags);
seconds = CAL_SECONDS(seconds_msb, seconds_lsb);
ts->tv_nsec = nanosec;
ts->tv_sec = seconds;
return 0;
}
static int dfl_tod_set_time(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
u32 seconds_msb = FIELD_GET(SECONDS_MSB, ts->tv_sec);
u32 seconds_lsb = FIELD_GET(SECONDS_LSB, ts->tv_sec);
u32 nanosec = FIELD_GET(SECONDS_LSB, ts->tv_nsec);
void __iomem *base = dt->tod_ctrl;
unsigned long flags;
spin_lock_irqsave(&dt->tod_lock, flags);
writel(seconds_msb, base + TOD_SECONDSH);
writel(seconds_lsb, base + TOD_SECONDSL);
writel(nanosec, base + TOD_NANOSEC);
spin_unlock_irqrestore(&dt->tod_lock, flags);
return 0;
}
static struct ptp_clock_info dfl_tod_clock_ops = {
.owner = THIS_MODULE,
.name = "dfl_tod",
.max_adj = TOD_MAX_ADJ,
.adjfine = dfl_tod_adjust_fine,
.adjtime = dfl_tod_adjust_time,
.gettimex64 = dfl_tod_get_timex,
.settime64 = dfl_tod_set_time,
};
static int dfl_tod_probe(struct dfl_device *ddev)
{
struct device *dev = &ddev->dev;
struct dfl_tod *dt;
dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL);
if (!dt)
return -ENOMEM;
dt->tod_ctrl = devm_ioremap_resource(dev, &ddev->mmio_res);
if (IS_ERR(dt->tod_ctrl))
return PTR_ERR(dt->tod_ctrl);
dt->dev = dev;
spin_lock_init(&dt->tod_lock);
dev_set_drvdata(dev, dt);
dt->ptp_clock_ops = dfl_tod_clock_ops;
dt->ptp_clock = ptp_clock_register(&dt->ptp_clock_ops, dev);
if (IS_ERR(dt->ptp_clock))
return dev_err_probe(dt->dev, PTR_ERR(dt->ptp_clock),
"Unable to register PTP clock\n");
return 0;
}
static void dfl_tod_remove(struct dfl_device *ddev)
{
struct dfl_tod *dt = dev_get_drvdata(&ddev->dev);
ptp_clock_unregister(dt->ptp_clock);
}
static const struct dfl_device_id dfl_tod_ids[] = {
{ FME_ID, FME_FEATURE_ID_TOD },
{ }
};
MODULE_DEVICE_TABLE(dfl, dfl_tod_ids);
static struct dfl_driver dfl_tod_driver = {
.drv = {
.name = "dfl-tod",
},
.id_table = dfl_tod_ids,
.probe = dfl_tod_probe,
.remove = dfl_tod_remove,
};
module_dfl_driver(dfl_tod_driver);
MODULE_DESCRIPTION("FPGA DFL ToD driver");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");