linux/drivers/char/ipmi/bt-bmc.c

493 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
/*
* Copyright (c) 2015-2016, IBM Corporation.
*/
#include <linux/atomic.h>
#include <linux/bt-bmc.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/of.h>
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
#include <linux/platform_device.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/timer.h>
/*
* This is a BMC device used to communicate to the host
*/
#define DEVICE_NAME "ipmi-bt-host"
#define BT_IO_BASE 0xe4
#define BT_IRQ 10
#define BT_CR0 0x0
#define BT_CR0_IO_BASE 16
#define BT_CR0_IRQ 12
#define BT_CR0_EN_CLR_SLV_RDP 0x8
#define BT_CR0_EN_CLR_SLV_WRP 0x4
#define BT_CR0_ENABLE_IBT 0x1
#define BT_CR1 0x4
#define BT_CR1_IRQ_H2B 0x01
#define BT_CR1_IRQ_HBUSY 0x40
#define BT_CR2 0x8
#define BT_CR2_IRQ_H2B 0x01
#define BT_CR2_IRQ_HBUSY 0x40
#define BT_CR3 0xc
#define BT_CTRL 0x10
#define BT_CTRL_B_BUSY 0x80
#define BT_CTRL_H_BUSY 0x40
#define BT_CTRL_OEM0 0x20
#define BT_CTRL_SMS_ATN 0x10
#define BT_CTRL_B2H_ATN 0x08
#define BT_CTRL_H2B_ATN 0x04
#define BT_CTRL_CLR_RD_PTR 0x02
#define BT_CTRL_CLR_WR_PTR 0x01
#define BT_BMC2HOST 0x14
#define BT_INTMASK 0x18
#define BT_INTMASK_B2H_IRQEN 0x01
#define BT_INTMASK_B2H_IRQ 0x02
#define BT_INTMASK_BMC_HWRST 0x80
#define BT_BMC_BUFFER_SIZE 256
struct bt_bmc {
struct device dev;
struct miscdevice miscdev;
void __iomem *base;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
int irq;
wait_queue_head_t queue;
struct timer_list poll_timer;
struct mutex mutex;
};
static atomic_t open_count = ATOMIC_INIT(0);
static u8 bt_inb(struct bt_bmc *bt_bmc, int reg)
{
return readb(bt_bmc->base + reg);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
}
static void bt_outb(struct bt_bmc *bt_bmc, u8 data, int reg)
{
writeb(data, bt_bmc->base + reg);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
}
static void clr_rd_ptr(struct bt_bmc *bt_bmc)
{
bt_outb(bt_bmc, BT_CTRL_CLR_RD_PTR, BT_CTRL);
}
static void clr_wr_ptr(struct bt_bmc *bt_bmc)
{
bt_outb(bt_bmc, BT_CTRL_CLR_WR_PTR, BT_CTRL);
}
static void clr_h2b_atn(struct bt_bmc *bt_bmc)
{
bt_outb(bt_bmc, BT_CTRL_H2B_ATN, BT_CTRL);
}
static void set_b_busy(struct bt_bmc *bt_bmc)
{
if (!(bt_inb(bt_bmc, BT_CTRL) & BT_CTRL_B_BUSY))
bt_outb(bt_bmc, BT_CTRL_B_BUSY, BT_CTRL);
}
static void clr_b_busy(struct bt_bmc *bt_bmc)
{
if (bt_inb(bt_bmc, BT_CTRL) & BT_CTRL_B_BUSY)
bt_outb(bt_bmc, BT_CTRL_B_BUSY, BT_CTRL);
}
static void set_b2h_atn(struct bt_bmc *bt_bmc)
{
bt_outb(bt_bmc, BT_CTRL_B2H_ATN, BT_CTRL);
}
static u8 bt_read(struct bt_bmc *bt_bmc)
{
return bt_inb(bt_bmc, BT_BMC2HOST);
}
static ssize_t bt_readn(struct bt_bmc *bt_bmc, u8 *buf, size_t n)
{
int i;
for (i = 0; i < n; i++)
buf[i] = bt_read(bt_bmc);
return n;
}
static void bt_write(struct bt_bmc *bt_bmc, u8 c)
{
bt_outb(bt_bmc, c, BT_BMC2HOST);
}
static ssize_t bt_writen(struct bt_bmc *bt_bmc, u8 *buf, size_t n)
{
int i;
for (i = 0; i < n; i++)
bt_write(bt_bmc, buf[i]);
return n;
}
static void set_sms_atn(struct bt_bmc *bt_bmc)
{
bt_outb(bt_bmc, BT_CTRL_SMS_ATN, BT_CTRL);
}
static struct bt_bmc *file_bt_bmc(struct file *file)
{
return container_of(file->private_data, struct bt_bmc, miscdev);
}
static int bt_bmc_open(struct inode *inode, struct file *file)
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
if (atomic_inc_return(&open_count) == 1) {
clr_b_busy(bt_bmc);
return 0;
}
atomic_dec(&open_count);
return -EBUSY;
}
/*
* The BT (Block Transfer) interface means that entire messages are
* buffered by the host before a notification is sent to the BMC that
* there is data to be read. The first byte is the length and the
* message data follows. The read operation just tries to capture the
* whole before returning it to userspace.
*
* BT Message format :
*
* Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N
* Length NetFn/LUN Seq Cmd Data
*
*/
static ssize_t bt_bmc_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
u8 len;
int len_byte = 1;
u8 kbuffer[BT_BMC_BUFFER_SIZE];
ssize_t ret = 0;
ssize_t nread;
WARN_ON(*ppos);
if (wait_event_interruptible(bt_bmc->queue,
bt_inb(bt_bmc, BT_CTRL) & BT_CTRL_H2B_ATN))
return -ERESTARTSYS;
mutex_lock(&bt_bmc->mutex);
if (unlikely(!(bt_inb(bt_bmc, BT_CTRL) & BT_CTRL_H2B_ATN))) {
ret = -EIO;
goto out_unlock;
}
set_b_busy(bt_bmc);
clr_h2b_atn(bt_bmc);
clr_rd_ptr(bt_bmc);
/*
* The BT frames start with the message length, which does not
* include the length byte.
*/
kbuffer[0] = bt_read(bt_bmc);
len = kbuffer[0];
/* We pass the length back to userspace as well */
if (len + 1 > count)
len = count - 1;
while (len) {
nread = min_t(ssize_t, len, sizeof(kbuffer) - len_byte);
bt_readn(bt_bmc, kbuffer + len_byte, nread);
if (copy_to_user(buf, kbuffer, nread + len_byte)) {
ret = -EFAULT;
break;
}
len -= nread;
buf += nread + len_byte;
ret += nread + len_byte;
len_byte = 0;
}
clr_b_busy(bt_bmc);
out_unlock:
mutex_unlock(&bt_bmc->mutex);
return ret;
}
/*
* BT Message response format :
*
* Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6:N
* Length NetFn/LUN Seq Cmd Code Data
*/
static ssize_t bt_bmc_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
u8 kbuffer[BT_BMC_BUFFER_SIZE];
ssize_t ret = 0;
ssize_t nwritten;
/*
* send a minimum response size
*/
if (count < 5)
return -EINVAL;
WARN_ON(*ppos);
/*
* There's no interrupt for clearing bmc busy so we have to
* poll
*/
if (wait_event_interruptible(bt_bmc->queue,
!(bt_inb(bt_bmc, BT_CTRL) &
(BT_CTRL_H_BUSY | BT_CTRL_B2H_ATN))))
return -ERESTARTSYS;
mutex_lock(&bt_bmc->mutex);
if (unlikely(bt_inb(bt_bmc, BT_CTRL) &
(BT_CTRL_H_BUSY | BT_CTRL_B2H_ATN))) {
ret = -EIO;
goto out_unlock;
}
clr_wr_ptr(bt_bmc);
while (count) {
nwritten = min_t(ssize_t, count, sizeof(kbuffer));
if (copy_from_user(&kbuffer, buf, nwritten)) {
ret = -EFAULT;
break;
}
bt_writen(bt_bmc, kbuffer, nwritten);
count -= nwritten;
buf += nwritten;
ret += nwritten;
}
set_b2h_atn(bt_bmc);
out_unlock:
mutex_unlock(&bt_bmc->mutex);
return ret;
}
static long bt_bmc_ioctl(struct file *file, unsigned int cmd,
unsigned long param)
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
switch (cmd) {
case BT_BMC_IOCTL_SMS_ATN:
set_sms_atn(bt_bmc);
return 0;
}
return -EINVAL;
}
static int bt_bmc_release(struct inode *inode, struct file *file)
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
atomic_dec(&open_count);
set_b_busy(bt_bmc);
return 0;
}
static __poll_t bt_bmc_poll(struct file *file, poll_table *wait)
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
{
struct bt_bmc *bt_bmc = file_bt_bmc(file);
__poll_t mask = 0;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
u8 ctrl;
poll_wait(file, &bt_bmc->queue, wait);
ctrl = bt_inb(bt_bmc, BT_CTRL);
if (ctrl & BT_CTRL_H2B_ATN)
mask |= EPOLLIN;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
if (!(ctrl & (BT_CTRL_H_BUSY | BT_CTRL_B2H_ATN)))
mask |= EPOLLOUT;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
return mask;
}
static const struct file_operations bt_bmc_fops = {
.owner = THIS_MODULE,
.open = bt_bmc_open,
.read = bt_bmc_read,
.write = bt_bmc_write,
.release = bt_bmc_release,
.poll = bt_bmc_poll,
.unlocked_ioctl = bt_bmc_ioctl,
};
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
static void poll_timer(struct timer_list *t)
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
struct bt_bmc *bt_bmc = from_timer(bt_bmc, t, poll_timer);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
bt_bmc->poll_timer.expires += msecs_to_jiffies(500);
wake_up(&bt_bmc->queue);
add_timer(&bt_bmc->poll_timer);
}
static irqreturn_t bt_bmc_irq(int irq, void *arg)
{
struct bt_bmc *bt_bmc = arg;
u32 reg;
reg = readl(bt_bmc->base + BT_CR2);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
reg &= BT_CR2_IRQ_H2B | BT_CR2_IRQ_HBUSY;
if (!reg)
return IRQ_NONE;
/* ack pending IRQs */
writel(reg, bt_bmc->base + BT_CR2);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
wake_up(&bt_bmc->queue);
return IRQ_HANDLED;
}
static int bt_bmc_config_irq(struct bt_bmc *bt_bmc,
struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int rc;
u32 reg;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
bt_bmc->irq = platform_get_irq_optional(pdev, 0);
if (bt_bmc->irq < 0)
return bt_bmc->irq;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
rc = devm_request_irq(dev, bt_bmc->irq, bt_bmc_irq, IRQF_SHARED,
DEVICE_NAME, bt_bmc);
if (rc < 0) {
dev_warn(dev, "Unable to request IRQ %d\n", bt_bmc->irq);
bt_bmc->irq = rc;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
return rc;
}
/*
* Configure IRQs on the bmc clearing the H2B and HBUSY bits;
* H2B will be asserted when the bmc has data for us; HBUSY
* will be cleared (along with B2H) when we can write the next
* message to the BT buffer
*/
reg = readl(bt_bmc->base + BT_CR1);
reg |= BT_CR1_IRQ_H2B | BT_CR1_IRQ_HBUSY;
writel(reg, bt_bmc->base + BT_CR1);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
return 0;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
}
static int bt_bmc_probe(struct platform_device *pdev)
{
struct bt_bmc *bt_bmc;
struct device *dev;
int rc;
dev = &pdev->dev;
dev_info(dev, "Found bt bmc device\n");
bt_bmc = devm_kzalloc(dev, sizeof(*bt_bmc), GFP_KERNEL);
if (!bt_bmc)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, bt_bmc);
bt_bmc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(bt_bmc->base))
return PTR_ERR(bt_bmc->base);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
mutex_init(&bt_bmc->mutex);
init_waitqueue_head(&bt_bmc->queue);
bt_bmc->miscdev.minor = MISC_DYNAMIC_MINOR;
bt_bmc->miscdev.name = DEVICE_NAME;
bt_bmc->miscdev.fops = &bt_bmc_fops;
bt_bmc->miscdev.parent = dev;
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
rc = misc_register(&bt_bmc->miscdev);
if (rc) {
dev_err(dev, "Unable to register misc device\n");
return rc;
}
bt_bmc_config_irq(bt_bmc, pdev);
if (bt_bmc->irq >= 0) {
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
dev_info(dev, "Using IRQ %d\n", bt_bmc->irq);
} else {
dev_info(dev, "No IRQ; using timer\n");
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 21:43:17 +00:00
timer_setup(&bt_bmc->poll_timer, poll_timer, 0);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
bt_bmc->poll_timer.expires = jiffies + msecs_to_jiffies(10);
add_timer(&bt_bmc->poll_timer);
}
writel((BT_IO_BASE << BT_CR0_IO_BASE) |
(BT_IRQ << BT_CR0_IRQ) |
BT_CR0_EN_CLR_SLV_RDP |
BT_CR0_EN_CLR_SLV_WRP |
BT_CR0_ENABLE_IBT,
bt_bmc->base + BT_CR0);
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
clr_b_busy(bt_bmc);
return 0;
}
static void bt_bmc_remove(struct platform_device *pdev)
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
{
struct bt_bmc *bt_bmc = dev_get_drvdata(&pdev->dev);
misc_deregister(&bt_bmc->miscdev);
if (bt_bmc->irq < 0)
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
del_timer_sync(&bt_bmc->poll_timer);
}
static const struct of_device_id bt_bmc_match[] = {
{ .compatible = "aspeed,ast2400-ibt-bmc" },
{ .compatible = "aspeed,ast2500-ibt-bmc" },
{ .compatible = "aspeed,ast2600-ibt-bmc" },
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
{ },
};
static struct platform_driver bt_bmc_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = bt_bmc_match,
},
.probe = bt_bmc_probe,
.remove_new = bt_bmc_remove,
ipmi: add an Aspeed BT IPMI BMC driver This patch adds a simple device driver to expose the iBT interface on Aspeed SOCs (AST2400 and AST2500) as a character device. Such SOCs are commonly used as BMCs (BaseBoard Management Controllers) and this driver implements the BMC side of the BT interface. The BT (Block Transfer) interface is used to perform in-band IPMI communication between a host and its BMC. Entire messages are buffered before sending a notification to the other end, host or BMC, that there is data to be read. Usually, the host emits requests and the BMC responses but the specification provides a mean for the BMC to send SMS Attention (BMC-to-Host attention or System Management Software attention) messages. For this purpose, the driver introduces a specific ioctl on the device: 'BT_BMC_IOCTL_SMS_ATN' that can be used by the system running on the BMC to signal the host of such an event. The device name defaults to '/dev/ipmi-bt-host' Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Joel Stanley <joel@jms.id.au> [clg: - checkpatch fixes - added a devicetree binding documentation - replace 'bt_host' by 'bt_bmc' to reflect that the driver is the BMC side of the IPMI BT interface - renamed the device to 'ipmi-bt-host' - introduced a temporary buffer to copy_{to,from}_user - used platform_get_irq() - moved the driver under drivers/char/ipmi/ but kept it as a misc device - changed the compatible cell to "aspeed,ast2400-bt-bmc" ] Signed-off-by: Cédric Le Goater <clg@kaod.org> Acked-by: Arnd Bergmann <arnd@arndb.de> [clg: - checkpatch --strict fixes - removed the use of devm_iounmap, devm_kfree in cleanup paths - introduced an atomic-t to limit opens to 1 - introduced a mutex to protect write/read operations] Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Corey Minyard <cminyard@mvista.com>
2016-09-20 07:01:38 +00:00
};
module_platform_driver(bt_bmc_driver);
MODULE_DEVICE_TABLE(of, bt_bmc_match);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alistair Popple <alistair@popple.id.au>");
MODULE_DESCRIPTION("Linux device interface to the IPMI BT interface");