linux/crypto/rsa.c

438 lines
8.3 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* RSA asymmetric public-key algorithm [RFC3447]
*
* Copyright (c) 2015, Intel Corporation
* Authors: Tadeusz Struk <tadeusz.struk@intel.com>
*/
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/mpi.h>
#include <crypto/internal/rsa.h>
#include <crypto/internal/akcipher.h>
#include <crypto/akcipher.h>
#include <crypto/algapi.h>
struct rsa_mpi_key {
MPI n;
MPI e;
MPI d;
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
MPI p;
MPI q;
MPI dp;
MPI dq;
MPI qinv;
};
static int rsa_check_payload(MPI x, MPI n)
{
MPI n1;
if (mpi_cmp_ui(x, 1) <= 0)
return -EINVAL;
n1 = mpi_alloc(0);
if (!n1)
return -ENOMEM;
if (mpi_sub_ui(n1, n, 1) || mpi_cmp(x, n1) >= 0) {
mpi_free(n1);
return -EINVAL;
}
mpi_free(n1);
return 0;
}
/*
* RSAEP function [RFC3447 sec 5.1.1]
* c = m^e mod n;
*/
static int _rsa_enc(const struct rsa_mpi_key *key, MPI c, MPI m)
{
/*
* Even though (1) in RFC3447 only requires 0 <= m <= n - 1, we are
* slightly more conservative and require 1 < m < n - 1. This is in line
* with SP 800-56Br2, Section 7.1.1.
*/
if (rsa_check_payload(m, key->n))
return -EINVAL;
/* (2) c = m^e mod n */
return mpi_powm(c, m, key->e, key->n);
}
/*
* RSADP function [RFC3447 sec 5.1.2]
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
* m_1 = c^dP mod p;
* m_2 = c^dQ mod q;
* h = (m_1 - m_2) * qInv mod p;
* m = m_2 + q * h;
*/
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
static int _rsa_dec_crt(const struct rsa_mpi_key *key, MPI m_or_m1_or_h, MPI c)
{
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
MPI m2, m12_or_qh;
int ret = -ENOMEM;
/*
* Even though (1) in RFC3447 only requires 0 <= c <= n - 1, we are
* slightly more conservative and require 1 < c < n - 1. This is in line
* with SP 800-56Br2, Section 7.1.2.
*/
if (rsa_check_payload(c, key->n))
return -EINVAL;
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
m2 = mpi_alloc(0);
m12_or_qh = mpi_alloc(0);
if (!m2 || !m12_or_qh)
goto err_free_mpi;
/* (2i) m_1 = c^dP mod p */
ret = mpi_powm(m_or_m1_or_h, c, key->dp, key->p);
if (ret)
goto err_free_mpi;
/* (2i) m_2 = c^dQ mod q */
ret = mpi_powm(m2, c, key->dq, key->q);
if (ret)
goto err_free_mpi;
/* (2iii) h = (m_1 - m_2) * qInv mod p */
ret = mpi_sub(m12_or_qh, m_or_m1_or_h, m2) ?:
mpi_mulm(m_or_m1_or_h, m12_or_qh, key->qinv, key->p);
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
/* (2iv) m = m_2 + q * h */
ret = ret ?:
mpi_mul(m12_or_qh, key->q, m_or_m1_or_h) ?:
mpi_addm(m_or_m1_or_h, m2, m12_or_qh, key->n);
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
err_free_mpi:
mpi_free(m12_or_qh);
mpi_free(m2);
return ret;
}
static inline struct rsa_mpi_key *rsa_get_key(struct crypto_akcipher *tfm)
{
return akcipher_tfm_ctx(tfm);
}
static int rsa_enc(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
MPI m, c = mpi_alloc(0);
int ret = 0;
int sign;
if (!c)
return -ENOMEM;
if (unlikely(!pkey->n || !pkey->e)) {
ret = -EINVAL;
goto err_free_c;
}
ret = -ENOMEM;
m = mpi_read_raw_from_sgl(req->src, req->src_len);
if (!m)
goto err_free_c;
ret = _rsa_enc(pkey, c, m);
if (ret)
goto err_free_m;
ret = mpi_write_to_sgl(c, req->dst, req->dst_len, &sign);
if (ret)
goto err_free_m;
if (sign < 0)
ret = -EBADMSG;
err_free_m:
mpi_free(m);
err_free_c:
mpi_free(c);
return ret;
}
static int rsa_dec(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
MPI c, m = mpi_alloc(0);
int ret = 0;
int sign;
if (!m)
return -ENOMEM;
if (unlikely(!pkey->n || !pkey->d)) {
ret = -EINVAL;
goto err_free_m;
}
ret = -ENOMEM;
c = mpi_read_raw_from_sgl(req->src, req->src_len);
if (!c)
goto err_free_m;
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
ret = _rsa_dec_crt(pkey, m, c);
if (ret)
goto err_free_c;
ret = mpi_write_to_sgl(m, req->dst, req->dst_len, &sign);
if (ret)
goto err_free_c;
if (sign < 0)
ret = -EBADMSG;
err_free_c:
mpi_free(c);
err_free_m:
mpi_free(m);
return ret;
}
static void rsa_free_mpi_key(struct rsa_mpi_key *key)
{
mpi_free(key->d);
mpi_free(key->e);
mpi_free(key->n);
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
mpi_free(key->p);
mpi_free(key->q);
mpi_free(key->dp);
mpi_free(key->dq);
mpi_free(key->qinv);
key->d = NULL;
key->e = NULL;
key->n = NULL;
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
key->p = NULL;
key->q = NULL;
key->dp = NULL;
key->dq = NULL;
key->qinv = NULL;
}
static int rsa_check_key_length(unsigned int len)
{
switch (len) {
case 512:
case 1024:
case 1536:
if (fips_enabled)
return -EINVAL;
fallthrough;
case 2048:
case 3072:
case 4096:
return 0;
}
return -EINVAL;
}
static int rsa_check_exponent_fips(MPI e)
{
MPI e_max = NULL;
int err;
/* check if odd */
if (!mpi_test_bit(e, 0)) {
return -EINVAL;
}
/* check if 2^16 < e < 2^256. */
if (mpi_cmp_ui(e, 65536) <= 0) {
return -EINVAL;
}
e_max = mpi_alloc(0);
if (!e_max)
return -ENOMEM;
err = mpi_set_bit(e_max, 256);
if (err) {
mpi_free(e_max);
return err;
}
if (mpi_cmp(e, e_max) >= 0) {
mpi_free(e_max);
return -EINVAL;
}
mpi_free(e_max);
return 0;
}
static int rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
struct rsa_key raw_key = {0};
int ret;
/* Free the old MPI key if any */
rsa_free_mpi_key(mpi_key);
ret = rsa_parse_pub_key(&raw_key, key, keylen);
if (ret)
return ret;
mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
if (!mpi_key->e)
goto err;
mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
if (!mpi_key->n)
goto err;
if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
rsa_free_mpi_key(mpi_key);
return -EINVAL;
}
if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
rsa_free_mpi_key(mpi_key);
return -EINVAL;
}
return 0;
err:
rsa_free_mpi_key(mpi_key);
return -ENOMEM;
}
static int rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
struct rsa_key raw_key = {0};
int ret;
/* Free the old MPI key if any */
rsa_free_mpi_key(mpi_key);
ret = rsa_parse_priv_key(&raw_key, key, keylen);
if (ret)
return ret;
mpi_key->d = mpi_read_raw_data(raw_key.d, raw_key.d_sz);
if (!mpi_key->d)
goto err;
mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
if (!mpi_key->e)
goto err;
mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
if (!mpi_key->n)
goto err;
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations Changes from v1: * exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module The kernel RSA ASN.1 private key parser already supports only private keys with additional values to be used with the Chinese Remainder Theorem [1], but these values are currently not used. This rudimentary CRT implementation speeds up RSA private key operations for the following Go benchmark up to ~3x. This implementation also tries to minimise the allocation of additional MPIs, so existing MPIs are reused as much as possible (hence the variable names are a bit weird). The benchmark used: ``` package keyring_test import ( "crypto" "crypto/rand" "crypto/rsa" "crypto/x509" "io" "syscall" "testing" "unsafe" ) type KeySerial int32 type Keyring int32 const ( KEY_SPEC_PROCESS_KEYRING Keyring = -2 KEYCTL_PKEY_SIGN = 27 ) var ( keyTypeAsym = []byte("asymmetric\x00") sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00") ) func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) { cdesc := []byte(desc + "\x00") serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0)) if errno == 0 { return KeySerial(serial), nil } return KeySerial(serial), errno } type pkeyParams struct { key_id KeySerial in_len uint32 out_or_in2_len uint32 __spare [7]uint32 } // the output signature buffer is an input parameter here, because we want to // avoid Go buffer allocation leaking into our benchmarks func (key KeySerial) Sign(info, digest, out []byte) error { var params pkeyParams params.key_id = key params.in_len = uint32(len(digest)) params.out_or_in2_len = uint32(len(out)) _, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0)) if errno == 0 { return nil } return errno } func BenchmarkSign(b *testing.B) { priv, err := rsa.GenerateKey(rand.Reader, 2048) if err != nil { b.Fatalf("failed to generate private key: %v", err) } pkcs8, err := x509.MarshalPKCS8PrivateKey(priv) if err != nil { b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err) } serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8) if err != nil { b.Fatalf("failed to load the private key into the keyring: %v", err) } b.Logf("loaded test rsa key: %v", serial) digest := make([]byte, 32) _, err = io.ReadFull(rand.Reader, digest) if err != nil { b.Fatalf("failed to generate a random digest: %v", err) } sig := make([]byte, 256) for n := 0; n < b.N; n++ { err = serial.Sign(sha256pkcs1, digest, sig) if err != nil { b.Fatalf("failed to sign the digest: %v", err) } } err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig) if err != nil { b.Fatalf("failed to verify the signature: %v", err) } } ``` [1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm Signed-off-by: Ignat Korchagin <ignat@cloudflare.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
mpi_key->p = mpi_read_raw_data(raw_key.p, raw_key.p_sz);
if (!mpi_key->p)
goto err;
mpi_key->q = mpi_read_raw_data(raw_key.q, raw_key.q_sz);
if (!mpi_key->q)
goto err;
mpi_key->dp = mpi_read_raw_data(raw_key.dp, raw_key.dp_sz);
if (!mpi_key->dp)
goto err;
mpi_key->dq = mpi_read_raw_data(raw_key.dq, raw_key.dq_sz);
if (!mpi_key->dq)
goto err;
mpi_key->qinv = mpi_read_raw_data(raw_key.qinv, raw_key.qinv_sz);
if (!mpi_key->qinv)
goto err;
if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
rsa_free_mpi_key(mpi_key);
return -EINVAL;
}
if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
rsa_free_mpi_key(mpi_key);
return -EINVAL;
}
return 0;
err:
rsa_free_mpi_key(mpi_key);
return -ENOMEM;
}
static unsigned int rsa_max_size(struct crypto_akcipher *tfm)
{
struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
return mpi_get_size(pkey->n);
}
static void rsa_exit_tfm(struct crypto_akcipher *tfm)
{
struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
rsa_free_mpi_key(pkey);
}
static struct akcipher_alg rsa = {
.encrypt = rsa_enc,
.decrypt = rsa_dec,
.set_priv_key = rsa_set_priv_key,
.set_pub_key = rsa_set_pub_key,
.max_size = rsa_max_size,
.exit = rsa_exit_tfm,
.base = {
.cra_name = "rsa",
.cra_driver_name = "rsa-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct rsa_mpi_key),
},
};
static int __init rsa_init(void)
{
int err;
err = crypto_register_akcipher(&rsa);
if (err)
return err;
err = crypto_register_template(&rsa_pkcs1pad_tmpl);
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 14:30:16 +00:00
if (err)
goto err_unregister_rsa;
err = crypto_register_template(&rsassa_pkcs1_tmpl);
if (err)
goto err_unregister_rsa_pkcs1pad;
return 0;
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 14:30:16 +00:00
err_unregister_rsa_pkcs1pad:
crypto_unregister_template(&rsa_pkcs1pad_tmpl);
err_unregister_rsa:
crypto_unregister_akcipher(&rsa);
return err;
}
static void __exit rsa_exit(void)
{
crypto: rsassa-pkcs1 - Migrate to sig_alg backend A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 14:30:16 +00:00
crypto_unregister_template(&rsassa_pkcs1_tmpl);
crypto_unregister_template(&rsa_pkcs1pad_tmpl);
crypto_unregister_akcipher(&rsa);
}
subsys_initcall(rsa_init);
module_exit(rsa_exit);
MODULE_ALIAS_CRYPTO("rsa");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RSA generic algorithm");