gcc/libsanitizer/sanitizer_common/sanitizer_allocator.cpp
Jakub Jelinek 28219f7f99 libsanitizer: merge from upstream (c425db2eb558c263)
The following patch is result of libsanitizer/merge.sh
from c425db2eb558c263 (yesterday evening).

Bootstrapped/regtested on x86_64-linux and i686-linux (together with
the follow-up 3 patches I'm about to post).

BTW, seems upstream has added riscv64 support for I think lsan/tsan,
so if anyone is willing to try it there, it would be a matter of
copying e.g. the s390*-*-linux* libsanitizer/configure.tgt entry
to riscv64-*-linux* with the obvious s/s390x/riscv64/ change in it.
2023-11-15 12:45:58 +01:00

214 lines
7.2 KiB
C++

//===-- sanitizer_allocator.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
// This allocator is used inside run-times.
//===----------------------------------------------------------------------===//
#include "sanitizer_allocator.h"
#include "sanitizer_allocator_checks.h"
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
#include "sanitizer_platform.h"
namespace __sanitizer {
// Default allocator names.
const char *PrimaryAllocatorName = "SizeClassAllocator";
const char *SecondaryAllocatorName = "LargeMmapAllocator";
static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)];
static atomic_uint8_t internal_allocator_initialized;
static StaticSpinMutex internal_alloc_init_mu;
static InternalAllocatorCache internal_allocator_cache;
static StaticSpinMutex internal_allocator_cache_mu;
InternalAllocator *internal_allocator() {
InternalAllocator *internal_allocator_instance =
reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder);
if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) {
SpinMutexLock l(&internal_alloc_init_mu);
if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) ==
0) {
internal_allocator_instance->Init(kReleaseToOSIntervalNever);
atomic_store(&internal_allocator_initialized, 1, memory_order_release);
}
}
return internal_allocator_instance;
}
static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache,
uptr alignment) {
if (alignment == 0) alignment = 8;
if (cache == 0) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Allocate(&internal_allocator_cache, size,
alignment);
}
return internal_allocator()->Allocate(cache, size, alignment);
}
static void *RawInternalRealloc(void *ptr, uptr size,
InternalAllocatorCache *cache) {
uptr alignment = 8;
if (cache == 0) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Reallocate(&internal_allocator_cache, ptr,
size, alignment);
}
return internal_allocator()->Reallocate(cache, ptr, size, alignment);
}
static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
if (!cache) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Deallocate(&internal_allocator_cache, ptr);
}
internal_allocator()->Deallocate(cache, ptr);
}
static void NORETURN ReportInternalAllocatorOutOfMemory(uptr requested_size) {
SetAllocatorOutOfMemory();
Report("FATAL: %s: internal allocator is out of memory trying to allocate "
"0x%zx bytes\n", SanitizerToolName, requested_size);
Die();
}
void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) {
void *p = RawInternalAlloc(size, cache, alignment);
if (UNLIKELY(!p))
ReportInternalAllocatorOutOfMemory(size);
return p;
}
void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) {
void *p = RawInternalRealloc(addr, size, cache);
if (UNLIKELY(!p))
ReportInternalAllocatorOutOfMemory(size);
return p;
}
void *InternalReallocArray(void *addr, uptr count, uptr size,
InternalAllocatorCache *cache) {
if (UNLIKELY(CheckForCallocOverflow(count, size))) {
Report(
"FATAL: %s: reallocarray parameters overflow: count * size (%zd * %zd) "
"cannot be represented in type size_t\n",
SanitizerToolName, count, size);
Die();
}
return InternalRealloc(addr, count * size, cache);
}
void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) {
if (UNLIKELY(CheckForCallocOverflow(count, size))) {
Report("FATAL: %s: calloc parameters overflow: count * size (%zd * %zd) "
"cannot be represented in type size_t\n", SanitizerToolName, count,
size);
Die();
}
void *p = InternalAlloc(count * size, cache);
if (LIKELY(p))
internal_memset(p, 0, count * size);
return p;
}
void InternalFree(void *addr, InternalAllocatorCache *cache) {
RawInternalFree(addr, cache);
}
void InternalAllocatorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
internal_allocator_cache_mu.Lock();
internal_allocator()->ForceLock();
}
void InternalAllocatorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
internal_allocator()->ForceUnlock();
internal_allocator_cache_mu.Unlock();
}
// LowLevelAllocator
constexpr uptr kLowLevelAllocatorDefaultAlignment = 8;
constexpr uptr kMinNumPagesRounded = 16;
constexpr uptr kMinRoundedSize = 65536;
static uptr low_level_alloc_min_alignment = kLowLevelAllocatorDefaultAlignment;
static LowLevelAllocateCallback low_level_alloc_callback;
static LowLevelAllocator Alloc;
LowLevelAllocator &GetGlobalLowLevelAllocator() { return Alloc; }
void *LowLevelAllocator::Allocate(uptr size) {
// Align allocation size.
size = RoundUpTo(size, low_level_alloc_min_alignment);
if (allocated_end_ - allocated_current_ < (sptr)size) {
uptr size_to_allocate = RoundUpTo(
size, Min(GetPageSizeCached() * kMinNumPagesRounded, kMinRoundedSize));
allocated_current_ = (char *)MmapOrDie(size_to_allocate, __func__);
allocated_end_ = allocated_current_ + size_to_allocate;
if (low_level_alloc_callback) {
low_level_alloc_callback((uptr)allocated_current_, size_to_allocate);
}
}
CHECK(allocated_end_ - allocated_current_ >= (sptr)size);
void *res = allocated_current_;
allocated_current_ += size;
return res;
}
void SetLowLevelAllocateMinAlignment(uptr alignment) {
CHECK(IsPowerOfTwo(alignment));
low_level_alloc_min_alignment = Max(alignment, low_level_alloc_min_alignment);
}
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) {
low_level_alloc_callback = callback;
}
// Allocator's OOM and other errors handling support.
static atomic_uint8_t allocator_out_of_memory = {0};
static atomic_uint8_t allocator_may_return_null = {0};
bool IsAllocatorOutOfMemory() {
return atomic_load_relaxed(&allocator_out_of_memory);
}
void SetAllocatorOutOfMemory() {
atomic_store_relaxed(&allocator_out_of_memory, 1);
}
bool AllocatorMayReturnNull() {
return atomic_load(&allocator_may_return_null, memory_order_relaxed);
}
void SetAllocatorMayReturnNull(bool may_return_null) {
atomic_store(&allocator_may_return_null, may_return_null,
memory_order_relaxed);
}
void PrintHintAllocatorCannotReturnNull() {
Report("HINT: if you don't care about these errors you may set "
"allocator_may_return_null=1\n");
}
static atomic_uint8_t rss_limit_exceeded;
bool IsRssLimitExceeded() {
return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
}
void SetRssLimitExceeded(bool limit_exceeded) {
atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
}
} // namespace __sanitizer