gcc/libquadmath/printf/printf_fphex.c
Joseph Myers 667b3ec15d Update libquadmath fmaq from glibc, fix nanq issues.
This patch extends update-quadmath.py to update fmaq from glibc.

The issue in that function was that quadmath-imp.h had a struct in a
union with mant_high and mant_low fields (up to 64-bit) whereas glibc
has mantissa0, mantissa1, mantissa2 and mantissa3 (up to 32-bit).  The
patch changes those fields to be the same as in glibc, moving printf /
strtod code that also uses those fields back to closer to the glibc
form.  This allows fmaq to be updated automatically from glibc (which
brings in at least one bug fix from glibc from 2015).

nanq was also using the mant_high field name, and had other issues: it
only partly initialized the union from which a value was returned, and
setting mant_high to 1 meant a signaling NaN would be returned rather
than a quiet NaN.  This patch fixes those issues as part of updating
it to use the changed interfaces (but does not fix the issue of not
using the argument).

Bootstrapped with no regressions on x86_64-pc-linux-gnu.

	* quadmath-imp.h (ieee854_float128): Use mantissa0, mantissa1,
	mantissa2 and mantissa3 fields instead of mant_high and mant_low.
	Change nan field to ieee_nan.
	* update-quadmath.py (update_sources): Also update fmaq.c.
	* math/nanq.c (nanq): Use ieee_nan field of union.
	Zero-initialize f.  Set quiet_nan field.
	* printf/flt1282mpn.c, printf/printf_fphex.c, strtod/mpn2flt128.c,
	strtod/strtoflt128.c: Use mantissa0, mantissa1, mantissa2 and
	mantissa3 fields.  Use ieee_nan and quiet_nan field.
	* math/fmaq.c: Regenerate from glibc sources with
	update-quadmath.py.

From-SVN: r265874
2018-11-07 13:49:03 +00:00

483 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Print floating point number in hexadecimal notation according to ISO C99.
Copyright (C) 1997-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <config.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#define NDEBUG
#include <assert.h>
#include "quadmath-rounding-mode.h"
#include "quadmath-printf.h"
#include "_itoa.h"
#include "_itowa.h"
/* Macros for doing the actual output. */
#define outchar(ch) \
do \
{ \
register const int outc = (ch); \
if (PUTC (outc, fp) == EOF) \
return -1; \
++done; \
} while (0)
#define PRINT(ptr, wptr, len) \
do \
{ \
register size_t outlen = (len); \
if (wide) \
while (outlen-- > 0) \
outchar (*wptr++); \
else \
while (outlen-- > 0) \
outchar (*ptr++); \
} while (0)
#define PADN(ch, len) \
do \
{ \
if (PAD (fp, ch, len) != len) \
return -1; \
done += len; \
} \
while (0)
int
__quadmath_printf_fphex (struct __quadmath_printf_file *fp,
const struct printf_info *info,
const void *const *args)
{
/* The floating-point value to output. */
ieee854_float128 fpnum;
/* Locale-dependent representation of decimal point. */
const char *decimal;
wchar_t decimalwc;
/* "NaN" or "Inf" for the special cases. */
const char *special = NULL;
const wchar_t *wspecial = NULL;
/* Buffer for the generated number string for the mantissa. The
maximal size for the mantissa is 128 bits. */
char numbuf[32];
char *numstr;
char *numend;
wchar_t wnumbuf[32];
wchar_t *wnumstr;
wchar_t *wnumend;
int negative;
/* The maximal exponent of two in decimal notation has 5 digits. */
char expbuf[5];
char *expstr;
wchar_t wexpbuf[5];
wchar_t *wexpstr;
int expnegative;
int exponent;
/* Non-zero is mantissa is zero. */
int zero_mantissa;
/* The leading digit before the decimal point. */
char leading;
/* Precision. */
int precision = info->prec;
/* Width. */
int width = info->width;
/* Number of characters written. */
int done = 0;
/* Nonzero if this is output on a wide character stream. */
int wide = info->wide;
bool do_round_away;
/* Figure out the decimal point character. */
#ifdef USE_NL_LANGINFO
if (info->extra == 0)
decimal = nl_langinfo (DECIMAL_POINT);
else
{
decimal = nl_langinfo (MON_DECIMAL_POINT);
if (*decimal == '\0')
decimal = nl_langinfo (DECIMAL_POINT);
}
/* The decimal point character must never be zero. */
assert (*decimal != '\0');
#elif defined USE_LOCALECONV
const struct lconv *lc = localeconv ();
if (info->extra == 0)
decimal = lc->decimal_point;
else
{
decimal = lc->mon_decimal_point;
if (decimal == NULL || *decimal == '\0')
decimal = lc->decimal_point;
}
if (decimal == NULL || *decimal == '\0')
decimal = ".";
#else
decimal = ".";
#endif
#ifdef USE_NL_LANGINFO_WC
if (info->extra == 0)
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
else
{
decimalwc = nl_langinfo_wc (_NL_MONETARY_DECIMAL_POINT_WC);
if (decimalwc == L_('\0'))
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
}
/* The decimal point character must never be zero. */
assert (decimalwc != L_('\0'));
#else
decimalwc = L_('.');
#endif
/* Fetch the argument value. */
{
fpnum.value = **(const __float128 **) args[0];
/* Check for special values: not a number or infinity. */
if (isnanq (fpnum.value))
{
negative = fpnum.ieee.negative != 0;
if (isupper (info->spec))
{
special = "NAN";
wspecial = L_("NAN");
}
else
{
special = "nan";
wspecial = L_("nan");
}
}
else
{
if (isinfq (fpnum.value))
{
if (isupper (info->spec))
{
special = "INF";
wspecial = L_("INF");
}
else
{
special = "inf";
wspecial = L_("inf");
}
}
negative = signbitq (fpnum.value);
}
}
if (special)
{
int width = info->width;
if (negative || info->showsign || info->space)
--width;
width -= 3;
if (!info->left && width > 0)
PADN (' ', width);
if (negative)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
PRINT (special, wspecial, 3);
if (info->left && width > 0)
PADN (' ', width);
return done;
}
{
/* We have 112 bits of mantissa plus one implicit digit. Since
112 bits are representable without rest using hexadecimal
digits we use only the implicit digits for the number before
the decimal point. */
uint64_t num0, num1;
assert (sizeof (long double) == 16);
num0 = (((unsigned long long int) fpnum.ieee.mantissa0) << 32
| fpnum.ieee.mantissa1);
num1 = (((unsigned long long int) fpnum.ieee.mantissa2) << 32
| fpnum.ieee.mantissa3);
zero_mantissa = (num0|num1) == 0;
if (sizeof (unsigned long int) > 6)
{
numstr = _itoa_word (num1, numbuf + sizeof numbuf, 16,
info->spec == 'A');
wnumstr = _itowa_word (num1,
wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t),
16, info->spec == 'A');
}
else
{
numstr = _itoa (num1, numbuf + sizeof numbuf, 16,
info->spec == 'A');
wnumstr = _itowa (num1,
wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t),
16, info->spec == 'A');
}
while (numstr > numbuf + (sizeof numbuf - 64 / 4))
{
*--numstr = '0';
*--wnumstr = L_('0');
}
if (sizeof (unsigned long int) > 6)
{
numstr = _itoa_word (num0, numstr, 16, info->spec == 'A');
wnumstr = _itowa_word (num0, wnumstr, 16, info->spec == 'A');
}
else
{
numstr = _itoa (num0, numstr, 16, info->spec == 'A');
wnumstr = _itowa (num0, wnumstr, 16, info->spec == 'A');
}
/* Fill with zeroes. */
while (numstr > numbuf + (sizeof numbuf - 112 / 4))
{
*--wnumstr = L_('0');
*--numstr = '0';
}
leading = fpnum.ieee.exponent == 0 ? '0' : '1';
exponent = fpnum.ieee.exponent;
if (exponent == 0)
{
if (zero_mantissa)
expnegative = 0;
else
{
/* This is a denormalized number. */
expnegative = 1;
exponent = IEEE854_FLOAT128_BIAS - 1;
}
}
else if (exponent >= IEEE854_FLOAT128_BIAS)
{
expnegative = 0;
exponent -= IEEE854_FLOAT128_BIAS;
}
else
{
expnegative = 1;
exponent = -(exponent - IEEE854_FLOAT128_BIAS);
}
}
/* Look for trailing zeroes. */
if (! zero_mantissa)
{
wnumend = &wnumbuf[sizeof wnumbuf / sizeof wnumbuf[0]];
numend = &numbuf[sizeof numbuf / sizeof numbuf[0]];
while (wnumend[-1] == L_('0'))
{
--wnumend;
--numend;
}
do_round_away = false;
if (precision != -1 && precision < numend - numstr)
{
char last_digit = precision > 0 ? numstr[precision - 1] : leading;
char next_digit = numstr[precision];
int last_digit_value = (last_digit >= 'A' && last_digit <= 'F'
? last_digit - 'A' + 10
: (last_digit >= 'a' && last_digit <= 'f'
? last_digit - 'a' + 10
: last_digit - '0'));
int next_digit_value = (next_digit >= 'A' && next_digit <= 'F'
? next_digit - 'A' + 10
: (next_digit >= 'a' && next_digit <= 'f'
? next_digit - 'a' + 10
: next_digit - '0'));
bool more_bits = ((next_digit_value & 7) != 0
|| precision + 1 < numend - numstr);
#ifdef HAVE_FENV_H
int rounding_mode = get_rounding_mode ();
do_round_away = round_away (negative, last_digit_value & 1,
next_digit_value >= 8, more_bits,
rounding_mode);
#endif
}
if (precision == -1)
precision = numend - numstr;
else if (do_round_away)
{
/* Round up. */
int cnt = precision;
while (--cnt >= 0)
{
char ch = numstr[cnt];
/* We assume that the digits and the letters are ordered
like in ASCII. This is true for the rest of GNU, too. */
if (ch == '9')
{
wnumstr[cnt] = (wchar_t) info->spec;
numstr[cnt] = info->spec; /* This is tricky,
think about it! */
break;
}
else if (tolower (ch) < 'f')
{
++numstr[cnt];
++wnumstr[cnt];
break;
}
else
{
numstr[cnt] = '0';
wnumstr[cnt] = L_('0');
}
}
if (cnt < 0)
{
/* The mantissa so far was fff...f Now increment the
leading digit. Here it is again possible that we
get an overflow. */
if (leading == '9')
leading = info->spec;
else if (tolower (leading) < 'f')
++leading;
else
{
leading = '1';
if (expnegative)
{
exponent -= 4;
if (exponent <= 0)
{
exponent = -exponent;
expnegative = 0;
}
}
else
exponent += 4;
}
}
}
}
else
{
if (precision == -1)
precision = 0;
numend = numstr;
wnumend = wnumstr;
}
/* Now we can compute the exponent string. */
expstr = _itoa_word (exponent, expbuf + sizeof expbuf, 10, 0);
wexpstr = _itowa_word (exponent,
wexpbuf + sizeof wexpbuf / sizeof (wchar_t), 10, 0);
/* Now we have all information to compute the size. */
width -= ((negative || info->showsign || info->space)
/* Sign. */
+ 2 + 1 + 0 + precision + 1 + 1
/* 0x h . hhh P ExpoSign. */
+ ((expbuf + sizeof expbuf) - expstr));
/* Exponent. */
/* Count the decimal point.
A special case when the mantissa or the precision is zero and the `#'
is not given. In this case we must not print the decimal point. */
if (precision > 0 || info->alt)
width -= wide ? 1 : strlen (decimal);
if (!info->left && info->pad != '0' && width > 0)
PADN (' ', width);
if (negative)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
outchar ('0');
if ('X' - 'A' == 'x' - 'a')
outchar (info->spec + ('x' - 'a'));
else
outchar (info->spec == 'A' ? 'X' : 'x');
if (!info->left && info->pad == '0' && width > 0)
PADN ('0', width);
outchar (leading);
if (precision > 0 || info->alt)
{
const wchar_t *wtmp = &decimalwc;
PRINT (decimal, wtmp, wide ? 1 : strlen (decimal));
}
if (precision > 0)
{
ssize_t tofill = precision - (numend - numstr);
PRINT (numstr, wnumstr, MIN (numend - numstr, precision));
if (tofill > 0)
PADN ('0', tofill);
}
if ('P' - 'A' == 'p' - 'a')
outchar (info->spec + ('p' - 'a'));
else
outchar (info->spec == 'A' ? 'P' : 'p');
outchar (expnegative ? '-' : '+');
PRINT (expstr, wexpstr, (expbuf + sizeof expbuf) - expstr);
if (info->left && info->pad != '0' && width > 0)
PADN (info->pad, width);
return done;
}