gcc/libgcc/unwind-dw2-btree.h
2024-01-03 12:19:35 +01:00

955 lines
29 KiB
C

/* Lock-free btree for manually registered unwind frames. */
/* Copyright (C) 2022-2024 Free Software Foundation, Inc.
Contributed by Thomas Neumann
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_UNWIND_DW2_BTREE_H
#define GCC_UNWIND_DW2_BTREE_H
#include <stdbool.h>
// Common logic for version locks.
struct version_lock
{
// The lock itself. The lowest bit indicates an exclusive lock,
// the second bit indicates waiting threads. All other bits are
// used as counter to recognize changes.
// Overflows are okay here, we must only prevent overflow to the
// same value within one lock_optimistic/validate
// range. Even on 32 bit platforms that would require 1 billion
// frame registrations within the time span of a few assembler
// instructions.
uintptr_type version_lock;
};
#ifdef __GTHREAD_HAS_COND
// We should never get contention within the tree as it rarely changes.
// But if we ever do get contention we use these for waiting.
static __gthread_mutex_t version_lock_mutex = __GTHREAD_MUTEX_INIT;
static __gthread_cond_t version_lock_cond = __GTHREAD_COND_INIT;
#endif
// Initialize in locked state.
static inline void
version_lock_initialize_locked_exclusive (struct version_lock *vl)
{
vl->version_lock = 1;
}
// Try to lock the node exclusive.
static inline bool
version_lock_try_lock_exclusive (struct version_lock *vl)
{
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
if (state & 1)
return false;
return __atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST);
}
// Lock the node exclusive, blocking as needed.
static void
version_lock_lock_exclusive (struct version_lock *vl)
{
#ifndef __GTHREAD_HAS_COND
restart:
#endif
// We should virtually never get contention here, as frame
// changes are rare.
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
if (!(state & 1))
{
if (__atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
return;
}
// We did get contention, wait properly.
#ifdef __GTHREAD_HAS_COND
__gthread_mutex_lock (&version_lock_mutex);
state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
while (true)
{
// Check if the lock is still held.
if (!(state & 1))
{
if (__atomic_compare_exchange_n (&(vl->version_lock), &state,
state | 1, false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
{
__gthread_mutex_unlock (&version_lock_mutex);
return;
}
else
{
continue;
}
}
// Register waiting thread.
if (!(state & 2))
{
if (!__atomic_compare_exchange_n (&(vl->version_lock), &state,
state | 2, false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
continue;
}
// And sleep.
__gthread_cond_wait (&version_lock_cond, &version_lock_mutex);
state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
}
#else
// Spin if we do not have condition variables available.
// We expect no contention here, spinning should be okay.
goto restart;
#endif
}
// Release a locked node and increase the version lock.
static void
version_lock_unlock_exclusive (struct version_lock *vl)
{
// increase version, reset exclusive lock bits
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
uintptr_type ns = (state + 4) & (~((uintptr_type) 3));
state = __atomic_exchange_n (&(vl->version_lock), ns, __ATOMIC_SEQ_CST);
#ifdef __GTHREAD_HAS_COND
if (state & 2)
{
// Wake up waiting threads. This should be extremely rare.
__gthread_mutex_lock (&version_lock_mutex);
__gthread_cond_broadcast (&version_lock_cond);
__gthread_mutex_unlock (&version_lock_mutex);
}
#endif
}
// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
version_lock_lock_optimistic (const struct version_lock *vl, uintptr_type *lock)
{
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
*lock = state;
// Acquiring the lock fails when there is currently an exclusive lock.
return !(state & 1);
}
// Validate a previously acquired "lock".
static inline bool
version_lock_validate (const struct version_lock *vl, uintptr_type lock)
{
// Prevent the reordering of non-atomic loads behind the atomic load.
// Hans Boehm, Can Seqlocks Get Along with Programming Language Memory
// Models?, Section 4.
__atomic_thread_fence (__ATOMIC_ACQUIRE);
// Check that the node is still in the same state.
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
return (state == lock);
}
// The largest possible separator value.
static const uintptr_type max_separator = ~((uintptr_type) (0));
struct btree_node;
// Inner entry. The child tree contains all entries <= separator.
struct inner_entry
{
uintptr_type separator;
struct btree_node *child;
};
// Leaf entry. Stores an object entry.
struct leaf_entry
{
uintptr_type base, size;
struct object *ob;
};
// Node types.
enum node_type
{
btree_node_inner,
btree_node_leaf,
btree_node_free
};
// Node sizes. Chosen such that the result size is roughly 256 bytes.
#define max_fanout_inner 15
#define max_fanout_leaf 10
// A btree node.
struct btree_node
{
// The version lock used for optimistic lock coupling.
struct version_lock version_lock;
// The number of entries.
unsigned entry_count;
// The type.
enum node_type type;
// The payload.
union
{
// The inner nodes have fence keys, i.e., the right-most entry includes a
// separator.
struct inner_entry children[max_fanout_inner];
struct leaf_entry entries[max_fanout_leaf];
} content;
};
// Is an inner node?
static inline bool
btree_node_is_inner (const struct btree_node *n)
{
return n->type == btree_node_inner;
}
// Is a leaf node?
static inline bool
btree_node_is_leaf (const struct btree_node *n)
{
return n->type == btree_node_leaf;
}
// Should the node be merged?
static inline bool
btree_node_needs_merge (const struct btree_node *n)
{
return n->entry_count < (btree_node_is_inner (n) ? (max_fanout_inner / 2)
: (max_fanout_leaf / 2));
}
// Get the fence key for inner nodes.
static inline uintptr_type
btree_node_get_fence_key (const struct btree_node *n)
{
// For inner nodes we just return our right-most entry.
return n->content.children[n->entry_count - 1].separator;
}
// Find the position for a slot in an inner node.
static unsigned
btree_node_find_inner_slot (const struct btree_node *n, uintptr_type value)
{
for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
if (n->content.children[index].separator >= value)
return index;
return n->entry_count;
}
// Find the position for a slot in a leaf node.
static unsigned
btree_node_find_leaf_slot (const struct btree_node *n, uintptr_type value)
{
for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
if (n->content.entries[index].base + n->content.entries[index].size > value)
return index;
return n->entry_count;
}
// Try to lock the node exclusive.
static inline bool
btree_node_try_lock_exclusive (struct btree_node *n)
{
return version_lock_try_lock_exclusive (&(n->version_lock));
}
// Lock the node exclusive, blocking as needed.
static inline void
btree_node_lock_exclusive (struct btree_node *n)
{
version_lock_lock_exclusive (&(n->version_lock));
}
// Release a locked node and increase the version lock.
static inline void
btree_node_unlock_exclusive (struct btree_node *n)
{
version_lock_unlock_exclusive (&(n->version_lock));
}
// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
btree_node_lock_optimistic (const struct btree_node *n, uintptr_type *lock)
{
return version_lock_lock_optimistic (&(n->version_lock), lock);
}
// Validate a previously acquire lock.
static inline bool
btree_node_validate (const struct btree_node *n, uintptr_type lock)
{
return version_lock_validate (&(n->version_lock), lock);
}
// Insert a new separator after splitting.
static void
btree_node_update_separator_after_split (struct btree_node *n,
uintptr_type old_separator,
uintptr_type new_separator,
struct btree_node *new_right)
{
unsigned slot = btree_node_find_inner_slot (n, old_separator);
for (unsigned index = n->entry_count; index > slot; --index)
n->content.children[index] = n->content.children[index - 1];
n->content.children[slot].separator = new_separator;
n->content.children[slot + 1].child = new_right;
n->entry_count++;
}
// A btree. Suitable for static initialization, all members are zero at the
// beginning.
struct btree
{
// The root of the btree.
struct btree_node *root;
// The free list of released node.
struct btree_node *free_list;
// The version lock used to protect the root.
struct version_lock root_lock;
};
// Initialize a btree. Not actually used, just for exposition.
static inline void
btree_init (struct btree *t)
{
t->root = NULL;
t->free_list = NULL;
t->root_lock.version_lock = 0;
};
static void
btree_release_tree_recursively (struct btree *t, struct btree_node *n);
// Destroy a tree and release all nodes.
static void
btree_destroy (struct btree *t)
{
// Disable the mechanism before cleaning up.
struct btree_node *old_root
= __atomic_exchange_n (&(t->root), NULL, __ATOMIC_SEQ_CST);
if (old_root)
btree_release_tree_recursively (t, old_root);
// Release all free nodes.
while (t->free_list)
{
struct btree_node *next = t->free_list->content.children[0].child;
free (t->free_list);
t->free_list = next;
}
}
// Allocate a node. This node will be returned in locked exclusive state.
static struct btree_node *
btree_allocate_node (struct btree *t, bool inner)
{
while (true)
{
// Try the free list first.
struct btree_node *next_free
= __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
if (next_free)
{
if (!btree_node_try_lock_exclusive (next_free))
continue;
// The node might no longer be free, check that again after acquiring
// the exclusive lock.
if (next_free->type == btree_node_free)
{
struct btree_node *ex = next_free;
if (__atomic_compare_exchange_n (
&(t->free_list), &ex, next_free->content.children[0].child,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
{
next_free->entry_count = 0;
next_free->type = inner ? btree_node_inner : btree_node_leaf;
return next_free;
}
}
btree_node_unlock_exclusive (next_free);
continue;
}
// No free node available, allocate a new one.
struct btree_node *new_node
= (struct btree_node *) (malloc (sizeof (struct btree_node)));
version_lock_initialize_locked_exclusive (
&(new_node->version_lock)); // initialize the node in locked state.
new_node->entry_count = 0;
new_node->type = inner ? btree_node_inner : btree_node_leaf;
return new_node;
}
}
// Release a node. This node must be currently locked exclusively and will
// be placed in the free list.
static void
btree_release_node (struct btree *t, struct btree_node *node)
{
// We cannot release the memory immediately because there might still be
// concurrent readers on that node. Put it in the free list instead.
node->type = btree_node_free;
struct btree_node *next_free
= __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
do
{
node->content.children[0].child = next_free;
} while (!__atomic_compare_exchange_n (&(t->free_list), &next_free, node,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST));
btree_node_unlock_exclusive (node);
}
// Recursively release a tree. The btree is by design very shallow, thus
// we can risk recursion here.
static void
btree_release_tree_recursively (struct btree *t, struct btree_node *node)
{
btree_node_lock_exclusive (node);
if (btree_node_is_inner (node))
{
for (unsigned index = 0; index < node->entry_count; ++index)
btree_release_tree_recursively (t, node->content.children[index].child);
}
btree_release_node (t, node);
}
// Check if we are splitting the root.
static void
btree_handle_root_split (struct btree *t, struct btree_node **node,
struct btree_node **parent)
{
// We want to keep the root pointer stable to allow for contention
// free reads. Thus, we split the root by first moving the content
// of the root node to a new node, and then split that new node.
if (!*parent)
{
// Allocate a new node, this guarantees us that we will have a parent
// afterwards.
struct btree_node *new_node
= btree_allocate_node (t, btree_node_is_inner (*node));
struct btree_node *old_node = *node;
new_node->entry_count = old_node->entry_count;
new_node->content = old_node->content;
old_node->content.children[0].separator = max_separator;
old_node->content.children[0].child = new_node;
old_node->entry_count = 1;
old_node->type = btree_node_inner;
*parent = old_node;
*node = new_node;
}
}
// Split an inner node.
static void
btree_split_inner (struct btree *t, struct btree_node **inner,
struct btree_node **parent, uintptr_type target)
{
// Check for the root.
btree_handle_root_split (t, inner, parent);
// Create two inner node.
uintptr_type right_fence = btree_node_get_fence_key (*inner);
struct btree_node *left_inner = *inner;
struct btree_node *right_inner = btree_allocate_node (t, true);
unsigned split = left_inner->entry_count / 2;
right_inner->entry_count = left_inner->entry_count - split;
for (unsigned index = 0; index < right_inner->entry_count; ++index)
right_inner->content.children[index]
= left_inner->content.children[split + index];
left_inner->entry_count = split;
uintptr_type left_fence = btree_node_get_fence_key (left_inner);
btree_node_update_separator_after_split (*parent, right_fence, left_fence,
right_inner);
if (target <= left_fence)
{
*inner = left_inner;
btree_node_unlock_exclusive (right_inner);
}
else
{
*inner = right_inner;
btree_node_unlock_exclusive (left_inner);
}
}
// Split a leaf node.
static void
btree_split_leaf (struct btree *t, struct btree_node **leaf,
struct btree_node **parent, uintptr_type fence,
uintptr_type target)
{
// Check for the root.
btree_handle_root_split (t, leaf, parent);
// Create two leaf nodes.
uintptr_type right_fence = fence;
struct btree_node *left_leaf = *leaf;
struct btree_node *right_leaf = btree_allocate_node (t, false);
unsigned split = left_leaf->entry_count / 2;
right_leaf->entry_count = left_leaf->entry_count - split;
for (unsigned index = 0; index != right_leaf->entry_count; ++index)
right_leaf->content.entries[index]
= left_leaf->content.entries[split + index];
left_leaf->entry_count = split;
uintptr_type left_fence = right_leaf->content.entries[0].base - 1;
btree_node_update_separator_after_split (*parent, right_fence, left_fence,
right_leaf);
if (target <= left_fence)
{
*leaf = left_leaf;
btree_node_unlock_exclusive (right_leaf);
}
else
{
*leaf = right_leaf;
btree_node_unlock_exclusive (left_leaf);
}
}
// Merge (or balance) child nodes.
static struct btree_node *
btree_merge_node (struct btree *t, unsigned child_slot,
struct btree_node *parent, uintptr_type target)
{
// Choose the emptiest neighbor and lock both. The target child is already
// locked.
unsigned left_slot;
struct btree_node *left_node, *right_node;
if ((child_slot == 0)
|| (((child_slot + 1) < parent->entry_count)
&& (parent->content.children[child_slot + 1].child->entry_count
< parent->content.children[child_slot - 1].child->entry_count)))
{
left_slot = child_slot;
left_node = parent->content.children[left_slot].child;
right_node = parent->content.children[left_slot + 1].child;
btree_node_lock_exclusive (right_node);
}
else
{
left_slot = child_slot - 1;
left_node = parent->content.children[left_slot].child;
right_node = parent->content.children[left_slot + 1].child;
btree_node_lock_exclusive (left_node);
}
// Can we merge both nodes into one node?
unsigned total_count = left_node->entry_count + right_node->entry_count;
unsigned max_count
= btree_node_is_inner (left_node) ? max_fanout_inner : max_fanout_leaf;
if (total_count <= max_count)
{
// Merge into the parent?
if (parent->entry_count == 2)
{
// Merge children into parent. This can only happen at the root.
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != left_node->entry_count; ++index)
parent->content.children[index]
= left_node->content.children[index];
for (unsigned index = 0; index != right_node->entry_count;
++index)
parent->content.children[index + left_node->entry_count]
= right_node->content.children[index];
}
else
{
parent->type = btree_node_leaf;
for (unsigned index = 0; index != left_node->entry_count; ++index)
parent->content.entries[index]
= left_node->content.entries[index];
for (unsigned index = 0; index != right_node->entry_count;
++index)
parent->content.entries[index + left_node->entry_count]
= right_node->content.entries[index];
}
parent->entry_count = total_count;
btree_release_node (t, left_node);
btree_release_node (t, right_node);
return parent;
}
else
{
// Regular merge.
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != right_node->entry_count;
++index)
left_node->content.children[left_node->entry_count++]
= right_node->content.children[index];
}
else
{
for (unsigned index = 0; index != right_node->entry_count;
++index)
left_node->content.entries[left_node->entry_count++]
= right_node->content.entries[index];
}
parent->content.children[left_slot].separator
= parent->content.children[left_slot + 1].separator;
for (unsigned index = left_slot + 1; index + 1 < parent->entry_count;
++index)
parent->content.children[index]
= parent->content.children[index + 1];
parent->entry_count--;
btree_release_node (t, right_node);
btree_node_unlock_exclusive (parent);
return left_node;
}
}
// No merge possible, rebalance instead.
if (left_node->entry_count > right_node->entry_count)
{
// Shift from left to right.
unsigned to_shift
= (left_node->entry_count - right_node->entry_count) / 2;
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != right_node->entry_count; ++index)
{
unsigned pos = right_node->entry_count - 1 - index;
right_node->content.children[pos + to_shift]
= right_node->content.children[pos];
}
for (unsigned index = 0; index != to_shift; ++index)
right_node->content.children[index]
= left_node->content
.children[left_node->entry_count - to_shift + index];
}
else
{
for (unsigned index = 0; index != right_node->entry_count; ++index)
{
unsigned pos = right_node->entry_count - 1 - index;
right_node->content.entries[pos + to_shift]
= right_node->content.entries[pos];
}
for (unsigned index = 0; index != to_shift; ++index)
right_node->content.entries[index]
= left_node->content
.entries[left_node->entry_count - to_shift + index];
}
left_node->entry_count -= to_shift;
right_node->entry_count += to_shift;
}
else
{
// Shift from right to left.
unsigned to_shift
= (right_node->entry_count - left_node->entry_count) / 2;
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != to_shift; ++index)
left_node->content.children[left_node->entry_count + index]
= right_node->content.children[index];
for (unsigned index = 0; index != right_node->entry_count - to_shift;
++index)
right_node->content.children[index]
= right_node->content.children[index + to_shift];
}
else
{
for (unsigned index = 0; index != to_shift; ++index)
left_node->content.entries[left_node->entry_count + index]
= right_node->content.entries[index];
for (unsigned index = 0; index != right_node->entry_count - to_shift;
++index)
right_node->content.entries[index]
= right_node->content.entries[index + to_shift];
}
left_node->entry_count += to_shift;
right_node->entry_count -= to_shift;
}
uintptr_type left_fence;
if (btree_node_is_leaf (left_node))
{
left_fence = right_node->content.entries[0].base - 1;
}
else
{
left_fence = btree_node_get_fence_key (left_node);
}
parent->content.children[left_slot].separator = left_fence;
btree_node_unlock_exclusive (parent);
if (target <= left_fence)
{
btree_node_unlock_exclusive (right_node);
return left_node;
}
else
{
btree_node_unlock_exclusive (left_node);
return right_node;
}
}
// Insert an entry.
static bool
btree_insert (struct btree *t, uintptr_type base, uintptr_type size,
struct object *ob)
{
// Sanity check.
if (!size)
return false;
// Access the root.
struct btree_node *iter, *parent = NULL;
{
version_lock_lock_exclusive (&(t->root_lock));
iter = t->root;
if (iter)
{
btree_node_lock_exclusive (iter);
}
else
{
t->root = iter = btree_allocate_node (t, false);
}
version_lock_unlock_exclusive (&(t->root_lock));
}
// Walk down the btree with classic lock coupling and eager splits.
// Strictly speaking this is not performance optimal, we could use
// optimistic lock coupling until we hit a node that has to be modified.
// But that is more difficult to implement and frame registration is
// rare anyway, we use simple locking for now.
uintptr_type fence = max_separator;
while (btree_node_is_inner (iter))
{
// Use eager splits to avoid lock coupling up.
if (iter->entry_count == max_fanout_inner)
btree_split_inner (t, &iter, &parent, base);
unsigned slot = btree_node_find_inner_slot (iter, base);
if (parent)
btree_node_unlock_exclusive (parent);
parent = iter;
fence = iter->content.children[slot].separator;
iter = iter->content.children[slot].child;
btree_node_lock_exclusive (iter);
}
// Make sure we have space.
if (iter->entry_count == max_fanout_leaf)
btree_split_leaf (t, &iter, &parent, fence, base);
if (parent)
btree_node_unlock_exclusive (parent);
// Insert in node.
unsigned slot = btree_node_find_leaf_slot (iter, base);
if ((slot < iter->entry_count) && (iter->content.entries[slot].base == base))
{
// Duplicate entry, this should never happen.
btree_node_unlock_exclusive (iter);
return false;
}
for (unsigned index = iter->entry_count; index > slot; --index)
iter->content.entries[index] = iter->content.entries[index - 1];
struct leaf_entry *e = &(iter->content.entries[slot]);
e->base = base;
e->size = size;
e->ob = ob;
iter->entry_count++;
btree_node_unlock_exclusive (iter);
return true;
}
// Remove an entry.
static struct object *
btree_remove (struct btree *t, uintptr_type base)
{
// Access the root.
version_lock_lock_exclusive (&(t->root_lock));
struct btree_node *iter = t->root;
if (iter)
btree_node_lock_exclusive (iter);
version_lock_unlock_exclusive (&(t->root_lock));
if (!iter)
return NULL;
// Same strategy as with insert, walk down with lock coupling and
// merge eagerly.
while (btree_node_is_inner (iter))
{
unsigned slot = btree_node_find_inner_slot (iter, base);
struct btree_node *next = iter->content.children[slot].child;
btree_node_lock_exclusive (next);
if (btree_node_needs_merge (next))
{
// Use eager merges to avoid lock coupling up.
iter = btree_merge_node (t, slot, iter, base);
}
else
{
btree_node_unlock_exclusive (iter);
iter = next;
}
}
// Remove existing entry.
unsigned slot = btree_node_find_leaf_slot (iter, base);
if ((slot >= iter->entry_count) || (iter->content.entries[slot].base != base))
{
// Not found, this should never happen.
btree_node_unlock_exclusive (iter);
return NULL;
}
struct object *ob = iter->content.entries[slot].ob;
for (unsigned index = slot; index + 1 < iter->entry_count; ++index)
iter->content.entries[index] = iter->content.entries[index + 1];
iter->entry_count--;
btree_node_unlock_exclusive (iter);
return ob;
}
// Find the corresponding entry for the given address.
static struct object *
btree_lookup (const struct btree *t, uintptr_type target_addr)
{
// Within this function many loads are relaxed atomic loads.
// Use a macro to keep the code reasonable.
#define RLOAD(x) __atomic_load_n (&(x), __ATOMIC_RELAXED)
// For targets where unwind info is usually not registered through these
// APIs anymore, avoid any sequential consistent atomics.
// Use relaxed MO here, it is up to the app to ensure that the library
// loading/initialization happens-before using that library in other
// threads (in particular unwinding with that library's functions
// appearing in the backtraces). Calling that library's functions
// without waiting for the library to initialize would be racy.
if (__builtin_expect (!RLOAD (t->root), 1))
return NULL;
// The unwinding tables are mostly static, they only change when
// frames are added or removed. This makes it extremely unlikely that they
// change during a given unwinding sequence. Thus, we optimize for the
// contention free case and use optimistic lock coupling. This does not
// require any writes to shared state, instead we validate every read. It is
// important that we do not trust any value that we have read until we call
// validate again. Data can change at arbitrary points in time, thus we always
// copy something into a local variable and validate again before acting on
// the read. In the unlikely event that we encounter a concurrent change we
// simply restart and try again.
restart:
struct btree_node *iter;
uintptr_type lock;
{
// Accessing the root node requires defending against concurrent pointer
// changes Thus we couple rootLock -> lock on root node -> validate rootLock
if (!version_lock_lock_optimistic (&(t->root_lock), &lock))
goto restart;
iter = RLOAD (t->root);
if (!version_lock_validate (&(t->root_lock), lock))
goto restart;
if (!iter)
return NULL;
uintptr_type child_lock;
if ((!btree_node_lock_optimistic (iter, &child_lock))
|| (!version_lock_validate (&(t->root_lock), lock)))
goto restart;
lock = child_lock;
}
// Now we can walk down towards the right leaf node.
while (true)
{
enum node_type type = RLOAD (iter->type);
unsigned entry_count = RLOAD (iter->entry_count);
if (!btree_node_validate (iter, lock))
goto restart;
if (!entry_count)
return NULL;
if (type == btree_node_inner)
{
// We cannot call find_inner_slot here because we need (relaxed)
// atomic reads here.
unsigned slot = 0;
while (
((slot + 1) < entry_count)
&& (RLOAD (iter->content.children[slot].separator) < target_addr))
++slot;
struct btree_node *child = RLOAD (iter->content.children[slot].child);
if (!btree_node_validate (iter, lock))
goto restart;
// The node content can change at any point in time, thus we must
// interleave parent and child checks.
uintptr_type child_lock;
if (!btree_node_lock_optimistic (child, &child_lock))
goto restart;
if (!btree_node_validate (iter, lock))
goto restart; // make sure we still point to the correct node after
// acquiring the optimistic lock.
// Go down
iter = child;
lock = child_lock;
}
else
{
// We cannot call find_leaf_slot here because we need (relaxed)
// atomic reads here.
unsigned slot = 0;
while (((slot + 1) < entry_count)
&& (RLOAD (iter->content.entries[slot].base)
+ RLOAD (iter->content.entries[slot].size)
<= target_addr))
++slot;
struct leaf_entry entry;
entry.base = RLOAD (iter->content.entries[slot].base);
entry.size = RLOAD (iter->content.entries[slot].size);
entry.ob = RLOAD (iter->content.entries[slot].ob);
if (!btree_node_validate (iter, lock))
goto restart;
// Check if we have a hit.
if ((entry.base <= target_addr)
&& (target_addr < entry.base + entry.size))
{
return entry.ob;
}
return NULL;
}
}
#undef RLOAD
}
#endif /* unwind-dw2-btree.h */