mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
28219f7f99
The following patch is result of libsanitizer/merge.sh from c425db2eb558c263 (yesterday evening). Bootstrapped/regtested on x86_64-linux and i686-linux (together with the follow-up 3 patches I'm about to post). BTW, seems upstream has added riscv64 support for I think lsan/tsan, so if anyone is willing to try it there, it would be a matter of copying e.g. the s390*-*-linux* libsanitizer/configure.tgt entry to riscv64-*-linux* with the obvious s/s390x/riscv64/ change in it.
486 lines
15 KiB
C++
486 lines
15 KiB
C++
//===-- tsan_mman.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_allocator_checks.h"
|
|
#include "sanitizer_common/sanitizer_allocator_interface.h"
|
|
#include "sanitizer_common/sanitizer_allocator_report.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_errno.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "tsan_interface.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_report.h"
|
|
#include "tsan_flags.h"
|
|
|
|
namespace __tsan {
|
|
|
|
struct MapUnmapCallback {
|
|
void OnMap(uptr p, uptr size) const { }
|
|
void OnMapSecondary(uptr p, uptr size, uptr user_begin,
|
|
uptr user_size) const {};
|
|
void OnUnmap(uptr p, uptr size) const {
|
|
// We are about to unmap a chunk of user memory.
|
|
// Mark the corresponding shadow memory as not needed.
|
|
DontNeedShadowFor(p, size);
|
|
// Mark the corresponding meta shadow memory as not needed.
|
|
// Note the block does not contain any meta info at this point
|
|
// (this happens after free).
|
|
const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
|
|
const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
|
|
// Block came from LargeMmapAllocator, so must be large.
|
|
// We rely on this in the calculations below.
|
|
CHECK_GE(size, 2 * kPageSize);
|
|
uptr diff = RoundUp(p, kPageSize) - p;
|
|
if (diff != 0) {
|
|
p += diff;
|
|
size -= diff;
|
|
}
|
|
diff = p + size - RoundDown(p + size, kPageSize);
|
|
if (diff != 0)
|
|
size -= diff;
|
|
uptr p_meta = (uptr)MemToMeta(p);
|
|
ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
|
|
}
|
|
};
|
|
|
|
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
|
|
Allocator *allocator() {
|
|
return reinterpret_cast<Allocator*>(&allocator_placeholder);
|
|
}
|
|
|
|
struct GlobalProc {
|
|
Mutex mtx;
|
|
Processor *proc;
|
|
// This mutex represents the internal allocator combined for
|
|
// the purposes of deadlock detection. The internal allocator
|
|
// uses multiple mutexes, moreover they are locked only occasionally
|
|
// and they are spin mutexes which don't support deadlock detection.
|
|
// So we use this fake mutex to serve as a substitute for these mutexes.
|
|
CheckedMutex internal_alloc_mtx;
|
|
|
|
GlobalProc()
|
|
: mtx(MutexTypeGlobalProc),
|
|
proc(ProcCreate()),
|
|
internal_alloc_mtx(MutexTypeInternalAlloc) {}
|
|
};
|
|
|
|
static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
|
|
GlobalProc *global_proc() {
|
|
return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
|
|
}
|
|
|
|
static void InternalAllocAccess() {
|
|
global_proc()->internal_alloc_mtx.Lock();
|
|
global_proc()->internal_alloc_mtx.Unlock();
|
|
}
|
|
|
|
ScopedGlobalProcessor::ScopedGlobalProcessor() {
|
|
GlobalProc *gp = global_proc();
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->proc())
|
|
return;
|
|
// If we don't have a proc, use the global one.
|
|
// There are currently only two known case where this path is triggered:
|
|
// __interceptor_free
|
|
// __nptl_deallocate_tsd
|
|
// start_thread
|
|
// clone
|
|
// and:
|
|
// ResetRange
|
|
// __interceptor_munmap
|
|
// __deallocate_stack
|
|
// start_thread
|
|
// clone
|
|
// Ideally, we destroy thread state (and unwire proc) when a thread actually
|
|
// exits (i.e. when we join/wait it). Then we would not need the global proc
|
|
gp->mtx.Lock();
|
|
ProcWire(gp->proc, thr);
|
|
}
|
|
|
|
ScopedGlobalProcessor::~ScopedGlobalProcessor() {
|
|
GlobalProc *gp = global_proc();
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->proc() != gp->proc)
|
|
return;
|
|
ProcUnwire(gp->proc, thr);
|
|
gp->mtx.Unlock();
|
|
}
|
|
|
|
void AllocatorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
global_proc()->internal_alloc_mtx.Lock();
|
|
InternalAllocatorLock();
|
|
}
|
|
|
|
void AllocatorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
InternalAllocatorUnlock();
|
|
global_proc()->internal_alloc_mtx.Unlock();
|
|
}
|
|
|
|
void GlobalProcessorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
global_proc()->mtx.Lock();
|
|
}
|
|
|
|
void GlobalProcessorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
global_proc()->mtx.Unlock();
|
|
}
|
|
|
|
static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
|
|
static uptr max_user_defined_malloc_size;
|
|
|
|
void InitializeAllocator() {
|
|
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
|
|
allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
|
|
max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
|
|
? common_flags()->max_allocation_size_mb
|
|
<< 20
|
|
: kMaxAllowedMallocSize;
|
|
}
|
|
|
|
void InitializeAllocatorLate() {
|
|
new(global_proc()) GlobalProc();
|
|
}
|
|
|
|
void AllocatorProcStart(Processor *proc) {
|
|
allocator()->InitCache(&proc->alloc_cache);
|
|
internal_allocator()->InitCache(&proc->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorProcFinish(Processor *proc) {
|
|
allocator()->DestroyCache(&proc->alloc_cache);
|
|
internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorPrintStats() {
|
|
allocator()->PrintStats();
|
|
}
|
|
|
|
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
|
|
if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
|
|
!ShouldReport(thr, ReportTypeSignalUnsafe))
|
|
return;
|
|
VarSizeStackTrace stack;
|
|
ObtainCurrentStack(thr, pc, &stack);
|
|
if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
|
|
return;
|
|
ThreadRegistryLock l(&ctx->thread_registry);
|
|
ScopedReport rep(ReportTypeSignalUnsafe);
|
|
rep.AddStack(stack, true);
|
|
OutputReport(thr, rep);
|
|
}
|
|
|
|
|
|
void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
|
|
bool signal) {
|
|
if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
|
|
sz > max_user_defined_malloc_size) {
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
uptr malloc_limit =
|
|
Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
|
|
}
|
|
if (UNLIKELY(IsRssLimitExceeded())) {
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportRssLimitExceeded(&stack);
|
|
}
|
|
void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
|
|
if (UNLIKELY(!p)) {
|
|
SetAllocatorOutOfMemory();
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportOutOfMemory(sz, &stack);
|
|
}
|
|
if (ctx && ctx->initialized)
|
|
OnUserAlloc(thr, pc, (uptr)p, sz, true);
|
|
if (signal)
|
|
SignalUnsafeCall(thr, pc);
|
|
return p;
|
|
}
|
|
|
|
void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
|
|
ScopedGlobalProcessor sgp;
|
|
if (ctx && ctx->initialized)
|
|
OnUserFree(thr, pc, (uptr)p, true);
|
|
allocator()->Deallocate(&thr->proc()->alloc_cache, p);
|
|
if (signal)
|
|
SignalUnsafeCall(thr, pc);
|
|
}
|
|
|
|
void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
|
|
}
|
|
|
|
void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
|
|
if (UNLIKELY(CheckForCallocOverflow(size, n))) {
|
|
if (AllocatorMayReturnNull())
|
|
return SetErrnoOnNull(nullptr);
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportCallocOverflow(n, size, &stack);
|
|
}
|
|
void *p = user_alloc_internal(thr, pc, n * size);
|
|
if (p)
|
|
internal_memset(p, 0, n * size);
|
|
return SetErrnoOnNull(p);
|
|
}
|
|
|
|
void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
|
|
if (UNLIKELY(CheckForCallocOverflow(size, n))) {
|
|
if (AllocatorMayReturnNull())
|
|
return SetErrnoOnNull(nullptr);
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportReallocArrayOverflow(size, n, &stack);
|
|
}
|
|
return user_realloc(thr, pc, p, size * n);
|
|
}
|
|
|
|
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
|
|
DPrintf("#%d: alloc(%zu) = 0x%zx\n", thr->tid, sz, p);
|
|
// Note: this can run before thread initialization/after finalization.
|
|
// As a result this is not necessarily synchronized with DoReset,
|
|
// which iterates over and resets all sync objects,
|
|
// but it is fine to create new MBlocks in this context.
|
|
ctx->metamap.AllocBlock(thr, pc, p, sz);
|
|
// If this runs before thread initialization/after finalization
|
|
// and we don't have trace initialized, we can't imitate writes.
|
|
// In such case just reset the shadow range, it is fine since
|
|
// it affects only a small fraction of special objects.
|
|
if (write && thr->ignore_reads_and_writes == 0 &&
|
|
atomic_load_relaxed(&thr->trace_pos))
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
|
|
else
|
|
MemoryResetRange(thr, pc, (uptr)p, sz);
|
|
}
|
|
|
|
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
|
|
CHECK_NE(p, (void*)0);
|
|
if (!thr->slot) {
|
|
// Very early/late in thread lifetime, or during fork.
|
|
UNUSED uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, false);
|
|
DPrintf("#%d: free(0x%zx, %zu) (no slot)\n", thr->tid, p, sz);
|
|
return;
|
|
}
|
|
SlotLocker locker(thr);
|
|
uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, true);
|
|
DPrintf("#%d: free(0x%zx, %zu)\n", thr->tid, p, sz);
|
|
if (write && thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeFreed(thr, pc, (uptr)p, sz);
|
|
}
|
|
|
|
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
|
|
// FIXME: Handle "shrinking" more efficiently,
|
|
// it seems that some software actually does this.
|
|
if (!p)
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
|
|
if (!sz) {
|
|
user_free(thr, pc, p);
|
|
return nullptr;
|
|
}
|
|
void *new_p = user_alloc_internal(thr, pc, sz);
|
|
if (new_p) {
|
|
uptr old_sz = user_alloc_usable_size(p);
|
|
internal_memcpy(new_p, p, min(old_sz, sz));
|
|
user_free(thr, pc, p);
|
|
}
|
|
return SetErrnoOnNull(new_p);
|
|
}
|
|
|
|
void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
|
|
if (UNLIKELY(!IsPowerOfTwo(align))) {
|
|
errno = errno_EINVAL;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportInvalidAllocationAlignment(align, &stack);
|
|
}
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
|
|
}
|
|
|
|
int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
|
|
uptr sz) {
|
|
if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
|
|
if (AllocatorMayReturnNull())
|
|
return errno_EINVAL;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportInvalidPosixMemalignAlignment(align, &stack);
|
|
}
|
|
void *ptr = user_alloc_internal(thr, pc, sz, align);
|
|
if (UNLIKELY(!ptr))
|
|
// OOM error is already taken care of by user_alloc_internal.
|
|
return errno_ENOMEM;
|
|
CHECK(IsAligned((uptr)ptr, align));
|
|
*memptr = ptr;
|
|
return 0;
|
|
}
|
|
|
|
void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
|
|
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
|
|
errno = errno_EINVAL;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportInvalidAlignedAllocAlignment(sz, align, &stack);
|
|
}
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
|
|
}
|
|
|
|
void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
|
|
}
|
|
|
|
void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
|
|
uptr PageSize = GetPageSizeCached();
|
|
if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
|
|
errno = errno_ENOMEM;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
GET_STACK_TRACE_FATAL(thr, pc);
|
|
ReportPvallocOverflow(sz, &stack);
|
|
}
|
|
// pvalloc(0) should allocate one page.
|
|
sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
|
|
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
|
|
}
|
|
|
|
static const void *user_alloc_begin(const void *p) {
|
|
if (p == nullptr || !IsAppMem((uptr)p))
|
|
return nullptr;
|
|
void *beg = allocator()->GetBlockBegin(p);
|
|
if (!beg)
|
|
return nullptr;
|
|
|
|
MBlock *b = ctx->metamap.GetBlock((uptr)beg);
|
|
if (!b)
|
|
return nullptr; // Not a valid pointer.
|
|
|
|
return (const void *)beg;
|
|
}
|
|
|
|
uptr user_alloc_usable_size(const void *p) {
|
|
if (p == 0 || !IsAppMem((uptr)p))
|
|
return 0;
|
|
MBlock *b = ctx->metamap.GetBlock((uptr)p);
|
|
if (!b)
|
|
return 0; // Not a valid pointer.
|
|
if (b->siz == 0)
|
|
return 1; // Zero-sized allocations are actually 1 byte.
|
|
return b->siz;
|
|
}
|
|
|
|
uptr user_alloc_usable_size_fast(const void *p) {
|
|
MBlock *b = ctx->metamap.GetBlock((uptr)p);
|
|
// Static objects may have malloc'd before tsan completes
|
|
// initialization, and may believe returned ptrs to be valid.
|
|
if (!b)
|
|
return 0; // Not a valid pointer.
|
|
if (b->siz == 0)
|
|
return 1; // Zero-sized allocations are actually 1 byte.
|
|
return b->siz;
|
|
}
|
|
|
|
void invoke_malloc_hook(void *ptr, uptr size) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
RunMallocHooks(ptr, size);
|
|
}
|
|
|
|
void invoke_free_hook(void *ptr) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
RunFreeHooks(ptr);
|
|
}
|
|
|
|
void *Alloc(uptr sz) {
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
InternalAllocAccess();
|
|
return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
|
|
}
|
|
|
|
void FreeImpl(void *p) {
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
InternalAllocAccess();
|
|
InternalFree(p, &thr->proc()->internal_alloc_cache);
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
using namespace __tsan;
|
|
|
|
extern "C" {
|
|
uptr __sanitizer_get_current_allocated_bytes() {
|
|
uptr stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
return stats[AllocatorStatAllocated];
|
|
}
|
|
|
|
uptr __sanitizer_get_heap_size() {
|
|
uptr stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
return stats[AllocatorStatMapped];
|
|
}
|
|
|
|
uptr __sanitizer_get_free_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_unmapped_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
|
|
return size;
|
|
}
|
|
|
|
int __sanitizer_get_ownership(const void *p) {
|
|
return allocator()->GetBlockBegin(p) != 0;
|
|
}
|
|
|
|
const void *__sanitizer_get_allocated_begin(const void *p) {
|
|
return user_alloc_begin(p);
|
|
}
|
|
|
|
uptr __sanitizer_get_allocated_size(const void *p) {
|
|
return user_alloc_usable_size(p);
|
|
}
|
|
|
|
uptr __sanitizer_get_allocated_size_fast(const void *p) {
|
|
DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
|
|
uptr ret = user_alloc_usable_size_fast(p);
|
|
DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
|
|
return ret;
|
|
}
|
|
|
|
void __sanitizer_purge_allocator() {
|
|
allocator()->ForceReleaseToOS();
|
|
}
|
|
|
|
void __tsan_on_thread_idle() {
|
|
ThreadState *thr = cur_thread();
|
|
allocator()->SwallowCache(&thr->proc()->alloc_cache);
|
|
internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
|
|
ctx->metamap.OnProcIdle(thr->proc());
|
|
}
|
|
} // extern "C"
|