mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
48ae6c138c
PR middle-end/14311 * builtin-types.def (BT_BOOL, BT_VOLATILE_PTR, BT_I1, BT_I2, BT_I4, BT_I8, BT_FN_VOID_VPTR, BT_FN_I1_VPTR_I1, BT_FN_I2_VPTR_I2, BT_FN_I4_VPTR_I4, BT_FN_I8_VPTR_I8, BT_FN_BOOL_VPTR_I1_I1, BT_FN_BOOL_VPTR_I2_I2, BT_FN_BOOL_VPTR_I4_I4, BT_FN_BOOL_VPTR_I8_I8, BT_FN_I1_VPTR_I1_I1, BT_FN_I2_VPTR_I2_I2, BT_FN_I4_VPTR_I4_I4, BT_FN_I8_VPTR_I8_I8): New. * builtins.def (DEF_SYNC_BUILTIN): New. (BUILT_IN_FETCH_AND_ADD_N, BUILT_IN_FETCH_AND_ADD_1, BUILT_IN_FETCH_AND_ADD_2, BUILT_IN_FETCH_AND_ADD_4, BUILT_IN_FETCH_AND_ADD_8, BUILT_IN_FETCH_AND_SUB_N, BUILT_IN_FETCH_AND_SUB_1, BUILT_IN_FETCH_AND_SUB_2, BUILT_IN_FETCH_AND_SUB_4, BUILT_IN_FETCH_AND_SUB_8, BUILT_IN_FETCH_AND_OR_N, BUILT_IN_FETCH_AND_OR_1, BUILT_IN_FETCH_AND_OR_2, BUILT_IN_FETCH_AND_OR_4, BUILT_IN_FETCH_AND_OR_8, BUILT_IN_FETCH_AND_AND_N, BUILT_IN_FETCH_AND_AND_1, BUILT_IN_FETCH_AND_AND_2, BUILT_IN_FETCH_AND_AND_4, BUILT_IN_FETCH_AND_AND_8, BUILT_IN_FETCH_AND_XOR_N, BUILT_IN_FETCH_AND_XOR_1, BUILT_IN_FETCH_AND_XOR_2, BUILT_IN_FETCH_AND_XOR_4, BUILT_IN_FETCH_AND_XOR_8, BUILT_IN_FETCH_AND_NAND_N, BUILT_IN_FETCH_AND_NAND_1, BUILT_IN_FETCH_AND_NAND_2, BUILT_IN_FETCH_AND_NAND_4, BUILT_IN_FETCH_AND_NAND_8, BUILT_IN_ADD_AND_FETCH_N, BUILT_IN_ADD_AND_FETCH_1, BUILT_IN_ADD_AND_FETCH_2, BUILT_IN_ADD_AND_FETCH_4, BUILT_IN_ADD_AND_FETCH_8, BUILT_IN_SUB_AND_FETCH_N, BUILT_IN_SUB_AND_FETCH_1, BUILT_IN_SUB_AND_FETCH_2, BUILT_IN_SUB_AND_FETCH_4, BUILT_IN_SUB_AND_FETCH_8, BUILT_IN_OR_AND_FETCH_N, BUILT_IN_OR_AND_FETCH_1, BUILT_IN_OR_AND_FETCH_2, BUILT_IN_OR_AND_FETCH_4, BUILT_IN_OR_AND_FETCH_8, BUILT_IN_AND_AND_FETCH_N, BUILT_IN_AND_AND_FETCH_1, BUILT_IN_AND_AND_FETCH_2, BUILT_IN_AND_AND_FETCH_4, BUILT_IN_AND_AND_FETCH_8, BUILT_IN_XOR_AND_FETCH_N, BUILT_IN_XOR_AND_FETCH_1, BUILT_IN_XOR_AND_FETCH_2, BUILT_IN_XOR_AND_FETCH_4, BUILT_IN_XOR_AND_FETCH_8, BUILT_IN_NAND_AND_FETCH_N, BUILT_IN_NAND_AND_FETCH_1, BUILT_IN_NAND_AND_FETCH_2, BUILT_IN_NAND_AND_FETCH_4, BUILT_IN_NAND_AND_FETCH_8, BUILT_IN_BOOL_COMPARE_AND_SWAP_N, BUILT_IN_BOOL_COMPARE_AND_SWAP_1, BUILT_IN_BOOL_COMPARE_AND_SWAP_2, BUILT_IN_BOOL_COMPARE_AND_SWAP_4, BUILT_IN_BOOL_COMPARE_AND_SWAP_8, BUILT_IN_VAL_COMPARE_AND_SWAP_N, BUILT_IN_VAL_COMPARE_AND_SWAP_1, BUILT_IN_VAL_COMPARE_AND_SWAP_2, BUILT_IN_VAL_COMPARE_AND_SWAP_4, BUILT_IN_VAL_COMPARE_AND_SWAP_8, BUILT_IN_LOCK_TEST_AND_SET_N, BUILT_IN_LOCK_TEST_AND_SET_1, BUILT_IN_LOCK_TEST_AND_SET_2, BUILT_IN_LOCK_TEST_AND_SET_4, BUILT_IN_LOCK_TEST_AND_SET_8, BUILT_IN_LOCK_RELEASE_N, BUILT_IN_LOCK_RELEASE_1, BUILT_IN_LOCK_RELEASE_2, BUILT_IN_LOCK_RELEASE_4, BUILT_IN_LOCK_RELEASE_8, BUILT_IN_SYNCHRONIZE: New. * builtins.c (called_as_built_in): Rewrite from CALLED_AS_BUILT_IN as a function. Accept __sync_ as a prefix as well. (expand_builtin_sync_operation, expand_builtin_compare_and_swap, expand_builtin_lock_test_and_set, expand_builtin_synchronize, expand_builtin_lock_release): New. (expand_builtin): Call them. * c-common.c (DEF_BUILTIN): Don't require __builtin_ prefix if neither BOTH_P nor FALLBACK_P are defined. (builtin_type_for_size): New. (sync_resolve_size, sync_resolve_params, sync_resolve_return): New. (resolve_overloaded_builtin): New. * c-common.h (resolve_overloaded_builtin): Declare. (builtin_type_for_size): Declare. * c-typeck.c (build_function_call): Invoke resolve_overloaded_builtin. * expr.c (sync_add_optab, sync_sub_optab, sync_ior_optab, sync_and_optab, sync_xor_optab, sync_nand_optab, sync_old_add_optab, sync_old_sub_optab, sync_old_ior_optab, sync_old_and_optab, sync_old_xor_optab, sync_old_nand_optab, sync_new_add_optab, sync_new_sub_optab, sync_new_ior_optab, sync_new_and_optab, sync_new_xor_optab, sync_new_nand_optab, sync_compare_and_swap, sync_compare_and_swap_cc, sync_lock_test_and_set, sync_lock_release): New. * optabs.h: Declare them. * expr.h (expand_val_compare_and_swap, expand_bool_compare_and_swap, expand_sync_operation, expand_sync_fetch_operation, expand_sync_lock_test_and_set): Declare. * genopinit.c (optabs): Add sync optabs. * optabs.c (init_optabs): Initialize sync optabs. (expand_val_compare_and_swap_1, expand_val_compare_and_swap, expand_bool_compare_and_swap, expand_compare_and_swap_loop, expand_sync_operation, expand_sync_fetch_operation, expand_sync_lock_test_and_set): New. * doc/extend.texi (Atomic Builtins): New section * doc/md.texi (Standard Names): Add sync patterns. From-SVN: r98154
6026 lines
180 KiB
C
6026 lines
180 KiB
C
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "toplev.h"
|
||
|
||
/* Include insn-config.h before expr.h so that HAVE_conditional_move
|
||
is properly defined. */
|
||
#include "insn-config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "except.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "libfuncs.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include "ggc.h"
|
||
#include "real.h"
|
||
#include "basic-block.h"
|
||
#include "target.h"
|
||
|
||
/* Each optab contains info on how this target machine
|
||
can perform a particular operation
|
||
for all sizes and kinds of operands.
|
||
|
||
The operation to be performed is often specified
|
||
by passing one of these optabs as an argument.
|
||
|
||
See expr.h for documentation of these optabs. */
|
||
|
||
optab optab_table[OTI_MAX];
|
||
|
||
rtx libfunc_table[LTI_MAX];
|
||
|
||
/* Tables of patterns for converting one mode to another. */
|
||
convert_optab convert_optab_table[CTI_MAX];
|
||
|
||
/* Contains the optab used for each rtx code. */
|
||
optab code_to_optab[NUM_RTX_CODE + 1];
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the gen_function to make a branch to test that condition. */
|
||
|
||
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the insn code to make a store-condition insn
|
||
to test that condition. */
|
||
|
||
enum insn_code setcc_gen_code[NUM_RTX_CODE];
|
||
|
||
#ifdef HAVE_conditional_move
|
||
/* Indexed by the machine mode, gives the insn code to make a conditional
|
||
move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
|
||
setcc_gen_code to cut down on the number of named patterns. Consider a day
|
||
when a lot more rtx codes are conditional (eg: for the ARM). */
|
||
|
||
enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
|
||
#endif
|
||
|
||
/* Indexed by the machine mode, gives the insn code for vector conditional
|
||
operation. */
|
||
|
||
enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
|
||
enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
|
||
|
||
/* The insn generating function can not take an rtx_code argument.
|
||
TRAP_RTX is used as an rtx argument. Its code is replaced with
|
||
the code to be used in the trap insn and all other fields are ignored. */
|
||
static GTY(()) rtx trap_rtx;
|
||
|
||
static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
|
||
static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
|
||
int);
|
||
static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
|
||
enum machine_mode *, int *,
|
||
enum can_compare_purpose);
|
||
static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
|
||
int *);
|
||
static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
|
||
static optab new_optab (void);
|
||
static convert_optab new_convert_optab (void);
|
||
static inline optab init_optab (enum rtx_code);
|
||
static inline optab init_optabv (enum rtx_code);
|
||
static inline convert_optab init_convert_optab (enum rtx_code);
|
||
static void init_libfuncs (optab, int, int, const char *, int);
|
||
static void init_integral_libfuncs (optab, const char *, int);
|
||
static void init_floating_libfuncs (optab, const char *, int);
|
||
static void init_interclass_conv_libfuncs (convert_optab, const char *,
|
||
enum mode_class, enum mode_class);
|
||
static void init_intraclass_conv_libfuncs (convert_optab, const char *,
|
||
enum mode_class, bool);
|
||
static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
|
||
enum rtx_code, int, rtx);
|
||
static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
|
||
enum machine_mode *, int *);
|
||
static rtx widen_clz (enum machine_mode, rtx, rtx);
|
||
static rtx expand_parity (enum machine_mode, rtx, rtx);
|
||
static enum rtx_code get_rtx_code (enum tree_code, bool);
|
||
static rtx vector_compare_rtx (tree, bool, enum insn_code);
|
||
|
||
#ifndef HAVE_conditional_trap
|
||
#define HAVE_conditional_trap 0
|
||
#define gen_conditional_trap(a,b) (abort (), NULL_RTX)
|
||
#endif
|
||
|
||
/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
|
||
the result of operation CODE applied to OP0 (and OP1 if it is a binary
|
||
operation).
|
||
|
||
If the last insn does not set TARGET, don't do anything, but return 1.
|
||
|
||
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
|
||
don't add the REG_EQUAL note but return 0. Our caller can then try
|
||
again, ensuring that TARGET is not one of the operands. */
|
||
|
||
static int
|
||
add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
|
||
{
|
||
rtx last_insn, insn, set;
|
||
rtx note;
|
||
|
||
if (! insns
|
||
|| ! INSN_P (insns)
|
||
|| NEXT_INSN (insns) == NULL_RTX)
|
||
abort ();
|
||
|
||
if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
|
||
&& GET_RTX_CLASS (code) != RTX_BIN_ARITH
|
||
&& GET_RTX_CLASS (code) != RTX_COMM_COMPARE
|
||
&& GET_RTX_CLASS (code) != RTX_COMPARE
|
||
&& GET_RTX_CLASS (code) != RTX_UNARY)
|
||
return 1;
|
||
|
||
if (GET_CODE (target) == ZERO_EXTRACT)
|
||
return 1;
|
||
|
||
for (last_insn = insns;
|
||
NEXT_INSN (last_insn) != NULL_RTX;
|
||
last_insn = NEXT_INSN (last_insn))
|
||
;
|
||
|
||
set = single_set (last_insn);
|
||
if (set == NULL_RTX)
|
||
return 1;
|
||
|
||
if (! rtx_equal_p (SET_DEST (set), target)
|
||
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
|
||
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|
||
|| ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
|
||
return 1;
|
||
|
||
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
|
||
besides the last insn. */
|
||
if (reg_overlap_mentioned_p (target, op0)
|
||
|| (op1 && reg_overlap_mentioned_p (target, op1)))
|
||
{
|
||
insn = PREV_INSN (last_insn);
|
||
while (insn != NULL_RTX)
|
||
{
|
||
if (reg_set_p (target, insn))
|
||
return 0;
|
||
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
}
|
||
|
||
if (GET_RTX_CLASS (code) == RTX_UNARY)
|
||
note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
|
||
else
|
||
note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
|
||
|
||
set_unique_reg_note (last_insn, REG_EQUAL, note);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
|
||
says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
|
||
not actually do a sign-extend or zero-extend, but can leave the
|
||
higher-order bits of the result rtx undefined, for example, in the case
|
||
of logical operations, but not right shifts. */
|
||
|
||
static rtx
|
||
widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
|
||
int unsignedp, int no_extend)
|
||
{
|
||
rtx result;
|
||
|
||
/* If we don't have to extend and this is a constant, return it. */
|
||
if (no_extend && GET_MODE (op) == VOIDmode)
|
||
return op;
|
||
|
||
/* If we must extend do so. If OP is a SUBREG for a promoted object, also
|
||
extend since it will be more efficient to do so unless the signedness of
|
||
a promoted object differs from our extension. */
|
||
if (! no_extend
|
||
|| (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
|
||
return convert_modes (mode, oldmode, op, unsignedp);
|
||
|
||
/* If MODE is no wider than a single word, we return a paradoxical
|
||
SUBREG. */
|
||
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
||
return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
|
||
|
||
/* Otherwise, get an object of MODE, clobber it, and set the low-order
|
||
part to OP. */
|
||
|
||
result = gen_reg_rtx (mode);
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
|
||
emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
|
||
return result;
|
||
}
|
||
|
||
/* Return the optab used for computing the operation given by
|
||
the tree code, CODE. This function is not always usable (for
|
||
example, it cannot give complete results for multiplication
|
||
or division) but probably ought to be relied on more widely
|
||
throughout the expander. */
|
||
optab
|
||
optab_for_tree_code (enum tree_code code, tree type)
|
||
{
|
||
bool trapv;
|
||
switch (code)
|
||
{
|
||
case BIT_AND_EXPR:
|
||
return and_optab;
|
||
|
||
case BIT_IOR_EXPR:
|
||
return ior_optab;
|
||
|
||
case BIT_NOT_EXPR:
|
||
return one_cmpl_optab;
|
||
|
||
case BIT_XOR_EXPR:
|
||
return xor_optab;
|
||
|
||
case TRUNC_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
|
||
|
||
case RDIV_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
|
||
|
||
case LSHIFT_EXPR:
|
||
return ashl_optab;
|
||
|
||
case RSHIFT_EXPR:
|
||
return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
|
||
|
||
case LROTATE_EXPR:
|
||
return rotl_optab;
|
||
|
||
case RROTATE_EXPR:
|
||
return rotr_optab;
|
||
|
||
case MAX_EXPR:
|
||
return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
|
||
|
||
case MIN_EXPR:
|
||
return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
|
||
|
||
case REALIGN_LOAD_EXPR:
|
||
return vec_realign_load_optab;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
trapv = flag_trapv && INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type);
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
return trapv ? addv_optab : add_optab;
|
||
|
||
case MINUS_EXPR:
|
||
return trapv ? subv_optab : sub_optab;
|
||
|
||
case MULT_EXPR:
|
||
return trapv ? smulv_optab : smul_optab;
|
||
|
||
case NEGATE_EXPR:
|
||
return trapv ? negv_optab : neg_optab;
|
||
|
||
case ABS_EXPR:
|
||
return trapv ? absv_optab : abs_optab;
|
||
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
/* Generate code to perform an operation specified by TERNARY_OPTAB
|
||
on operands OP0, OP1 and OP2, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
|
||
rtx op1, rtx op2, rtx target, int unsignedp)
|
||
{
|
||
int icode = (int) ternary_optab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
||
enum machine_mode mode2 = insn_data[icode].operand[3].mode;
|
||
rtx temp;
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1, xop2 = op2;
|
||
|
||
if (ternary_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
|
||
abort ();
|
||
|
||
if (!target
|
||
|| ! (*insn_data[icode].operand[0].predicate) (target, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
else
|
||
temp = target;
|
||
|
||
/* In case the insn wants input operands in modes different from
|
||
those of the actual operands, convert the operands. It would
|
||
seem that we don't need to convert CONST_INTs, but we do, so
|
||
that they're properly zero-extended, sign-extended or truncated
|
||
for their mode. */
|
||
|
||
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
||
xop0 = convert_modes (mode0,
|
||
GET_MODE (op0) != VOIDmode
|
||
? GET_MODE (op0)
|
||
: mode,
|
||
xop0, unsignedp);
|
||
|
||
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
||
xop1 = convert_modes (mode1,
|
||
GET_MODE (op1) != VOIDmode
|
||
? GET_MODE (op1)
|
||
: mode,
|
||
xop1, unsignedp);
|
||
|
||
if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
|
||
xop2 = convert_modes (mode2,
|
||
GET_MODE (op2) != VOIDmode
|
||
? GET_MODE (op2)
|
||
: mode,
|
||
xop2, unsignedp);
|
||
|
||
/* Now, if insn's predicates don't allow our operands, put them into
|
||
pseudo regs. */
|
||
|
||
if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
|
||
&& mode0 != VOIDmode)
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
|
||
&& mode1 != VOIDmode)
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
if (! (*insn_data[icode].operand[3].predicate) (xop2, mode2)
|
||
&& mode2 != VOIDmode)
|
||
xop2 = copy_to_mode_reg (mode2, xop2);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
|
||
|
||
emit_insn (pat);
|
||
return temp;
|
||
}
|
||
|
||
|
||
/* Like expand_binop, but return a constant rtx if the result can be
|
||
calculated at compile time. The arguments and return value are
|
||
otherwise the same as for expand_binop. */
|
||
|
||
static rtx
|
||
simplify_expand_binop (enum machine_mode mode, optab binoptab,
|
||
rtx op0, rtx op1, rtx target, int unsignedp,
|
||
enum optab_methods methods)
|
||
{
|
||
if (CONSTANT_P (op0) && CONSTANT_P (op1))
|
||
return simplify_gen_binary (binoptab->code, mode, op0, op1);
|
||
else
|
||
return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
|
||
}
|
||
|
||
/* Like simplify_expand_binop, but always put the result in TARGET.
|
||
Return true if the expansion succeeded. */
|
||
|
||
bool
|
||
force_expand_binop (enum machine_mode mode, optab binoptab,
|
||
rtx op0, rtx op1, rtx target, int unsignedp,
|
||
enum optab_methods methods)
|
||
{
|
||
rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
|
||
target, unsignedp, methods);
|
||
if (x == 0)
|
||
return false;
|
||
if (x != target)
|
||
emit_move_insn (target, x);
|
||
return true;
|
||
}
|
||
|
||
/* This subroutine of expand_doubleword_shift handles the cases in which
|
||
the effective shift value is >= BITS_PER_WORD. The arguments and return
|
||
value are the same as for the parent routine, except that SUPERWORD_OP1
|
||
is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
|
||
INTO_TARGET may be null if the caller has decided to calculate it. */
|
||
|
||
static bool
|
||
expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
|
||
rtx outof_target, rtx into_target,
|
||
int unsignedp, enum optab_methods methods)
|
||
{
|
||
if (into_target != 0)
|
||
if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
|
||
into_target, unsignedp, methods))
|
||
return false;
|
||
|
||
if (outof_target != 0)
|
||
{
|
||
/* For a signed right shift, we must fill OUTOF_TARGET with copies
|
||
of the sign bit, otherwise we must fill it with zeros. */
|
||
if (binoptab != ashr_optab)
|
||
emit_move_insn (outof_target, CONST0_RTX (word_mode));
|
||
else
|
||
if (!force_expand_binop (word_mode, binoptab,
|
||
outof_input, GEN_INT (BITS_PER_WORD - 1),
|
||
outof_target, unsignedp, methods))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* This subroutine of expand_doubleword_shift handles the cases in which
|
||
the effective shift value is < BITS_PER_WORD. The arguments and return
|
||
value are the same as for the parent routine. */
|
||
|
||
static bool
|
||
expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
|
||
rtx outof_input, rtx into_input, rtx op1,
|
||
rtx outof_target, rtx into_target,
|
||
int unsignedp, enum optab_methods methods,
|
||
unsigned HOST_WIDE_INT shift_mask)
|
||
{
|
||
optab reverse_unsigned_shift, unsigned_shift;
|
||
rtx tmp, carries;
|
||
|
||
reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
|
||
unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
|
||
|
||
/* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
|
||
We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
|
||
the opposite direction to BINOPTAB. */
|
||
if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
|
||
{
|
||
carries = outof_input;
|
||
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
||
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
||
0, true, methods);
|
||
}
|
||
else
|
||
{
|
||
/* We must avoid shifting by BITS_PER_WORD bits since that is either
|
||
the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
|
||
has unknown behavior. Do a single shift first, then shift by the
|
||
remainder. It's OK to use ~OP1 as the remainder if shift counts
|
||
are truncated to the mode size. */
|
||
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
||
outof_input, const1_rtx, 0, unsignedp, methods);
|
||
if (shift_mask == BITS_PER_WORD - 1)
|
||
{
|
||
tmp = immed_double_const (-1, -1, op1_mode);
|
||
tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
|
||
0, true, methods);
|
||
}
|
||
else
|
||
{
|
||
tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
|
||
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
||
0, true, methods);
|
||
}
|
||
}
|
||
if (tmp == 0 || carries == 0)
|
||
return false;
|
||
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
||
carries, tmp, 0, unsignedp, methods);
|
||
if (carries == 0)
|
||
return false;
|
||
|
||
/* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
|
||
so the result can go directly into INTO_TARGET if convenient. */
|
||
tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
|
||
into_target, unsignedp, methods);
|
||
if (tmp == 0)
|
||
return false;
|
||
|
||
/* Now OR in the bits carried over from OUTOF_INPUT. */
|
||
if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
|
||
into_target, unsignedp, methods))
|
||
return false;
|
||
|
||
/* Use a standard word_mode shift for the out-of half. */
|
||
if (outof_target != 0)
|
||
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
||
outof_target, unsignedp, methods))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
#ifdef HAVE_conditional_move
|
||
/* Try implementing expand_doubleword_shift using conditional moves.
|
||
The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
|
||
otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
|
||
are the shift counts to use in the former and latter case. All other
|
||
arguments are the same as the parent routine. */
|
||
|
||
static bool
|
||
expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
|
||
enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
|
||
rtx outof_input, rtx into_input,
|
||
rtx subword_op1, rtx superword_op1,
|
||
rtx outof_target, rtx into_target,
|
||
int unsignedp, enum optab_methods methods,
|
||
unsigned HOST_WIDE_INT shift_mask)
|
||
{
|
||
rtx outof_superword, into_superword;
|
||
|
||
/* Put the superword version of the output into OUTOF_SUPERWORD and
|
||
INTO_SUPERWORD. */
|
||
outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
|
||
if (outof_target != 0 && subword_op1 == superword_op1)
|
||
{
|
||
/* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
|
||
OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
|
||
into_superword = outof_target;
|
||
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
||
outof_superword, 0, unsignedp, methods))
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
into_superword = gen_reg_rtx (word_mode);
|
||
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
||
outof_superword, into_superword,
|
||
unsignedp, methods))
|
||
return false;
|
||
}
|
||
|
||
/* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
|
||
if (!expand_subword_shift (op1_mode, binoptab,
|
||
outof_input, into_input, subword_op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods, shift_mask))
|
||
return false;
|
||
|
||
/* Select between them. Do the INTO half first because INTO_SUPERWORD
|
||
might be the current value of OUTOF_TARGET. */
|
||
if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
|
||
into_target, into_superword, word_mode, false))
|
||
return false;
|
||
|
||
if (outof_target != 0)
|
||
if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
|
||
outof_target, outof_superword,
|
||
word_mode, false))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
#endif
|
||
|
||
/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
|
||
OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
|
||
input operand; the shift moves bits in the direction OUTOF_INPUT->
|
||
INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
|
||
of the target. OP1 is the shift count and OP1_MODE is its mode.
|
||
If OP1 is constant, it will have been truncated as appropriate
|
||
and is known to be nonzero.
|
||
|
||
If SHIFT_MASK is zero, the result of word shifts is undefined when the
|
||
shift count is outside the range [0, BITS_PER_WORD). This routine must
|
||
avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
|
||
|
||
If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
|
||
masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
|
||
fill with zeros or sign bits as appropriate.
|
||
|
||
If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
|
||
a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
|
||
Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
|
||
In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
|
||
are undefined.
|
||
|
||
BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
|
||
may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
|
||
OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
|
||
function wants to calculate it itself.
|
||
|
||
Return true if the shift could be successfully synthesized. */
|
||
|
||
static bool
|
||
expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
|
||
rtx outof_input, rtx into_input, rtx op1,
|
||
rtx outof_target, rtx into_target,
|
||
int unsignedp, enum optab_methods methods,
|
||
unsigned HOST_WIDE_INT shift_mask)
|
||
{
|
||
rtx superword_op1, tmp, cmp1, cmp2;
|
||
rtx subword_label, done_label;
|
||
enum rtx_code cmp_code;
|
||
|
||
/* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
|
||
fill the result with sign or zero bits as appropriate. If so, the value
|
||
of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
|
||
this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
|
||
and INTO_INPUT), then emit code to set up OUTOF_TARGET.
|
||
|
||
This isn't worthwhile for constant shifts since the optimizers will
|
||
cope better with in-range shift counts. */
|
||
if (shift_mask >= BITS_PER_WORD
|
||
&& outof_target != 0
|
||
&& !CONSTANT_P (op1))
|
||
{
|
||
if (!expand_doubleword_shift (op1_mode, binoptab,
|
||
outof_input, into_input, op1,
|
||
0, into_target,
|
||
unsignedp, methods, shift_mask))
|
||
return false;
|
||
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
||
outof_target, unsignedp, methods))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
|
||
is true when the effective shift value is less than BITS_PER_WORD.
|
||
Set SUPERWORD_OP1 to the shift count that should be used to shift
|
||
OUTOF_INPUT into INTO_TARGET when the condition is false. */
|
||
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
||
if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
|
||
{
|
||
/* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
|
||
is a subword shift count. */
|
||
cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
|
||
0, true, methods);
|
||
cmp2 = CONST0_RTX (op1_mode);
|
||
cmp_code = EQ;
|
||
superword_op1 = op1;
|
||
}
|
||
else
|
||
{
|
||
/* Set CMP1 to OP1 - BITS_PER_WORD. */
|
||
cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
|
||
0, true, methods);
|
||
cmp2 = CONST0_RTX (op1_mode);
|
||
cmp_code = LT;
|
||
superword_op1 = cmp1;
|
||
}
|
||
if (cmp1 == 0)
|
||
return false;
|
||
|
||
/* If we can compute the condition at compile time, pick the
|
||
appropriate subroutine. */
|
||
tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
|
||
if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
|
||
{
|
||
if (tmp == const0_rtx)
|
||
return expand_superword_shift (binoptab, outof_input, superword_op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods);
|
||
else
|
||
return expand_subword_shift (op1_mode, binoptab,
|
||
outof_input, into_input, op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods, shift_mask);
|
||
}
|
||
|
||
#ifdef HAVE_conditional_move
|
||
/* Try using conditional moves to generate straight-line code. */
|
||
{
|
||
rtx start = get_last_insn ();
|
||
if (expand_doubleword_shift_condmove (op1_mode, binoptab,
|
||
cmp_code, cmp1, cmp2,
|
||
outof_input, into_input,
|
||
op1, superword_op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods, shift_mask))
|
||
return true;
|
||
delete_insns_since (start);
|
||
}
|
||
#endif
|
||
|
||
/* As a last resort, use branches to select the correct alternative. */
|
||
subword_label = gen_label_rtx ();
|
||
done_label = gen_label_rtx ();
|
||
|
||
do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
|
||
0, 0, subword_label);
|
||
|
||
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods))
|
||
return false;
|
||
|
||
emit_jump_insn (gen_jump (done_label));
|
||
emit_barrier ();
|
||
emit_label (subword_label);
|
||
|
||
if (!expand_subword_shift (op1_mode, binoptab,
|
||
outof_input, into_input, op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods, shift_mask))
|
||
return false;
|
||
|
||
emit_label (done_label);
|
||
return true;
|
||
}
|
||
|
||
/* Subroutine of expand_binop. Perform a double word multiplication of
|
||
operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
|
||
as the target's word_mode. This function return NULL_RTX if anything
|
||
goes wrong, in which case it may have already emitted instructions
|
||
which need to be deleted.
|
||
|
||
If we want to multiply two two-word values and have normal and widening
|
||
multiplies of single-word values, we can do this with three smaller
|
||
multiplications. Note that we do not make a REG_NO_CONFLICT block here
|
||
because we are not operating on one word at a time.
|
||
|
||
The multiplication proceeds as follows:
|
||
_______________________
|
||
[__op0_high_|__op0_low__]
|
||
_______________________
|
||
* [__op1_high_|__op1_low__]
|
||
_______________________________________________
|
||
_______________________
|
||
(1) [__op0_low__*__op1_low__]
|
||
_______________________
|
||
(2a) [__op0_low__*__op1_high_]
|
||
_______________________
|
||
(2b) [__op0_high_*__op1_low__]
|
||
_______________________
|
||
(3) [__op0_high_*__op1_high_]
|
||
|
||
|
||
This gives a 4-word result. Since we are only interested in the
|
||
lower 2 words, partial result (3) and the upper words of (2a) and
|
||
(2b) don't need to be calculated. Hence (2a) and (2b) can be
|
||
calculated using non-widening multiplication.
|
||
|
||
(1), however, needs to be calculated with an unsigned widening
|
||
multiplication. If this operation is not directly supported we
|
||
try using a signed widening multiplication and adjust the result.
|
||
This adjustment works as follows:
|
||
|
||
If both operands are positive then no adjustment is needed.
|
||
|
||
If the operands have different signs, for example op0_low < 0 and
|
||
op1_low >= 0, the instruction treats the most significant bit of
|
||
op0_low as a sign bit instead of a bit with significance
|
||
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
|
||
with 2**BITS_PER_WORD - op0_low, and two's complements the
|
||
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
|
||
the result.
|
||
|
||
Similarly, if both operands are negative, we need to add
|
||
(op0_low + op1_low) * 2**BITS_PER_WORD.
|
||
|
||
We use a trick to adjust quickly. We logically shift op0_low right
|
||
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
|
||
op0_high (op1_high) before it is used to calculate 2b (2a). If no
|
||
logical shift exists, we do an arithmetic right shift and subtract
|
||
the 0 or -1. */
|
||
|
||
static rtx
|
||
expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
||
bool umulp, enum optab_methods methods)
|
||
{
|
||
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
|
||
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
|
||
rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
|
||
rtx product, adjust, product_high, temp;
|
||
|
||
rtx op0_high = operand_subword_force (op0, high, mode);
|
||
rtx op0_low = operand_subword_force (op0, low, mode);
|
||
rtx op1_high = operand_subword_force (op1, high, mode);
|
||
rtx op1_low = operand_subword_force (op1, low, mode);
|
||
|
||
/* If we're using an unsigned multiply to directly compute the product
|
||
of the low-order words of the operands and perform any required
|
||
adjustments of the operands, we begin by trying two more multiplications
|
||
and then computing the appropriate sum.
|
||
|
||
We have checked above that the required addition is provided.
|
||
Full-word addition will normally always succeed, especially if
|
||
it is provided at all, so we don't worry about its failure. The
|
||
multiplication may well fail, however, so we do handle that. */
|
||
|
||
if (!umulp)
|
||
{
|
||
/* ??? This could be done with emit_store_flag where available. */
|
||
temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
|
||
NULL_RTX, 1, methods);
|
||
if (temp)
|
||
op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
else
|
||
{
|
||
temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
|
||
NULL_RTX, 0, methods);
|
||
if (!temp)
|
||
return NULL_RTX;
|
||
op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
}
|
||
|
||
if (!op0_high)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
if (!adjust)
|
||
return NULL_RTX;
|
||
|
||
/* OP0_HIGH should now be dead. */
|
||
|
||
if (!umulp)
|
||
{
|
||
/* ??? This could be done with emit_store_flag where available. */
|
||
temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
|
||
NULL_RTX, 1, methods);
|
||
if (temp)
|
||
op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
else
|
||
{
|
||
temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
|
||
NULL_RTX, 0, methods);
|
||
if (!temp)
|
||
return NULL_RTX;
|
||
op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
}
|
||
|
||
if (!op1_high)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
|
||
NULL_RTX, 0, OPTAB_DIRECT);
|
||
if (!temp)
|
||
return NULL_RTX;
|
||
|
||
/* OP1_HIGH should now be dead. */
|
||
|
||
adjust = expand_binop (word_mode, add_optab, adjust, temp,
|
||
adjust, 0, OPTAB_DIRECT);
|
||
|
||
if (target && !REG_P (target))
|
||
target = NULL_RTX;
|
||
|
||
if (umulp)
|
||
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
else
|
||
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
|
||
if (!product)
|
||
return NULL_RTX;
|
||
|
||
product_high = operand_subword (product, high, 1, mode);
|
||
adjust = expand_binop (word_mode, add_optab, product_high, adjust,
|
||
REG_P (product_high) ? product_high : adjust,
|
||
0, OPTAB_DIRECT);
|
||
emit_move_insn (product_high, adjust);
|
||
return product;
|
||
}
|
||
|
||
/* Wrapper around expand_binop which takes an rtx code to specify
|
||
the operation to perform, not an optab pointer. All other
|
||
arguments are the same. */
|
||
rtx
|
||
expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
||
rtx op1, rtx target, int unsignedp,
|
||
enum optab_methods methods)
|
||
{
|
||
optab binop = code_to_optab[(int) code];
|
||
if (binop == 0)
|
||
abort ();
|
||
|
||
return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
|
||
rtx target, int unsignedp, enum optab_methods methods)
|
||
{
|
||
enum optab_methods next_methods
|
||
= (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
|
||
? OPTAB_WIDEN : methods);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx temp;
|
||
int commutative_op = 0;
|
||
int shift_op = (binoptab->code == ASHIFT
|
||
|| binoptab->code == ASHIFTRT
|
||
|| binoptab->code == LSHIFTRT
|
||
|| binoptab->code == ROTATE
|
||
|| binoptab->code == ROTATERT);
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
/* Load duplicate non-volatile operands once. */
|
||
if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = op0;
|
||
}
|
||
else
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
}
|
||
|
||
/* If subtracting an integer constant, convert this into an addition of
|
||
the negated constant. */
|
||
|
||
if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
|
||
{
|
||
op1 = negate_rtx (mode, op1);
|
||
binoptab = add_optab;
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and we are optimizing,
|
||
force expensive constants into a register. */
|
||
if (CONSTANT_P (op0) && optimize
|
||
&& rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
|
||
{
|
||
if (GET_MODE (op0) != VOIDmode)
|
||
op0 = convert_modes (mode, VOIDmode, op0, unsignedp);
|
||
op0 = force_reg (mode, op0);
|
||
}
|
||
|
||
if (CONSTANT_P (op1) && optimize
|
||
&& ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
|
||
{
|
||
if (GET_MODE (op1) != VOIDmode)
|
||
op1 = convert_modes (mode, VOIDmode, op1, unsignedp);
|
||
op1 = force_reg (mode, op1);
|
||
}
|
||
|
||
/* Record where to delete back to if we backtrack. */
|
||
last = get_last_insn ();
|
||
|
||
/* If operation is commutative,
|
||
try to make the first operand a register.
|
||
Even better, try to make it the same as the target.
|
||
Also try to make the last operand a constant. */
|
||
if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
|
||
|| binoptab == smul_widen_optab
|
||
|| binoptab == umul_widen_optab
|
||
|| binoptab == smul_highpart_optab
|
||
|| binoptab == umul_highpart_optab)
|
||
{
|
||
commutative_op = 1;
|
||
|
||
if (((target == 0 || REG_P (target))
|
||
? ((REG_P (op1)
|
||
&& !REG_P (op0))
|
||
|| target == op1)
|
||
: rtx_equal_p (op1, target))
|
||
|| GET_CODE (op0) == CONST_INT)
|
||
{
|
||
temp = op1;
|
||
op1 = op0;
|
||
op0 = temp;
|
||
}
|
||
}
|
||
|
||
/* If we can do it with a three-operand insn, do so. */
|
||
|
||
if (methods != OPTAB_MUST_WIDEN
|
||
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
/* If it is a commutative operator and the modes would match
|
||
if we would swap the operands, we can save the conversions. */
|
||
if (commutative_op)
|
||
{
|
||
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
|
||
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
|
||
{
|
||
rtx tmp;
|
||
|
||
tmp = op0; op0 = op1; op1 = tmp;
|
||
tmp = xop0; xop0 = xop1; xop1 = tmp;
|
||
}
|
||
}
|
||
|
||
/* In case the insn wants input operands in modes different from
|
||
those of the actual operands, convert the operands. It would
|
||
seem that we don't need to convert CONST_INTs, but we do, so
|
||
that they're properly zero-extended, sign-extended or truncated
|
||
for their mode. */
|
||
|
||
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
||
xop0 = convert_modes (mode0,
|
||
GET_MODE (op0) != VOIDmode
|
||
? GET_MODE (op0)
|
||
: mode,
|
||
xop0, unsignedp);
|
||
|
||
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
||
xop1 = convert_modes (mode1,
|
||
GET_MODE (op1) != VOIDmode
|
||
? GET_MODE (op1)
|
||
: mode,
|
||
xop1, unsignedp);
|
||
|
||
/* Now, if insn's predicates don't allow our operands, put them into
|
||
pseudo regs. */
|
||
|
||
if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
|
||
&& mode0 != VOIDmode)
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
|
||
&& mode1 != VOIDmode)
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0, xop1);
|
||
if (pat)
|
||
{
|
||
/* If PAT is composed of more than one insn, try to add an appropriate
|
||
REG_EQUAL note to it. If we can't because TEMP conflicts with an
|
||
operand, call ourselves again, this time without a target. */
|
||
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
||
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
|
||
unsignedp, methods);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If this is a multiply, see if we can do a widening operation that
|
||
takes operands of this mode and makes a wider mode. */
|
||
|
||
if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
|
||
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
||
->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
temp = expand_binop (GET_MODE_WIDER_MODE (mode),
|
||
unsignedp ? umul_widen_optab : smul_widen_optab,
|
||
op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
|
||
|
||
if (temp != 0)
|
||
{
|
||
if (GET_MODE_CLASS (mode) == MODE_INT)
|
||
return gen_lowpart (mode, temp);
|
||
else
|
||
return convert_to_mode (mode, temp, unsignedp);
|
||
}
|
||
}
|
||
|
||
/* Look for a wider mode of the same class for which we think we
|
||
can open-code the operation. Check for a widening multiply at the
|
||
wider mode as well. */
|
||
|
||
if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
&& methods != OPTAB_DIRECT && methods != OPTAB_LIB)
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
||
|| (binoptab == smul_optab
|
||
&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
|
||
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
||
->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
rtx xop0 = op0, xop1 = op1;
|
||
int no_extend = 0;
|
||
|
||
/* For certain integer operations, we need not actually extend
|
||
the narrow operands, as long as we will truncate
|
||
the results to the same narrowness. */
|
||
|
||
if ((binoptab == ior_optab || binoptab == and_optab
|
||
|| binoptab == xor_optab
|
||
|| binoptab == add_optab || binoptab == sub_optab
|
||
|| binoptab == smul_optab || binoptab == ashl_optab)
|
||
&& class == MODE_INT)
|
||
no_extend = 1;
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
|
||
|
||
/* The second operand of a shift must always be extended. */
|
||
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
||
no_extend && binoptab != ashl_optab);
|
||
|
||
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
rtx equiv_value;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_binop (word_mode, binoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
operand_subword_force (op1, i, mode),
|
||
target_piece, unsignedp, next_methods);
|
||
|
||
if (x == 0)
|
||
break;
|
||
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value
|
||
= gen_rtx_fmt_ee (binoptab->code, mode,
|
||
copy_rtx (op0), copy_rtx (op1));
|
||
else
|
||
equiv_value = 0;
|
||
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* Synthesize double word shifts from single word shifts. */
|
||
if ((binoptab == lshr_optab || binoptab == ashl_optab
|
||
|| binoptab == ashr_optab)
|
||
&& class == MODE_INT
|
||
&& (GET_CODE (op1) == CONST_INT || !optimize_size)
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
|
||
enum machine_mode op1_mode;
|
||
|
||
double_shift_mask = targetm.shift_truncation_mask (mode);
|
||
shift_mask = targetm.shift_truncation_mask (word_mode);
|
||
op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
|
||
|
||
/* Apply the truncation to constant shifts. */
|
||
if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
|
||
op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
|
||
|
||
if (op1 == CONST0_RTX (op1_mode))
|
||
return op0;
|
||
|
||
/* Make sure that this is a combination that expand_doubleword_shift
|
||
can handle. See the comments there for details. */
|
||
if (double_shift_mask == 0
|
||
|| (shift_mask == BITS_PER_WORD - 1
|
||
&& double_shift_mask == BITS_PER_WORD * 2 - 1))
|
||
{
|
||
rtx insns, equiv_value;
|
||
rtx into_target, outof_target;
|
||
rtx into_input, outof_input;
|
||
int left_shift, outof_word;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* OUTOF_* is the word we are shifting bits away from, and
|
||
INTO_* is the word that we are shifting bits towards, thus
|
||
they differ depending on the direction of the shift and
|
||
WORDS_BIG_ENDIAN. */
|
||
|
||
left_shift = binoptab == ashl_optab;
|
||
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
||
|
||
outof_target = operand_subword (target, outof_word, 1, mode);
|
||
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
||
|
||
outof_input = operand_subword_force (op0, outof_word, mode);
|
||
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
||
|
||
if (expand_doubleword_shift (op1_mode, binoptab,
|
||
outof_input, into_input, op1,
|
||
outof_target, into_target,
|
||
unsignedp, methods, shift_mask))
|
||
{
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
return target;
|
||
}
|
||
end_sequence ();
|
||
}
|
||
}
|
||
|
||
/* Synthesize double word rotates from single word shifts. */
|
||
if ((binoptab == rotl_optab || binoptab == rotr_optab)
|
||
&& class == MODE_INT
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx insns, equiv_value;
|
||
rtx into_target, outof_target;
|
||
rtx into_input, outof_input;
|
||
rtx inter;
|
||
int shift_count, left_shift, outof_word;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. Do this also if target is not
|
||
a REG, first because having a register instead may open optimization
|
||
opportunities, and second because if target and op0 happen to be MEMs
|
||
designating the same location, we would risk clobbering it too early
|
||
in the code sequence we generate below. */
|
||
if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
shift_count = INTVAL (op1);
|
||
|
||
/* OUTOF_* is the word we are shifting bits away from, and
|
||
INTO_* is the word that we are shifting bits towards, thus
|
||
they differ depending on the direction of the shift and
|
||
WORDS_BIG_ENDIAN. */
|
||
|
||
left_shift = (binoptab == rotl_optab);
|
||
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
||
|
||
outof_target = operand_subword (target, outof_word, 1, mode);
|
||
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
||
|
||
outof_input = operand_subword_force (op0, outof_word, mode);
|
||
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
||
|
||
if (shift_count == BITS_PER_WORD)
|
||
{
|
||
/* This is just a word swap. */
|
||
emit_move_insn (outof_target, into_input);
|
||
emit_move_insn (into_target, outof_input);
|
||
inter = const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
|
||
rtx first_shift_count, second_shift_count;
|
||
optab reverse_unsigned_shift, unsigned_shift;
|
||
|
||
reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
||
? lshr_optab : ashl_optab);
|
||
|
||
unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
||
? ashl_optab : lshr_optab);
|
||
|
||
if (shift_count > BITS_PER_WORD)
|
||
{
|
||
first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
|
||
second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
|
||
}
|
||
else
|
||
{
|
||
first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
|
||
second_shift_count = GEN_INT (shift_count);
|
||
}
|
||
|
||
into_temp1 = expand_binop (word_mode, unsigned_shift,
|
||
outof_input, first_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
||
into_input, second_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
|
||
if (into_temp1 != 0 && into_temp2 != 0)
|
||
inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
|
||
into_target, unsignedp, next_methods);
|
||
else
|
||
inter = 0;
|
||
|
||
if (inter != 0 && inter != into_target)
|
||
emit_move_insn (into_target, inter);
|
||
|
||
outof_temp1 = expand_binop (word_mode, unsigned_shift,
|
||
into_input, first_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
||
outof_input, second_shift_count,
|
||
NULL_RTX, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
|
||
inter = expand_binop (word_mode, ior_optab,
|
||
outof_temp1, outof_temp2,
|
||
outof_target, unsignedp, next_methods);
|
||
|
||
if (inter != 0 && inter != outof_target)
|
||
emit_move_insn (outof_target, inter);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (inter != 0)
|
||
{
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
|
||
else
|
||
equiv_value = 0;
|
||
|
||
/* We can't make this a no conflict block if this is a word swap,
|
||
because the word swap case fails if the input and output values
|
||
are in the same register. */
|
||
if (shift_count != BITS_PER_WORD)
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
else
|
||
emit_insn (insns);
|
||
|
||
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time by propagating carries. */
|
||
if ((binoptab == add_optab || binoptab == sub_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
unsigned int i;
|
||
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
|
||
const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
|
||
rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
|
||
rtx xop0, xop1, xtarget;
|
||
|
||
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
|
||
value is one of those, use it. Otherwise, use 1 since it is the
|
||
one easiest to get. */
|
||
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
||
int normalizep = STORE_FLAG_VALUE;
|
||
#else
|
||
int normalizep = 1;
|
||
#endif
|
||
|
||
/* Prepare the operands. */
|
||
xop0 = force_reg (mode, op0);
|
||
xop1 = force_reg (mode, op1);
|
||
|
||
xtarget = gen_reg_rtx (mode);
|
||
|
||
if (target == 0 || !REG_P (target))
|
||
target = xtarget;
|
||
|
||
/* Indicate for flow that the entire target reg is being set. */
|
||
if (REG_P (target))
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
rtx target_piece = operand_subword (xtarget, index, 1, mode);
|
||
rtx op0_piece = operand_subword_force (xop0, index, mode);
|
||
rtx op1_piece = operand_subword_force (xop1, index, mode);
|
||
rtx x;
|
||
|
||
/* Main add/subtract of the input operands. */
|
||
x = expand_binop (word_mode, binoptab,
|
||
op0_piece, op1_piece,
|
||
target_piece, unsignedp, next_methods);
|
||
if (x == 0)
|
||
break;
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* Store carry from main add/subtract. */
|
||
carry_out = gen_reg_rtx (word_mode);
|
||
carry_out = emit_store_flag_force (carry_out,
|
||
(binoptab == add_optab
|
||
? LT : GT),
|
||
x, op0_piece,
|
||
word_mode, 1, normalizep);
|
||
}
|
||
|
||
if (i > 0)
|
||
{
|
||
rtx newx;
|
||
|
||
/* Add/subtract previous carry to main result. */
|
||
newx = expand_binop (word_mode,
|
||
normalizep == 1 ? binoptab : otheroptab,
|
||
x, carry_in,
|
||
NULL_RTX, 1, next_methods);
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* Get out carry from adding/subtracting carry in. */
|
||
rtx carry_tmp = gen_reg_rtx (word_mode);
|
||
carry_tmp = emit_store_flag_force (carry_tmp,
|
||
(binoptab == add_optab
|
||
? LT : GT),
|
||
newx, x,
|
||
word_mode, 1, normalizep);
|
||
|
||
/* Logical-ior the two poss. carry together. */
|
||
carry_out = expand_binop (word_mode, ior_optab,
|
||
carry_out, carry_tmp,
|
||
carry_out, 0, next_methods);
|
||
if (carry_out == 0)
|
||
break;
|
||
}
|
||
emit_move_insn (target_piece, newx);
|
||
}
|
||
else
|
||
{
|
||
if (x != target_piece)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
carry_in = carry_out;
|
||
}
|
||
|
||
if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
|
||
{
|
||
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
|| ! rtx_equal_p (target, xtarget))
|
||
{
|
||
rtx temp = emit_move_insn (target, xtarget);
|
||
|
||
set_unique_reg_note (temp,
|
||
REG_EQUAL,
|
||
gen_rtx_fmt_ee (binoptab->code, mode,
|
||
copy_rtx (xop0),
|
||
copy_rtx (xop1)));
|
||
}
|
||
else
|
||
target = xtarget;
|
||
|
||
return target;
|
||
}
|
||
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* Attempt to synthesize double word multiplies using a sequence of word
|
||
mode multiplications. We first attempt to generate a sequence using a
|
||
more efficient unsigned widening multiply, and if that fails we then
|
||
try using a signed widening multiply. */
|
||
|
||
if (binoptab == smul_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
||
&& add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx product = NULL_RTX;
|
||
|
||
if (umul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
product = expand_doubleword_mult (mode, op0, op1, target,
|
||
true, methods);
|
||
if (!product)
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
if (product == NULL_RTX
|
||
&& smul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
product = expand_doubleword_mult (mode, op0, op1, target,
|
||
false, methods);
|
||
if (!product)
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
if (product != NULL_RTX)
|
||
{
|
||
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
temp = emit_move_insn (target ? target : product, product);
|
||
set_unique_reg_note (temp,
|
||
REG_EQUAL,
|
||
gen_rtx_fmt_ee (MULT, mode,
|
||
copy_rtx (op0),
|
||
copy_rtx (op1)));
|
||
}
|
||
return product;
|
||
}
|
||
}
|
||
|
||
/* It can't be open-coded in this mode.
|
||
Use a library call if one is available and caller says that's ok. */
|
||
|
||
if (binoptab->handlers[(int) mode].libfunc
|
||
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
|
||
{
|
||
rtx insns;
|
||
rtx op1x = op1;
|
||
enum machine_mode op1_mode = mode;
|
||
rtx value;
|
||
|
||
start_sequence ();
|
||
|
||
if (shift_op)
|
||
{
|
||
op1_mode = word_mode;
|
||
/* Specify unsigned here,
|
||
since negative shift counts are meaningless. */
|
||
op1x = convert_to_mode (word_mode, op1, 1);
|
||
}
|
||
|
||
if (GET_MODE (op0) != VOIDmode
|
||
&& GET_MODE (op0) != mode)
|
||
op0 = convert_to_mode (mode, op0, unsignedp);
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, LCT_CONST, mode, 2,
|
||
op0, mode, op1x, op1_mode);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (mode);
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
|
||
|
||
return target;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|
||
|| methods == OPTAB_MUST_WIDEN))
|
||
{
|
||
/* Caller says, don't even try. */
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Compute the value of METHODS to pass to recursive calls.
|
||
Don't allow widening to be tried recursively. */
|
||
|
||
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
|
||
|
||
/* Look for a wider mode of the same class for which it appears we can do
|
||
the operation. */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (methods == OPTAB_LIB
|
||
&& binoptab->handlers[(int) wider_mode].libfunc))
|
||
{
|
||
rtx xop0 = op0, xop1 = op1;
|
||
int no_extend = 0;
|
||
|
||
/* For certain integer operations, we need not actually extend
|
||
the narrow operands, as long as we will truncate
|
||
the results to the same narrowness. */
|
||
|
||
if ((binoptab == ior_optab || binoptab == and_optab
|
||
|| binoptab == xor_optab
|
||
|| binoptab == add_optab || binoptab == sub_optab
|
||
|| binoptab == smul_optab || binoptab == ashl_optab)
|
||
&& class == MODE_INT)
|
||
no_extend = 1;
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode,
|
||
unsignedp, no_extend);
|
||
|
||
/* The second operand of a shift must always be extended. */
|
||
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
||
no_extend && binoptab != ashl_optab);
|
||
|
||
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
||
unsignedp, methods);
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Expand a binary operator which has both signed and unsigned forms.
|
||
UOPTAB is the optab for unsigned operations, and SOPTAB is for
|
||
signed operations.
|
||
|
||
If we widen unsigned operands, we may use a signed wider operation instead
|
||
of an unsigned wider operation, since the result would be the same. */
|
||
|
||
rtx
|
||
sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
|
||
rtx op0, rtx op1, rtx target, int unsignedp,
|
||
enum optab_methods methods)
|
||
{
|
||
rtx temp;
|
||
optab direct_optab = unsignedp ? uoptab : soptab;
|
||
struct optab wide_soptab;
|
||
|
||
/* Do it without widening, if possible. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp || methods == OPTAB_DIRECT)
|
||
return temp;
|
||
|
||
/* Try widening to a signed int. Make a fake signed optab that
|
||
hides any signed insn for direct use. */
|
||
wide_soptab = *soptab;
|
||
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
|
||
wide_soptab.handlers[(int) mode].libfunc = 0;
|
||
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
|
||
/* For unsigned operands, try widening to an unsigned int. */
|
||
if (temp == 0 && unsignedp)
|
||
temp = expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (temp || methods == OPTAB_WIDEN)
|
||
return temp;
|
||
|
||
/* Use the right width lib call if that exists. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
|
||
if (temp || methods == OPTAB_LIB)
|
||
return temp;
|
||
|
||
/* Must widen and use a lib call, use either signed or unsigned. */
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
if (temp != 0)
|
||
return temp;
|
||
if (unsignedp)
|
||
return expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by UNOPPTAB
|
||
on operand OP0, with two results to TARG0 and TARG1.
|
||
We assume that the order of the operands for the instruction
|
||
is TARG0, TARG1, OP0.
|
||
|
||
Either TARG0 or TARG1 may be zero, but what that means is that
|
||
the result is not actually wanted. We will generate it into
|
||
a dummy pseudo-reg and discard it. They may not both be zero.
|
||
|
||
Returns 1 if this operation can be performed; 0 if not. */
|
||
|
||
int
|
||
expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
|
||
int unsignedp)
|
||
{
|
||
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
if (flag_force_mem)
|
||
op0 = force_not_mem (op0);
|
||
|
||
if (!targ0)
|
||
targ0 = gen_reg_rtx (mode);
|
||
if (!targ1)
|
||
targ1 = gen_reg_rtx (mode);
|
||
|
||
/* Record where to go back to if we fail. */
|
||
last = get_last_insn ();
|
||
|
||
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_data[icode].operand[2].mode;
|
||
rtx pat;
|
||
rtx xop0 = op0;
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE (xop0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
/* We could handle this, but we should always be called with a pseudo
|
||
for our targets and all insns should take them as outputs. */
|
||
if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
|
||
|| ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
|
||
abort ();
|
||
|
||
pat = GEN_FCN (icode) (targ0, targ1, xop0);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (unoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx t0 = gen_reg_rtx (wider_mode);
|
||
rtx t1 = gen_reg_rtx (wider_mode);
|
||
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
||
|
||
if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
|
||
{
|
||
convert_move (targ0, t0, unsignedp);
|
||
convert_move (targ1, t1, unsignedp);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with two results to TARG1 and TARG2.
|
||
We assume that the order of the operands for the instruction
|
||
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
|
||
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
|
||
|
||
Either TARG0 or TARG1 may be zero, but what that means is that
|
||
the result is not actually wanted. We will generate it into
|
||
a dummy pseudo-reg and discard it. They may not both be zero.
|
||
|
||
Returns 1 if this operation can be performed; 0 if not. */
|
||
|
||
int
|
||
expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
|
||
int unsignedp)
|
||
{
|
||
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx entry_last = get_last_insn ();
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and we are optimizing,
|
||
force expensive constants into a register. */
|
||
if (CONSTANT_P (op0) && optimize
|
||
&& rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
|
||
op0 = force_reg (mode, op0);
|
||
|
||
if (CONSTANT_P (op1) && optimize
|
||
&& rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
|
||
op1 = force_reg (mode, op1);
|
||
|
||
if (!targ0)
|
||
targ0 = gen_reg_rtx (mode);
|
||
if (!targ1)
|
||
targ1 = gen_reg_rtx (mode);
|
||
|
||
/* Record where to go back to if we fail. */
|
||
last = get_last_insn ();
|
||
|
||
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
/* In case the insn wants input operands in modes different from
|
||
those of the actual operands, convert the operands. It would
|
||
seem that we don't need to convert CONST_INTs, but we do, so
|
||
that they're properly zero-extended, sign-extended or truncated
|
||
for their mode. */
|
||
|
||
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
||
xop0 = convert_modes (mode0,
|
||
GET_MODE (op0) != VOIDmode
|
||
? GET_MODE (op0)
|
||
: mode,
|
||
xop0, unsignedp);
|
||
|
||
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
||
xop1 = convert_modes (mode1,
|
||
GET_MODE (op1) != VOIDmode
|
||
? GET_MODE (op1)
|
||
: mode,
|
||
xop1, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
/* We could handle this, but we should always be called with a pseudo
|
||
for our targets and all insns should take them as outputs. */
|
||
if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
|
||
|| ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
|
||
abort ();
|
||
|
||
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx t0 = gen_reg_rtx (wider_mode);
|
||
rtx t1 = gen_reg_rtx (wider_mode);
|
||
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
||
rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
||
|
||
if (expand_twoval_binop (binoptab, cop0, cop1,
|
||
t0, t1, unsignedp))
|
||
{
|
||
convert_move (targ0, t0, unsignedp);
|
||
convert_move (targ1, t1, unsignedp);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
delete_insns_since (entry_last);
|
||
return 0;
|
||
}
|
||
|
||
/* Expand the two-valued library call indicated by BINOPTAB, but
|
||
preserve only one of the values. If TARG0 is non-NULL, the first
|
||
value is placed into TARG0; otherwise the second value is placed
|
||
into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
|
||
value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
|
||
This routine assumes that the value returned by the library call is
|
||
as if the return value was of an integral mode twice as wide as the
|
||
mode of OP0. Returns 1 if the call was successful. */
|
||
|
||
bool
|
||
expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
|
||
rtx targ0, rtx targ1, enum rtx_code code)
|
||
{
|
||
enum machine_mode mode;
|
||
enum machine_mode libval_mode;
|
||
rtx libval;
|
||
rtx insns;
|
||
|
||
/* Exactly one of TARG0 or TARG1 should be non-NULL. */
|
||
if (!((targ0 != NULL_RTX) ^ (targ1 != NULL_RTX)))
|
||
abort ();
|
||
|
||
mode = GET_MODE (op0);
|
||
if (!binoptab->handlers[(int) mode].libfunc)
|
||
return false;
|
||
|
||
/* The value returned by the library function will have twice as
|
||
many bits as the nominal MODE. */
|
||
libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
|
||
MODE_INT);
|
||
start_sequence ();
|
||
libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, LCT_CONST,
|
||
libval_mode, 2,
|
||
op0, mode,
|
||
op1, mode);
|
||
/* Get the part of VAL containing the value that we want. */
|
||
libval = simplify_gen_subreg (mode, libval, libval_mode,
|
||
targ0 ? 0 : GET_MODE_SIZE (mode));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
/* Move the into the desired location. */
|
||
emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
|
||
gen_rtx_fmt_ee (code, mode, op0, op1));
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Wrapper around expand_unop which takes an rtx code to specify
|
||
the operation to perform, not an optab pointer. All other
|
||
arguments are the same. */
|
||
rtx
|
||
expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
||
rtx target, int unsignedp)
|
||
{
|
||
optab unop = code_to_optab[(int) code];
|
||
if (unop == 0)
|
||
abort ();
|
||
|
||
return expand_unop (mode, unop, op0, target, unsignedp);
|
||
}
|
||
|
||
/* Try calculating
|
||
(clz:narrow x)
|
||
as
|
||
(clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
|
||
static rtx
|
||
widen_clz (enum machine_mode mode, rtx op0, rtx target)
|
||
{
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
enum machine_mode wider_mode;
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (clz_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx xop0, temp, last;
|
||
|
||
last = get_last_insn ();
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
xop0 = widen_operand (op0, wider_mode, mode, true, false);
|
||
temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
|
||
if (temp != 0)
|
||
temp = expand_binop (wider_mode, sub_optab, temp,
|
||
GEN_INT (GET_MODE_BITSIZE (wider_mode)
|
||
- GET_MODE_BITSIZE (mode)),
|
||
target, true, OPTAB_DIRECT);
|
||
if (temp == 0)
|
||
delete_insns_since (last);
|
||
|
||
return temp;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Try calculating (parity x) as (and (popcount x) 1), where
|
||
popcount can also be done in a wider mode. */
|
||
static rtx
|
||
expand_parity (enum machine_mode mode, rtx op0, rtx target)
|
||
{
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
enum machine_mode wider_mode;
|
||
for (wider_mode = mode; wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (popcount_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx xop0, temp, last;
|
||
|
||
last = get_last_insn ();
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
xop0 = widen_operand (op0, wider_mode, mode, true, false);
|
||
temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
|
||
true);
|
||
if (temp != 0)
|
||
temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
|
||
target, true, OPTAB_DIRECT);
|
||
if (temp == 0)
|
||
delete_insns_since (last);
|
||
|
||
return temp;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
|
||
conditions, VAL may already be a SUBREG against which we cannot generate
|
||
a further SUBREG. In this case, we expect forcing the value into a
|
||
register will work around the situation. */
|
||
|
||
static rtx
|
||
lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
|
||
enum machine_mode imode)
|
||
{
|
||
rtx ret;
|
||
ret = lowpart_subreg (omode, val, imode);
|
||
if (ret == NULL)
|
||
{
|
||
val = force_reg (imode, val);
|
||
ret = lowpart_subreg (omode, val, imode);
|
||
gcc_assert (ret != NULL);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Expand a floating point absolute value or negation operation via a
|
||
logical operation on the sign bit. */
|
||
|
||
static rtx
|
||
expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
|
||
rtx op0, rtx target)
|
||
{
|
||
const struct real_format *fmt;
|
||
int bitpos, word, nwords, i;
|
||
enum machine_mode imode;
|
||
HOST_WIDE_INT hi, lo;
|
||
rtx temp, insns;
|
||
|
||
/* The format has to have a simple sign bit. */
|
||
fmt = REAL_MODE_FORMAT (mode);
|
||
if (fmt == NULL)
|
||
return NULL_RTX;
|
||
|
||
bitpos = fmt->signbit_rw;
|
||
if (bitpos < 0)
|
||
return NULL_RTX;
|
||
|
||
/* Don't create negative zeros if the format doesn't support them. */
|
||
if (code == NEG && !fmt->has_signed_zero)
|
||
return NULL_RTX;
|
||
|
||
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
||
{
|
||
imode = int_mode_for_mode (mode);
|
||
if (imode == BLKmode)
|
||
return NULL_RTX;
|
||
word = 0;
|
||
nwords = 1;
|
||
}
|
||
else
|
||
{
|
||
imode = word_mode;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
||
else
|
||
word = bitpos / BITS_PER_WORD;
|
||
bitpos = bitpos % BITS_PER_WORD;
|
||
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
||
}
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
hi = 0;
|
||
lo = (HOST_WIDE_INT) 1 << bitpos;
|
||
}
|
||
else
|
||
{
|
||
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
lo = 0;
|
||
}
|
||
if (code == ABS)
|
||
lo = ~lo, hi = ~hi;
|
||
|
||
if (target == 0 || target == op0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (nwords > 1)
|
||
{
|
||
start_sequence ();
|
||
|
||
for (i = 0; i < nwords; ++i)
|
||
{
|
||
rtx targ_piece = operand_subword (target, i, 1, mode);
|
||
rtx op0_piece = operand_subword_force (op0, i, mode);
|
||
|
||
if (i == word)
|
||
{
|
||
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
||
op0_piece,
|
||
immed_double_const (lo, hi, imode),
|
||
targ_piece, 1, OPTAB_LIB_WIDEN);
|
||
if (temp != targ_piece)
|
||
emit_move_insn (targ_piece, temp);
|
||
}
|
||
else
|
||
emit_move_insn (targ_piece, op0_piece);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0));
|
||
emit_no_conflict_block (insns, target, op0, NULL_RTX, temp);
|
||
}
|
||
else
|
||
{
|
||
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
||
gen_lowpart (imode, op0),
|
||
immed_double_const (lo, hi, imode),
|
||
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
||
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
||
|
||
set_unique_reg_note (get_last_insn (), REG_EQUAL,
|
||
gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by UNOPTAB
|
||
on operand OP0, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
|
||
int unsignedp)
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx temp;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
if (flag_force_mem)
|
||
op0 = force_not_mem (op0);
|
||
|
||
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
rtx xop0 = op0;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE (xop0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
|
||
|
||
if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0);
|
||
if (pat)
|
||
{
|
||
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
||
&& ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we open-code it in a wider mode? */
|
||
|
||
/* Widening clz needs special treatment. */
|
||
if (unoptab == clz_optab)
|
||
{
|
||
temp = widen_clz (mode, op0, target);
|
||
if (temp)
|
||
return temp;
|
||
else
|
||
goto try_libcall;
|
||
}
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
/* For certain operations, we need not actually extend
|
||
the narrow operand, as long as we will truncate the
|
||
results to the same narrowness. */
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
||
(unoptab == neg_optab
|
||
|| unoptab == one_cmpl_optab)
|
||
&& class == MODE_INT);
|
||
|
||
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
||
unsignedp);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if (unoptab == one_cmpl_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
|
||
if (target == 0 || target == op0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_unop (word_mode, unoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
target_piece, unsignedp);
|
||
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, target, op0, NULL_RTX,
|
||
gen_rtx_fmt_e (unoptab->code, mode,
|
||
copy_rtx (op0)));
|
||
return target;
|
||
}
|
||
|
||
if (unoptab->code == NEG)
|
||
{
|
||
/* Try negating floating point values by flipping the sign bit. */
|
||
if (class == MODE_FLOAT)
|
||
{
|
||
temp = expand_absneg_bit (NEG, mode, op0, target);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* If there is no negation pattern, and we have no negative zero,
|
||
try subtracting from zero. */
|
||
if (!HONOR_SIGNED_ZEROS (mode))
|
||
{
|
||
temp = expand_binop (mode, (unoptab == negv_optab
|
||
? subv_optab : sub_optab),
|
||
CONST0_RTX (mode), op0, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
}
|
||
|
||
/* Try calculating parity (x) as popcount (x) % 2. */
|
||
if (unoptab == parity_optab)
|
||
{
|
||
temp = expand_parity (mode, op0, target);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
try_libcall:
|
||
/* Now try a library call in this mode. */
|
||
if (unoptab->handlers[(int) mode].libfunc)
|
||
{
|
||
rtx insns;
|
||
rtx value;
|
||
enum machine_mode outmode = mode;
|
||
|
||
/* All of these functions return small values. Thus we choose to
|
||
have them return something that isn't a double-word. */
|
||
if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
|
||
|| unoptab == popcount_optab || unoptab == parity_optab)
|
||
outmode
|
||
= GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
|
||
|
||
start_sequence ();
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
|
||
NULL_RTX, LCT_CONST, outmode,
|
||
1, op0, mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (outmode);
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx_fmt_e (unoptab->code, mode, op0));
|
||
|
||
return target;
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((unoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| unoptab->handlers[(int) wider_mode].libfunc)
|
||
{
|
||
rtx xop0 = op0;
|
||
|
||
/* For certain operations, we need not actually extend
|
||
the narrow operand, as long as we will truncate the
|
||
results to the same narrowness. */
|
||
|
||
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
||
(unoptab == neg_optab
|
||
|| unoptab == one_cmpl_optab)
|
||
&& class == MODE_INT);
|
||
|
||
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
||
unsignedp);
|
||
|
||
/* If we are generating clz using wider mode, adjust the
|
||
result. */
|
||
if (unoptab == clz_optab && temp != 0)
|
||
temp = expand_binop (wider_mode, sub_optab, temp,
|
||
GEN_INT (GET_MODE_BITSIZE (wider_mode)
|
||
- GET_MODE_BITSIZE (mode)),
|
||
target, true, OPTAB_DIRECT);
|
||
|
||
if (temp)
|
||
{
|
||
if (class != MODE_INT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* One final attempt at implementing negation via subtraction,
|
||
this time allowing widening of the operand. */
|
||
if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
|
||
{
|
||
rtx temp;
|
||
temp = expand_binop (mode,
|
||
unoptab == negv_optab ? subv_optab : sub_optab,
|
||
CONST0_RTX (mode), op0,
|
||
target, unsignedp, OPTAB_LIB_WIDEN);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit code to compute the absolute value of OP0, with result to
|
||
TARGET if convenient. (TARGET may be 0.) The return value says
|
||
where the result actually is to be found.
|
||
|
||
MODE is the mode of the operand; the mode of the result is
|
||
different but can be deduced from MODE.
|
||
|
||
*/
|
||
|
||
rtx
|
||
expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
|
||
int result_unsignedp)
|
||
{
|
||
rtx temp;
|
||
|
||
if (! flag_trapv)
|
||
result_unsignedp = 1;
|
||
|
||
/* First try to do it with a special abs instruction. */
|
||
temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
|
||
op0, target, 0);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* For floating point modes, try clearing the sign bit. */
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
temp = expand_absneg_bit (ABS, mode, op0, target);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* If we have a MAX insn, we can do this as MAX (x, -x). */
|
||
if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
&& !HONOR_SIGNED_ZEROS (mode))
|
||
{
|
||
rtx last = get_last_insn ();
|
||
|
||
temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
|
||
if (temp != 0)
|
||
temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If this machine has expensive jumps, we can do integer absolute
|
||
value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
|
||
where W is the width of MODE. */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
|
||
{
|
||
rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
NULL_RTX, 0);
|
||
|
||
temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
if (temp != 0)
|
||
temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
|
||
temp, extended, target, 0, OPTAB_LIB_WIDEN);
|
||
|
||
if (temp != 0)
|
||
return temp;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
rtx
|
||
expand_abs (enum machine_mode mode, rtx op0, rtx target,
|
||
int result_unsignedp, int safe)
|
||
{
|
||
rtx temp, op1;
|
||
|
||
if (! flag_trapv)
|
||
result_unsignedp = 1;
|
||
|
||
temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* If that does not win, use conditional jump and negate. */
|
||
|
||
/* It is safe to use the target if it is the same
|
||
as the source if this is also a pseudo register */
|
||
if (op0 == target && REG_P (op0)
|
||
&& REGNO (op0) >= FIRST_PSEUDO_REGISTER)
|
||
safe = 1;
|
||
|
||
op1 = gen_label_rtx ();
|
||
if (target == 0 || ! safe
|
||
|| GET_MODE (target) != mode
|
||
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|
||
|| (REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
emit_move_insn (target, op0);
|
||
NO_DEFER_POP;
|
||
|
||
/* If this mode is an integer too wide to compare properly,
|
||
compare word by word. Rely on CSE to optimize constant cases. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& ! can_compare_p (GE, mode, ccp_jump))
|
||
do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
|
||
NULL_RTX, op1);
|
||
else
|
||
do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
|
||
NULL_RTX, NULL_RTX, op1);
|
||
|
||
op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
|
||
target, target, 0);
|
||
if (op0 != target)
|
||
emit_move_insn (target, op0);
|
||
emit_label (op1);
|
||
OK_DEFER_POP;
|
||
return target;
|
||
}
|
||
|
||
/* A subroutine of expand_copysign, perform the copysign operation using the
|
||
abs and neg primitives advertised to exist on the target. The assumption
|
||
is that we have a split register file, and leaving op0 in fp registers,
|
||
and not playing with subregs so much, will help the register allocator. */
|
||
|
||
static rtx
|
||
expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
||
int bitpos, bool op0_is_abs)
|
||
{
|
||
enum machine_mode imode;
|
||
HOST_WIDE_INT hi, lo;
|
||
int word;
|
||
rtx label;
|
||
|
||
if (target == op1)
|
||
target = NULL_RTX;
|
||
|
||
if (!op0_is_abs)
|
||
{
|
||
op0 = expand_unop (mode, abs_optab, op0, target, 0);
|
||
if (op0 == NULL)
|
||
return NULL_RTX;
|
||
target = op0;
|
||
}
|
||
else
|
||
{
|
||
if (target == NULL_RTX)
|
||
target = copy_to_reg (op0);
|
||
else
|
||
emit_move_insn (target, op0);
|
||
}
|
||
|
||
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
||
{
|
||
imode = int_mode_for_mode (mode);
|
||
if (imode == BLKmode)
|
||
return NULL_RTX;
|
||
op1 = gen_lowpart (imode, op1);
|
||
}
|
||
else
|
||
{
|
||
imode = word_mode;
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
||
else
|
||
word = bitpos / BITS_PER_WORD;
|
||
bitpos = bitpos % BITS_PER_WORD;
|
||
op1 = operand_subword_force (op1, word, mode);
|
||
}
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
hi = 0;
|
||
lo = (HOST_WIDE_INT) 1 << bitpos;
|
||
}
|
||
else
|
||
{
|
||
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
lo = 0;
|
||
}
|
||
|
||
op1 = expand_binop (imode, and_optab, op1,
|
||
immed_double_const (lo, hi, imode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label);
|
||
|
||
if (GET_CODE (op0) == CONST_DOUBLE)
|
||
op0 = simplify_unary_operation (NEG, mode, op0, mode);
|
||
else
|
||
op0 = expand_unop (mode, neg_optab, op0, target, 0);
|
||
if (op0 != target)
|
||
emit_move_insn (target, op0);
|
||
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_copysign, perform the entire copysign operation
|
||
with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
|
||
is true if op0 is known to have its sign bit clear. */
|
||
|
||
static rtx
|
||
expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
||
int bitpos, bool op0_is_abs)
|
||
{
|
||
enum machine_mode imode;
|
||
HOST_WIDE_INT hi, lo;
|
||
int word, nwords, i;
|
||
rtx temp, insns;
|
||
|
||
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
||
{
|
||
imode = int_mode_for_mode (mode);
|
||
if (imode == BLKmode)
|
||
return NULL_RTX;
|
||
word = 0;
|
||
nwords = 1;
|
||
}
|
||
else
|
||
{
|
||
imode = word_mode;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
||
else
|
||
word = bitpos / BITS_PER_WORD;
|
||
bitpos = bitpos % BITS_PER_WORD;
|
||
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
||
}
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
hi = 0;
|
||
lo = (HOST_WIDE_INT) 1 << bitpos;
|
||
}
|
||
else
|
||
{
|
||
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
lo = 0;
|
||
}
|
||
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (nwords > 1)
|
||
{
|
||
start_sequence ();
|
||
|
||
for (i = 0; i < nwords; ++i)
|
||
{
|
||
rtx targ_piece = operand_subword (target, i, 1, mode);
|
||
rtx op0_piece = operand_subword_force (op0, i, mode);
|
||
|
||
if (i == word)
|
||
{
|
||
if (!op0_is_abs)
|
||
op0_piece = expand_binop (imode, and_optab, op0_piece,
|
||
immed_double_const (~lo, ~hi, imode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
op1 = expand_binop (imode, and_optab,
|
||
operand_subword_force (op1, i, mode),
|
||
immed_double_const (lo, hi, imode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
temp = expand_binop (imode, ior_optab, op0_piece, op1,
|
||
targ_piece, 1, OPTAB_LIB_WIDEN);
|
||
if (temp != targ_piece)
|
||
emit_move_insn (targ_piece, temp);
|
||
}
|
||
else
|
||
emit_move_insn (targ_piece, op0_piece);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
|
||
}
|
||
else
|
||
{
|
||
op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
|
||
immed_double_const (lo, hi, imode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
op0 = gen_lowpart (imode, op0);
|
||
if (!op0_is_abs)
|
||
op0 = expand_binop (imode, and_optab, op0,
|
||
immed_double_const (~lo, ~hi, imode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
temp = expand_binop (imode, ior_optab, op0, op1,
|
||
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
||
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand the C99 copysign operation. OP0 and OP1 must be the same
|
||
scalar floating point mode. Return NULL if we do not know how to
|
||
expand the operation inline. */
|
||
|
||
rtx
|
||
expand_copysign (rtx op0, rtx op1, rtx target)
|
||
{
|
||
enum machine_mode mode = GET_MODE (op0);
|
||
const struct real_format *fmt;
|
||
bool op0_is_abs;
|
||
rtx temp;
|
||
|
||
gcc_assert (SCALAR_FLOAT_MODE_P (mode));
|
||
gcc_assert (GET_MODE (op1) == mode);
|
||
|
||
/* First try to do it with a special instruction. */
|
||
temp = expand_binop (mode, copysign_optab, op0, op1,
|
||
target, 0, OPTAB_DIRECT);
|
||
if (temp)
|
||
return temp;
|
||
|
||
fmt = REAL_MODE_FORMAT (mode);
|
||
if (fmt == NULL || !fmt->has_signed_zero)
|
||
return NULL_RTX;
|
||
|
||
op0_is_abs = false;
|
||
if (GET_CODE (op0) == CONST_DOUBLE)
|
||
{
|
||
if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
|
||
op0 = simplify_unary_operation (ABS, mode, op0, mode);
|
||
op0_is_abs = true;
|
||
}
|
||
|
||
if (fmt->signbit_ro >= 0
|
||
&& (GET_CODE (op0) == CONST_DOUBLE
|
||
|| (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing
|
||
&& abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)))
|
||
{
|
||
temp = expand_copysign_absneg (mode, op0, op1, target,
|
||
fmt->signbit_ro, op0_is_abs);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
if (fmt->signbit_rw < 0)
|
||
return NULL_RTX;
|
||
return expand_copysign_bit (mode, op0, op1, target,
|
||
fmt->signbit_rw, op0_is_abs);
|
||
}
|
||
|
||
/* Generate an instruction whose insn-code is INSN_CODE,
|
||
with two operands: an output TARGET and an input OP0.
|
||
TARGET *must* be nonzero, and the output is always stored there.
|
||
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
||
the value that is stored into TARGET. */
|
||
|
||
void
|
||
emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
|
||
{
|
||
rtx temp;
|
||
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
rtx pat;
|
||
|
||
temp = target;
|
||
|
||
/* Sign and zero extension from memory is often done specially on
|
||
RISC machines, so forcing into a register here can pessimize
|
||
code. */
|
||
if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
|
||
op0 = force_not_mem (op0);
|
||
|
||
/* Now, if insn does not accept our operands, put them into pseudos. */
|
||
|
||
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
op0 = copy_to_mode_reg (mode0, op0);
|
||
|
||
if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
|
||
|| (flag_force_mem && MEM_P (temp)))
|
||
temp = gen_reg_rtx (GET_MODE (temp));
|
||
|
||
pat = GEN_FCN (icode) (temp, op0);
|
||
|
||
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
|
||
add_equal_note (pat, temp, code, op0, NULL_RTX);
|
||
|
||
emit_insn (pat);
|
||
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
}
|
||
|
||
/* Emit code to perform a series of operations on a multi-word quantity, one
|
||
word at a time.
|
||
|
||
Such a block is preceded by a CLOBBER of the output, consists of multiple
|
||
insns, each setting one word of the output, and followed by a SET copying
|
||
the output to itself.
|
||
|
||
Each of the insns setting words of the output receives a REG_NO_CONFLICT
|
||
note indicating that it doesn't conflict with the (also multi-word)
|
||
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
|
||
notes.
|
||
|
||
INSNS is a block of code generated to perform the operation, not including
|
||
the CLOBBER and final copy. All insns that compute intermediate values
|
||
are first emitted, followed by the block as described above.
|
||
|
||
TARGET, OP0, and OP1 are the output and inputs of the operations,
|
||
respectively. OP1 may be zero for a unary operation.
|
||
|
||
EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
|
||
on the last insn.
|
||
|
||
If TARGET is not a register, INSNS is simply emitted with no special
|
||
processing. Likewise if anything in INSNS is not an INSN or if
|
||
there is a libcall block inside INSNS.
|
||
|
||
The final insn emitted is returned. */
|
||
|
||
rtx
|
||
emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
|
||
{
|
||
rtx prev, next, first, last, insn;
|
||
|
||
if (!REG_P (target) || reload_in_progress)
|
||
return emit_insn (insns);
|
||
else
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (!NONJUMP_INSN_P (insn)
|
||
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
||
return emit_insn (insns);
|
||
|
||
/* First emit all insns that do not store into words of the output and remove
|
||
these from the list. */
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = 0, note;
|
||
int i;
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
/* Some ports (cris) create a libcall regions at their own. We must
|
||
avoid any potential nesting of LIBCALLs. */
|
||
if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
|
||
remove_note (insn, note);
|
||
if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
|
||
remove_note (insn, note);
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
set = PATTERN (insn);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
|
||
{
|
||
set = XVECEXP (PATTERN (insn), 0, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (set == 0)
|
||
abort ();
|
||
|
||
if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Now write the CLOBBER of the output, followed by the setting of each
|
||
of the words, followed by the final copy. */
|
||
if (target != op0 && target != op1)
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
add_insn (insn);
|
||
|
||
if (op1 && REG_P (op1))
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
|
||
REG_NOTES (insn));
|
||
|
||
if (op0 && REG_P (op0))
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
last = emit_move_insn (target, target);
|
||
if (equiv)
|
||
set_unique_reg_note (last, REG_EQUAL, equiv);
|
||
}
|
||
else
|
||
{
|
||
last = get_last_insn ();
|
||
|
||
/* Remove any existing REG_EQUAL note from "last", or else it will
|
||
be mistaken for a note referring to the full contents of the
|
||
alleged libcall value when found together with the REG_RETVAL
|
||
note added below. An existing note can come from an insn
|
||
expansion at "last". */
|
||
remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
|
||
}
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
|
||
|
||
return last;
|
||
}
|
||
|
||
/* Emit code to make a call to a constant function or a library call.
|
||
|
||
INSNS is a list containing all insns emitted in the call.
|
||
These insns leave the result in RESULT. Our block is to copy RESULT
|
||
to TARGET, which is logically equivalent to EQUIV.
|
||
|
||
We first emit any insns that set a pseudo on the assumption that these are
|
||
loading constants into registers; doing so allows them to be safely cse'ed
|
||
between blocks. Then we emit all the other insns in the block, followed by
|
||
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
|
||
note with an operand of EQUIV.
|
||
|
||
Moving assignments to pseudos outside of the block is done to improve
|
||
the generated code, but is not required to generate correct code,
|
||
hence being unable to move an assignment is not grounds for not making
|
||
a libcall block. There are two reasons why it is safe to leave these
|
||
insns inside the block: First, we know that these pseudos cannot be
|
||
used in generated RTL outside the block since they are created for
|
||
temporary purposes within the block. Second, CSE will not record the
|
||
values of anything set inside a libcall block, so we know they must
|
||
be dead at the end of the block.
|
||
|
||
Except for the first group of insns (the ones setting pseudos), the
|
||
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
|
||
|
||
void
|
||
emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
|
||
{
|
||
rtx final_dest = target;
|
||
rtx prev, next, first, last, insn;
|
||
|
||
/* If this is a reg with REG_USERVAR_P set, then it could possibly turn
|
||
into a MEM later. Protect the libcall block from this change. */
|
||
if (! REG_P (target) || REG_USERVAR_P (target))
|
||
target = gen_reg_rtx (GET_MODE (target));
|
||
|
||
/* If we're using non-call exceptions, a libcall corresponding to an
|
||
operation that may trap may also trap. */
|
||
if (flag_non_call_exceptions && may_trap_p (equiv))
|
||
{
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (CALL_P (insn))
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
||
|
||
if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
else
|
||
/* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
|
||
reg note to indicate that this call cannot throw or execute a nonlocal
|
||
goto (unless there is already a REG_EH_REGION note, in which case
|
||
we update it). */
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (CALL_P (insn))
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
||
|
||
if (note != 0)
|
||
XEXP (note, 0) = constm1_rtx;
|
||
else
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
/* First emit all insns that set pseudos. Remove them from the list as
|
||
we go. Avoid insns that set pseudos which were referenced in previous
|
||
insns. These can be generated by move_by_pieces, for example,
|
||
to update an address. Similarly, avoid insns that reference things
|
||
set in previous insns. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = single_set (insn);
|
||
rtx note;
|
||
|
||
/* Some ports (cris) create a libcall regions at their own. We must
|
||
avoid any potential nesting of LIBCALLs. */
|
||
if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
|
||
remove_note (insn, note);
|
||
if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
|
||
remove_note (insn, note);
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (set != 0 && REG_P (SET_DEST (set))
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
|
||
&& (insn == insns
|
||
|| ((! INSN_P(insns)
|
||
|| ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
|
||
&& ! reg_used_between_p (SET_DEST (set), insns, insn)
|
||
&& ! modified_in_p (SET_SRC (set), insns)
|
||
&& ! modified_between_p (SET_SRC (set), insns, insn))))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
|
||
/* Some ports use a loop to copy large arguments onto the stack.
|
||
Don't move anything outside such a loop. */
|
||
if (LABEL_P (insn))
|
||
break;
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Write the remaining insns followed by the final copy. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
|
||
last = emit_move_insn (target, result);
|
||
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
|
||
!= CODE_FOR_nothing)
|
||
set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
|
||
else
|
||
{
|
||
/* Remove any existing REG_EQUAL note from "last", or else it will
|
||
be mistaken for a note referring to the full contents of the
|
||
libcall value when found together with the REG_RETVAL note added
|
||
below. An existing note can come from an insn expansion at
|
||
"last". */
|
||
remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
|
||
}
|
||
|
||
if (final_dest != target)
|
||
emit_move_insn (final_dest, target);
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
if (!flag_non_call_exceptions || !may_trap_p (equiv))
|
||
{
|
||
/* We can't attach the REG_LIBCALL and REG_RETVAL notes
|
||
when the encapsulated region would not be in one basic block,
|
||
i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
|
||
*/
|
||
bool attach_libcall_retval_notes = true;
|
||
next = NEXT_INSN (last);
|
||
for (insn = first; insn != next; insn = NEXT_INSN (insn))
|
||
if (control_flow_insn_p (insn))
|
||
{
|
||
attach_libcall_retval_notes = false;
|
||
break;
|
||
}
|
||
|
||
if (attach_libcall_retval_notes)
|
||
{
|
||
REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
|
||
REG_NOTES (last));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
|
||
PURPOSE describes how this comparison will be used. CODE is the rtx
|
||
comparison code we will be using.
|
||
|
||
??? Actually, CODE is slightly weaker than that. A target is still
|
||
required to implement all of the normal bcc operations, but not
|
||
required to implement all (or any) of the unordered bcc operations. */
|
||
|
||
int
|
||
can_compare_p (enum rtx_code code, enum machine_mode mode,
|
||
enum can_compare_purpose purpose)
|
||
{
|
||
do
|
||
{
|
||
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
if (purpose == ccp_jump)
|
||
return bcc_gen_fctn[(int) code] != NULL;
|
||
else if (purpose == ccp_store_flag)
|
||
return setcc_gen_code[(int) code] != CODE_FOR_nothing;
|
||
else
|
||
/* There's only one cmov entry point, and it's allowed to fail. */
|
||
return 1;
|
||
}
|
||
if (purpose == ccp_jump
|
||
&& cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
return 1;
|
||
if (purpose == ccp_cmov
|
||
&& cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
return 1;
|
||
if (purpose == ccp_store_flag
|
||
&& cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
return 1;
|
||
mode = GET_MODE_WIDER_MODE (mode);
|
||
}
|
||
while (mode != VOIDmode);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function is called when we are going to emit a compare instruction that
|
||
compares the values found in *PX and *PY, using the rtl operator COMPARISON.
|
||
|
||
*PMODE is the mode of the inputs (in case they are const_int).
|
||
*PUNSIGNEDP nonzero says that the operands are unsigned;
|
||
this matters if they need to be widened.
|
||
|
||
If they have mode BLKmode, then SIZE specifies the size of both operands.
|
||
|
||
This function performs all the setup necessary so that the caller only has
|
||
to emit a single comparison insn. This setup can involve doing a BLKmode
|
||
comparison or emitting a library call to perform the comparison if no insn
|
||
is available to handle it.
|
||
The values which are passed in through pointers can be modified; the caller
|
||
should perform the comparison on the modified values. */
|
||
|
||
static void
|
||
prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
|
||
enum machine_mode *pmode, int *punsignedp,
|
||
enum can_compare_purpose purpose)
|
||
{
|
||
enum machine_mode mode = *pmode;
|
||
rtx x = *px, y = *py;
|
||
int unsignedp = *punsignedp;
|
||
enum mode_class class;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
/* They could both be VOIDmode if both args are immediate constants,
|
||
but we should fold that at an earlier stage.
|
||
With no special code here, this will call abort,
|
||
reminding the programmer to implement such folding. */
|
||
|
||
if (mode != BLKmode && flag_force_mem)
|
||
{
|
||
/* Load duplicate non-volatile operands once. */
|
||
if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
|
||
{
|
||
x = force_not_mem (x);
|
||
y = x;
|
||
}
|
||
else
|
||
{
|
||
x = force_not_mem (x);
|
||
y = force_not_mem (y);
|
||
}
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and we are optimizing,
|
||
force expensive constants into a register. */
|
||
if (CONSTANT_P (x) && optimize
|
||
&& rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
|
||
x = force_reg (mode, x);
|
||
|
||
if (CONSTANT_P (y) && optimize
|
||
&& rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
|
||
y = force_reg (mode, y);
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Abort if we have a non-canonical comparison. The RTL documentation
|
||
states that canonical comparisons are required only for targets which
|
||
have cc0. */
|
||
if (CONSTANT_P (x) && ! CONSTANT_P (y))
|
||
abort ();
|
||
#endif
|
||
|
||
/* Don't let both operands fail to indicate the mode. */
|
||
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
|
||
x = force_reg (mode, x);
|
||
|
||
/* Handle all BLKmode compares. */
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
enum machine_mode cmp_mode, result_mode;
|
||
enum insn_code cmp_code;
|
||
tree length_type;
|
||
rtx libfunc;
|
||
rtx result;
|
||
rtx opalign
|
||
= GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
|
||
|
||
if (size == 0)
|
||
abort ();
|
||
|
||
/* Try to use a memory block compare insn - either cmpstr
|
||
or cmpmem will do. */
|
||
for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
cmp_mode != VOIDmode;
|
||
cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
|
||
{
|
||
cmp_code = cmpmem_optab[cmp_mode];
|
||
if (cmp_code == CODE_FOR_nothing)
|
||
cmp_code = cmpstr_optab[cmp_mode];
|
||
if (cmp_code == CODE_FOR_nothing)
|
||
continue;
|
||
|
||
/* Must make sure the size fits the insn's mode. */
|
||
if ((GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
|
||
|| (GET_MODE_BITSIZE (GET_MODE (size))
|
||
> GET_MODE_BITSIZE (cmp_mode)))
|
||
continue;
|
||
|
||
result_mode = insn_data[cmp_code].operand[0].mode;
|
||
result = gen_reg_rtx (result_mode);
|
||
size = convert_to_mode (cmp_mode, size, 1);
|
||
emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
|
||
|
||
*px = result;
|
||
*py = const0_rtx;
|
||
*pmode = result_mode;
|
||
return;
|
||
}
|
||
|
||
/* Otherwise call a library function, memcmp. */
|
||
libfunc = memcmp_libfunc;
|
||
length_type = sizetype;
|
||
result_mode = TYPE_MODE (integer_type_node);
|
||
cmp_mode = TYPE_MODE (length_type);
|
||
size = convert_to_mode (TYPE_MODE (length_type), size,
|
||
TYPE_UNSIGNED (length_type));
|
||
|
||
result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
|
||
result_mode, 3,
|
||
XEXP (x, 0), Pmode,
|
||
XEXP (y, 0), Pmode,
|
||
size, cmp_mode);
|
||
*px = result;
|
||
*py = const0_rtx;
|
||
*pmode = result_mode;
|
||
return;
|
||
}
|
||
|
||
/* Don't allow operands to the compare to trap, as that can put the
|
||
compare and branch in different basic blocks. */
|
||
if (flag_non_call_exceptions)
|
||
{
|
||
if (may_trap_p (x))
|
||
x = force_reg (mode, x);
|
||
if (may_trap_p (y))
|
||
y = force_reg (mode, y);
|
||
}
|
||
|
||
*px = x;
|
||
*py = y;
|
||
if (can_compare_p (*pcomparison, mode, purpose))
|
||
return;
|
||
|
||
/* Handle a lib call just for the mode we are using. */
|
||
|
||
if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
|
||
{
|
||
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
|
||
rtx result;
|
||
|
||
/* If we want unsigned, and this mode has a distinct unsigned
|
||
comparison routine, use that. */
|
||
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
|
||
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
|
||
|
||
result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
|
||
word_mode, 2, x, mode, y, mode);
|
||
|
||
*px = result;
|
||
*pmode = word_mode;
|
||
if (TARGET_LIB_INT_CMP_BIASED)
|
||
/* Integer comparison returns a result that must be compared
|
||
against 1, so that even if we do an unsigned compare
|
||
afterward, there is still a value that can represent the
|
||
result "less than". */
|
||
*py = const1_rtx;
|
||
else
|
||
{
|
||
*py = const0_rtx;
|
||
*punsignedp = 1;
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (class == MODE_FLOAT)
|
||
prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
|
||
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Before emitting an insn with code ICODE, make sure that X, which is going
|
||
to be used for operand OPNUM of the insn, is converted from mode MODE to
|
||
WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
|
||
that it is accepted by the operand predicate. Return the new value. */
|
||
|
||
static rtx
|
||
prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
|
||
enum machine_mode wider_mode, int unsignedp)
|
||
{
|
||
if (mode != wider_mode)
|
||
x = convert_modes (wider_mode, mode, x, unsignedp);
|
||
|
||
if (! (*insn_data[icode].operand[opnum].predicate)
|
||
(x, insn_data[icode].operand[opnum].mode))
|
||
{
|
||
if (no_new_pseudos)
|
||
return NULL_RTX;
|
||
x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
|
||
we can do the comparison.
|
||
The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
|
||
be NULL_RTX which indicates that only a comparison is to be generated. */
|
||
|
||
static void
|
||
emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
|
||
enum rtx_code comparison, int unsignedp, rtx label)
|
||
{
|
||
rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
enum machine_mode wider_mode = mode;
|
||
|
||
/* Try combined insns first. */
|
||
do
|
||
{
|
||
enum insn_code icode;
|
||
PUT_MODE (test, wider_mode);
|
||
|
||
if (label)
|
||
{
|
||
icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
|
||
|
||
if (icode != CODE_FOR_nothing
|
||
&& (*insn_data[icode].operand[0].predicate) (test, wider_mode))
|
||
{
|
||
x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
|
||
y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
|
||
emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Handle some compares against zero. */
|
||
icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
|
||
if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
|
||
{
|
||
x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
|
||
emit_insn (GEN_FCN (icode) (x));
|
||
if (label)
|
||
emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
|
||
return;
|
||
}
|
||
|
||
/* Handle compares for which there is a directly suitable insn. */
|
||
|
||
icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
|
||
y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
|
||
emit_insn (GEN_FCN (icode) (x, y));
|
||
if (label)
|
||
emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
|
||
return;
|
||
}
|
||
|
||
if (class != MODE_INT && class != MODE_FLOAT
|
||
&& class != MODE_COMPLEX_FLOAT)
|
||
break;
|
||
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode);
|
||
}
|
||
while (wider_mode != VOIDmode);
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Generate code to compare X with Y so that the condition codes are
|
||
set and to jump to LABEL if the condition is true. If X is a
|
||
constant and Y is not a constant, then the comparison is swapped to
|
||
ensure that the comparison RTL has the canonical form.
|
||
|
||
UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
|
||
need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
|
||
the proper branch condition code.
|
||
|
||
If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
|
||
|
||
MODE is the mode of the inputs (in case they are const_int).
|
||
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
|
||
be passed unchanged to emit_cmp_insn, then potentially converted into an
|
||
unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
|
||
|
||
void
|
||
emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
||
enum machine_mode mode, int unsignedp, rtx label)
|
||
{
|
||
rtx op0 = x, op1 = y;
|
||
|
||
/* Swap operands and condition to ensure canonical RTL. */
|
||
if (swap_commutative_operands_p (x, y))
|
||
{
|
||
/* If we're not emitting a branch, this means some caller
|
||
is out of sync. */
|
||
if (! label)
|
||
abort ();
|
||
|
||
op0 = y, op1 = x;
|
||
comparison = swap_condition (comparison);
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If OP0 is still a constant, then both X and Y must be constants. Force
|
||
X into a register to avoid aborting in emit_cmp_insn due to non-canonical
|
||
RTL. */
|
||
if (CONSTANT_P (op0))
|
||
op0 = force_reg (mode, op0);
|
||
#endif
|
||
|
||
if (unsignedp)
|
||
comparison = unsigned_condition (comparison);
|
||
|
||
prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
|
||
ccp_jump);
|
||
emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
|
||
}
|
||
|
||
/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
|
||
|
||
void
|
||
emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
||
enum machine_mode mode, int unsignedp)
|
||
{
|
||
emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
|
||
}
|
||
|
||
/* Emit a library call comparison between floating point X and Y.
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
|
||
|
||
static void
|
||
prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
|
||
enum machine_mode *pmode, int *punsignedp)
|
||
{
|
||
enum rtx_code comparison = *pcomparison;
|
||
enum rtx_code swapped = swap_condition (comparison);
|
||
enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
|
||
rtx x = *px;
|
||
rtx y = *py;
|
||
enum machine_mode orig_mode = GET_MODE (x);
|
||
enum machine_mode mode;
|
||
rtx value, target, insns, equiv;
|
||
rtx libfunc = 0;
|
||
bool reversed_p = false;
|
||
|
||
for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
|
||
break;
|
||
|
||
if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
|
||
{
|
||
rtx tmp;
|
||
tmp = x; x = y; y = tmp;
|
||
comparison = swapped;
|
||
break;
|
||
}
|
||
|
||
if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
|
||
&& FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
|
||
{
|
||
comparison = reversed;
|
||
reversed_p = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
abort ();
|
||
|
||
if (mode != orig_mode)
|
||
{
|
||
x = convert_to_mode (mode, x, 0);
|
||
y = convert_to_mode (mode, y, 0);
|
||
}
|
||
|
||
/* Attach a REG_EQUAL note describing the semantics of the libcall to
|
||
the RTL. The allows the RTL optimizers to delete the libcall if the
|
||
condition can be determined at compile-time. */
|
||
if (comparison == UNORDERED)
|
||
{
|
||
rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
|
||
equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
|
||
equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
|
||
temp, const_true_rtx, equiv);
|
||
}
|
||
else
|
||
{
|
||
equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
|
||
if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
||
{
|
||
rtx true_rtx, false_rtx;
|
||
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
true_rtx = const0_rtx;
|
||
false_rtx = const_true_rtx;
|
||
break;
|
||
|
||
case NE:
|
||
true_rtx = const_true_rtx;
|
||
false_rtx = const0_rtx;
|
||
break;
|
||
|
||
case GT:
|
||
true_rtx = const1_rtx;
|
||
false_rtx = const0_rtx;
|
||
break;
|
||
|
||
case GE:
|
||
true_rtx = const0_rtx;
|
||
false_rtx = constm1_rtx;
|
||
break;
|
||
|
||
case LT:
|
||
true_rtx = constm1_rtx;
|
||
false_rtx = const0_rtx;
|
||
break;
|
||
|
||
case LE:
|
||
true_rtx = const0_rtx;
|
||
false_rtx = const1_rtx;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
|
||
equiv, true_rtx, false_rtx);
|
||
}
|
||
}
|
||
|
||
start_sequence ();
|
||
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
||
word_mode, 2, x, mode, y, mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (word_mode);
|
||
emit_libcall_block (insns, target, value, equiv);
|
||
|
||
if (comparison == UNORDERED
|
||
|| FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
||
comparison = reversed_p ? EQ : NE;
|
||
|
||
*px = target;
|
||
*py = const0_rtx;
|
||
*pmode = word_mode;
|
||
*pcomparison = comparison;
|
||
*punsignedp = 0;
|
||
}
|
||
|
||
/* Generate code to indirectly jump to a location given in the rtx LOC. */
|
||
|
||
void
|
||
emit_indirect_jump (rtx loc)
|
||
{
|
||
if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
|
||
(loc, Pmode)))
|
||
loc = copy_to_mode_reg (Pmode, loc);
|
||
|
||
emit_jump_insn (gen_indirect_jump (loc));
|
||
emit_barrier ();
|
||
}
|
||
|
||
#ifdef HAVE_conditional_move
|
||
|
||
/* Emit a conditional move instruction if the machine supports one for that
|
||
condition and machine mode.
|
||
|
||
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
||
the mode to use should they be constants. If it is VOIDmode, they cannot
|
||
both be constants.
|
||
|
||
OP2 should be stored in TARGET if the comparison is true, otherwise OP3
|
||
should be stored there. MODE is the mode to use should they be constants.
|
||
If it is VOIDmode, they cannot both be constants.
|
||
|
||
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
||
is not supported. */
|
||
|
||
rtx
|
||
emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
||
enum machine_mode cmode, rtx op2, rtx op3,
|
||
enum machine_mode mode, int unsignedp)
|
||
{
|
||
rtx tem, subtarget, comparison, insn;
|
||
enum insn_code icode;
|
||
enum rtx_code reversed;
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* get_condition will prefer to generate LT and GT even if the old
|
||
comparison was against zero, so undo that canonicalization here since
|
||
comparisons against zero are cheaper. */
|
||
if (code == LT && op1 == const1_rtx)
|
||
code = LE, op1 = const0_rtx;
|
||
else if (code == GT && op1 == constm1_rtx)
|
||
code = GE, op1 = const0_rtx;
|
||
|
||
if (cmode == VOIDmode)
|
||
cmode = GET_MODE (op0);
|
||
|
||
if (swap_commutative_operands_p (op2, op3)
|
||
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
||
!= UNKNOWN))
|
||
{
|
||
tem = op2;
|
||
op2 = op3;
|
||
op3 = tem;
|
||
code = reversed;
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op2);
|
||
|
||
icode = movcc_gen_code[mode];
|
||
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op2 = force_not_mem (op2);
|
||
op3 = force_not_mem (op3);
|
||
}
|
||
|
||
if (!target)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
subtarget = target;
|
||
|
||
/* If the insn doesn't accept these operands, put them in pseudos. */
|
||
|
||
if (! (*insn_data[icode].operand[0].predicate)
|
||
(subtarget, insn_data[icode].operand[0].mode))
|
||
subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
|
||
|
||
if (! (*insn_data[icode].operand[2].predicate)
|
||
(op2, insn_data[icode].operand[2].mode))
|
||
op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
|
||
|
||
if (! (*insn_data[icode].operand[3].predicate)
|
||
(op3, insn_data[icode].operand[3].mode))
|
||
op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
|
||
|
||
/* Everything should now be in the suitable form, so emit the compare insn
|
||
and then the conditional move. */
|
||
|
||
comparison
|
||
= compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
|
||
|
||
/* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
|
||
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
||
return NULL and let the caller figure out how best to deal with this
|
||
situation. */
|
||
if (GET_CODE (comparison) != code)
|
||
return NULL_RTX;
|
||
|
||
insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
|
||
|
||
/* If that failed, then give up. */
|
||
if (insn == 0)
|
||
return 0;
|
||
|
||
emit_insn (insn);
|
||
|
||
if (subtarget != target)
|
||
convert_move (target, subtarget, 0);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Return nonzero if a conditional move of mode MODE is supported.
|
||
|
||
This function is for combine so it can tell whether an insn that looks
|
||
like a conditional move is actually supported by the hardware. If we
|
||
guess wrong we lose a bit on optimization, but that's it. */
|
||
/* ??? sparc64 supports conditionally moving integers values based on fp
|
||
comparisons, and vice versa. How do we handle them? */
|
||
|
||
int
|
||
can_conditionally_move_p (enum machine_mode mode)
|
||
{
|
||
if (movcc_gen_code[mode] != CODE_FOR_nothing)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
#endif /* HAVE_conditional_move */
|
||
|
||
/* Emit a conditional addition instruction if the machine supports one for that
|
||
condition and machine mode.
|
||
|
||
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
||
the mode to use should they be constants. If it is VOIDmode, they cannot
|
||
both be constants.
|
||
|
||
OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
|
||
should be stored there. MODE is the mode to use should they be constants.
|
||
If it is VOIDmode, they cannot both be constants.
|
||
|
||
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
||
is not supported. */
|
||
|
||
rtx
|
||
emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
||
enum machine_mode cmode, rtx op2, rtx op3,
|
||
enum machine_mode mode, int unsignedp)
|
||
{
|
||
rtx tem, subtarget, comparison, insn;
|
||
enum insn_code icode;
|
||
enum rtx_code reversed;
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* get_condition will prefer to generate LT and GT even if the old
|
||
comparison was against zero, so undo that canonicalization here since
|
||
comparisons against zero are cheaper. */
|
||
if (code == LT && op1 == const1_rtx)
|
||
code = LE, op1 = const0_rtx;
|
||
else if (code == GT && op1 == constm1_rtx)
|
||
code = GE, op1 = const0_rtx;
|
||
|
||
if (cmode == VOIDmode)
|
||
cmode = GET_MODE (op0);
|
||
|
||
if (swap_commutative_operands_p (op2, op3)
|
||
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
||
!= UNKNOWN))
|
||
{
|
||
tem = op2;
|
||
op2 = op3;
|
||
op3 = tem;
|
||
code = reversed;
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op2);
|
||
|
||
icode = addcc_optab->handlers[(int) mode].insn_code;
|
||
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op2 = force_not_mem (op2);
|
||
op3 = force_not_mem (op3);
|
||
}
|
||
|
||
if (!target)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* If the insn doesn't accept these operands, put them in pseudos. */
|
||
|
||
if (! (*insn_data[icode].operand[0].predicate)
|
||
(target, insn_data[icode].operand[0].mode))
|
||
subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
|
||
else
|
||
subtarget = target;
|
||
|
||
if (! (*insn_data[icode].operand[2].predicate)
|
||
(op2, insn_data[icode].operand[2].mode))
|
||
op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
|
||
|
||
if (! (*insn_data[icode].operand[3].predicate)
|
||
(op3, insn_data[icode].operand[3].mode))
|
||
op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
|
||
|
||
/* Everything should now be in the suitable form, so emit the compare insn
|
||
and then the conditional move. */
|
||
|
||
comparison
|
||
= compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
|
||
|
||
/* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
|
||
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
||
return NULL and let the caller figure out how best to deal with this
|
||
situation. */
|
||
if (GET_CODE (comparison) != code)
|
||
return NULL_RTX;
|
||
|
||
insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
|
||
|
||
/* If that failed, then give up. */
|
||
if (insn == 0)
|
||
return 0;
|
||
|
||
emit_insn (insn);
|
||
|
||
if (subtarget != target)
|
||
convert_move (target, subtarget, 0);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* These functions attempt to generate an insn body, rather than
|
||
emitting the insn, but if the gen function already emits them, we
|
||
make no attempt to turn them back into naked patterns. */
|
||
|
||
/* Generate and return an insn body to add Y to X. */
|
||
|
||
rtx
|
||
gen_add2_insn (rtx x, rtx y)
|
||
{
|
||
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! ((*insn_data[icode].operand[0].predicate)
|
||
(x, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(x, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(y, insn_data[icode].operand[2].mode)))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
/* Generate and return an insn body to add r1 and c,
|
||
storing the result in r0. */
|
||
rtx
|
||
gen_add3_insn (rtx r0, rtx r1, rtx c)
|
||
{
|
||
int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
|
||
|
||
if (icode == CODE_FOR_nothing
|
||
|| ! ((*insn_data[icode].operand[0].predicate)
|
||
(r0, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(r1, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(c, insn_data[icode].operand[2].mode)))
|
||
return NULL_RTX;
|
||
|
||
return (GEN_FCN (icode) (r0, r1, c));
|
||
}
|
||
|
||
int
|
||
have_add2_insn (rtx x, rtx y)
|
||
{
|
||
int icode;
|
||
|
||
if (GET_MODE (x) == VOIDmode)
|
||
abort ();
|
||
|
||
icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
if (! ((*insn_data[icode].operand[0].predicate)
|
||
(x, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(x, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(y, insn_data[icode].operand[2].mode)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Generate and return an insn body to subtract Y from X. */
|
||
|
||
rtx
|
||
gen_sub2_insn (rtx x, rtx y)
|
||
{
|
||
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! ((*insn_data[icode].operand[0].predicate)
|
||
(x, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(x, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(y, insn_data[icode].operand[2].mode)))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
/* Generate and return an insn body to subtract r1 and c,
|
||
storing the result in r0. */
|
||
rtx
|
||
gen_sub3_insn (rtx r0, rtx r1, rtx c)
|
||
{
|
||
int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
|
||
|
||
if (icode == CODE_FOR_nothing
|
||
|| ! ((*insn_data[icode].operand[0].predicate)
|
||
(r0, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(r1, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(c, insn_data[icode].operand[2].mode)))
|
||
return NULL_RTX;
|
||
|
||
return (GEN_FCN (icode) (r0, r1, c));
|
||
}
|
||
|
||
int
|
||
have_sub2_insn (rtx x, rtx y)
|
||
{
|
||
int icode;
|
||
|
||
if (GET_MODE (x) == VOIDmode)
|
||
abort ();
|
||
|
||
icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
if (! ((*insn_data[icode].operand[0].predicate)
|
||
(x, insn_data[icode].operand[0].mode))
|
||
|| ! ((*insn_data[icode].operand[1].predicate)
|
||
(x, insn_data[icode].operand[1].mode))
|
||
|| ! ((*insn_data[icode].operand[2].predicate)
|
||
(y, insn_data[icode].operand[2].mode)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Generate the body of an instruction to copy Y into X.
|
||
It may be a list of insns, if one insn isn't enough. */
|
||
|
||
rtx
|
||
gen_move_insn (rtx x, rtx y)
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
emit_move_insn_1 (x, y);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
return seq;
|
||
}
|
||
|
||
/* Return the insn code used to extend FROM_MODE to TO_MODE.
|
||
UNSIGNEDP specifies zero-extension instead of sign-extension. If
|
||
no such operation exists, CODE_FOR_nothing will be returned. */
|
||
|
||
enum insn_code
|
||
can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
|
||
int unsignedp)
|
||
{
|
||
convert_optab tab;
|
||
#ifdef HAVE_ptr_extend
|
||
if (unsignedp < 0)
|
||
return CODE_FOR_ptr_extend;
|
||
#endif
|
||
|
||
tab = unsignedp ? zext_optab : sext_optab;
|
||
return tab->handlers[to_mode][from_mode].insn_code;
|
||
}
|
||
|
||
/* Generate the body of an insn to extend Y (with mode MFROM)
|
||
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
|
||
|
||
rtx
|
||
gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
|
||
enum machine_mode mfrom, int unsignedp)
|
||
{
|
||
enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
|
||
return GEN_FCN (icode) (x, y);
|
||
}
|
||
|
||
/* can_fix_p and can_float_p say whether the target machine
|
||
can directly convert a given fixed point type to
|
||
a given floating point type, or vice versa.
|
||
The returned value is the CODE_FOR_... value to use,
|
||
or CODE_FOR_nothing if these modes cannot be directly converted.
|
||
|
||
*TRUNCP_PTR is set to 1 if it is necessary to output
|
||
an explicit FTRUNC insn before the fix insn; otherwise 0. */
|
||
|
||
static enum insn_code
|
||
can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
|
||
int unsignedp, int *truncp_ptr)
|
||
{
|
||
convert_optab tab;
|
||
enum insn_code icode;
|
||
|
||
tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
|
||
icode = tab->handlers[fixmode][fltmode].insn_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
*truncp_ptr = 0;
|
||
return icode;
|
||
}
|
||
|
||
/* FIXME: This requires a port to define both FIX and FTRUNC pattern
|
||
for this to work. We need to rework the fix* and ftrunc* patterns
|
||
and documentation. */
|
||
tab = unsignedp ? ufix_optab : sfix_optab;
|
||
icode = tab->handlers[fixmode][fltmode].insn_code;
|
||
if (icode != CODE_FOR_nothing
|
||
&& ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
*truncp_ptr = 1;
|
||
return icode;
|
||
}
|
||
|
||
*truncp_ptr = 0;
|
||
return CODE_FOR_nothing;
|
||
}
|
||
|
||
static enum insn_code
|
||
can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
|
||
int unsignedp)
|
||
{
|
||
convert_optab tab;
|
||
|
||
tab = unsignedp ? ufloat_optab : sfloat_optab;
|
||
return tab->handlers[fltmode][fixmode].insn_code;
|
||
}
|
||
|
||
/* Generate code to convert FROM to floating point
|
||
and store in TO. FROM must be fixed point and not VOIDmode.
|
||
UNSIGNEDP nonzero means regard FROM as unsigned.
|
||
Normally this is done by correcting the final value
|
||
if it is negative. */
|
||
|
||
void
|
||
expand_float (rtx to, rtx from, int unsignedp)
|
||
{
|
||
enum insn_code icode;
|
||
rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
|
||
/* Crash now, because we won't be able to decide which mode to use. */
|
||
if (GET_MODE (from) == VOIDmode)
|
||
abort ();
|
||
|
||
/* Look for an insn to do the conversion. Do it in the specified
|
||
modes if possible; otherwise convert either input, output or both to
|
||
wider mode. If the integer mode is wider than the mode of FROM,
|
||
we can do the conversion signed even if the input is unsigned. */
|
||
|
||
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
for (imode = GET_MODE (from); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
if (fmode != GET_MODE (to)
|
||
&& significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
|
||
continue;
|
||
|
||
icode = can_float_p (fmode, imode, unsignedp);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
|
||
icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (imode != GET_MODE (from))
|
||
from = convert_to_mode (imode, from, unsignedp);
|
||
|
||
if (fmode != GET_MODE (to))
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
|
||
|
||
if (target != to)
|
||
convert_move (to, target, 0);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Unsigned integer, and no way to convert directly.
|
||
Convert as signed, then conditionally adjust the result. */
|
||
if (unsignedp)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
rtx temp;
|
||
REAL_VALUE_TYPE offset;
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
/* Look for a usable floating mode FMODE wider than the source and at
|
||
least as wide as the target. Using FMODE will avoid rounding woes
|
||
with unsigned values greater than the signed maximum value. */
|
||
|
||
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
|
||
&& can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
|
||
break;
|
||
|
||
if (fmode == VOIDmode)
|
||
{
|
||
/* There is no such mode. Pretend the target is wide enough. */
|
||
fmode = GET_MODE (to);
|
||
|
||
/* Avoid double-rounding when TO is narrower than FROM. */
|
||
if ((significand_size (fmode) + 1)
|
||
< GET_MODE_BITSIZE (GET_MODE (from)))
|
||
{
|
||
rtx temp1;
|
||
rtx neglabel = gen_label_rtx ();
|
||
|
||
/* Don't use TARGET if it isn't a register, is a hard register,
|
||
or is the wrong mode. */
|
||
if (!REG_P (target)
|
||
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|
||
|| GET_MODE (target) != fmode)
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
imode = GET_MODE (from);
|
||
do_pending_stack_adjust ();
|
||
|
||
/* Test whether the sign bit is set. */
|
||
emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
|
||
0, neglabel);
|
||
|
||
/* The sign bit is not set. Convert as signed. */
|
||
expand_float (target, from, 0);
|
||
emit_jump_insn (gen_jump (label));
|
||
emit_barrier ();
|
||
|
||
/* The sign bit is set.
|
||
Convert to a usable (positive signed) value by shifting right
|
||
one bit, while remembering if a nonzero bit was shifted
|
||
out; i.e., compute (from & 1) | (from >> 1). */
|
||
|
||
emit_label (neglabel);
|
||
temp = expand_binop (imode, and_optab, from, const1_rtx,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
|
||
NULL_RTX, 1);
|
||
temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
expand_float (target, temp, 0);
|
||
|
||
/* Multiply by 2 to undo the shift above. */
|
||
temp = expand_binop (fmode, add_optab, target, target,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
/* If we are about to do some arithmetic to correct for an
|
||
unsigned operand, do it in a pseudo-register. */
|
||
|
||
if (GET_MODE (to) != fmode
|
||
|| !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
/* Convert as signed integer to floating. */
|
||
expand_float (target, from, 0);
|
||
|
||
/* If FROM is negative (and therefore TO is negative),
|
||
correct its value by 2**bitwidth. */
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
|
||
0, label);
|
||
|
||
|
||
real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
|
||
temp = expand_binop (fmode, add_optab, target,
|
||
CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
goto done;
|
||
}
|
||
|
||
/* No hardware instruction available; call a library routine. */
|
||
{
|
||
rtx libfunc;
|
||
rtx insns;
|
||
rtx value;
|
||
convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
|
||
from = convert_to_mode (SImode, from, unsignedp);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
|
||
if (!libfunc)
|
||
abort ();
|
||
|
||
start_sequence ();
|
||
|
||
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
||
GET_MODE (to), 1, from,
|
||
GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx_FLOAT (GET_MODE (to), from));
|
||
}
|
||
|
||
done:
|
||
|
||
/* Copy result to requested destination
|
||
if we have been computing in a temp location. */
|
||
|
||
if (target != to)
|
||
{
|
||
if (GET_MODE (target) == GET_MODE (to))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
}
|
||
|
||
/* Generate code to convert FROM to fixed point and store in TO. FROM
|
||
must be floating point. */
|
||
|
||
void
|
||
expand_fix (rtx to, rtx from, int unsignedp)
|
||
{
|
||
enum insn_code icode;
|
||
rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
int must_trunc = 0;
|
||
|
||
/* We first try to find a pair of modes, one real and one integer, at
|
||
least as wide as FROM and TO, respectively, in which we can open-code
|
||
this conversion. If the integer mode is wider than the mode of TO,
|
||
we can do the conversion either signed or unsigned. */
|
||
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
for (imode = GET_MODE (to); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
|
||
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
|
||
if (must_trunc)
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (from));
|
||
from = expand_unop (GET_MODE (from), ftrunc_optab, from,
|
||
temp, 0);
|
||
}
|
||
|
||
if (imode != GET_MODE (to))
|
||
target = gen_reg_rtx (imode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FIX : FIX);
|
||
if (target != to)
|
||
convert_move (to, target, unsignedp);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* For an unsigned conversion, there is one more way to do it.
|
||
If we have a signed conversion, we generate code that compares
|
||
the real value to the largest representable positive number. If if
|
||
is smaller, the conversion is done normally. Otherwise, subtract
|
||
one plus the highest signed number, convert, and add it back.
|
||
|
||
We only need to check all real modes, since we know we didn't find
|
||
anything with a wider integer mode.
|
||
|
||
This code used to extend FP value into mode wider than the destination.
|
||
This is not needed. Consider, for instance conversion from SFmode
|
||
into DImode.
|
||
|
||
The hot path trought the code is dealing with inputs smaller than 2^63
|
||
and doing just the conversion, so there is no bits to lose.
|
||
|
||
In the other path we know the value is positive in the range 2^63..2^64-1
|
||
inclusive. (as for other imput overflow happens and result is undefined)
|
||
So we know that the most important bit set in mantissa corresponds to
|
||
2^63. The subtraction of 2^63 should not generate any rounding as it
|
||
simply clears out that bit. The rest is trivial. */
|
||
|
||
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
|
||
&must_trunc))
|
||
{
|
||
int bitsize;
|
||
REAL_VALUE_TYPE offset;
|
||
rtx limit, lab1, lab2, insn;
|
||
|
||
bitsize = GET_MODE_BITSIZE (GET_MODE (to));
|
||
real_2expN (&offset, bitsize - 1);
|
||
limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
|
||
lab1 = gen_label_rtx ();
|
||
lab2 = gen_label_rtx ();
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
|
||
/* See if we need to do the subtraction. */
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
|
||
0, lab1);
|
||
|
||
/* If not, do the signed "fix" and branch around fixup code. */
|
||
expand_fix (to, from, 0);
|
||
emit_jump_insn (gen_jump (lab2));
|
||
emit_barrier ();
|
||
|
||
/* Otherwise, subtract 2**(N-1), convert to signed number,
|
||
then add 2**(N-1). Do the addition using XOR since this
|
||
will often generate better code. */
|
||
emit_label (lab1);
|
||
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
expand_fix (to, target, 0);
|
||
target = expand_binop (GET_MODE (to), xor_optab, to,
|
||
gen_int_mode
|
||
((HOST_WIDE_INT) 1 << (bitsize - 1),
|
||
GET_MODE (to)),
|
||
to, 1, OPTAB_LIB_WIDEN);
|
||
|
||
if (target != to)
|
||
emit_move_insn (to, target);
|
||
|
||
emit_label (lab2);
|
||
|
||
if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
/* Make a place for a REG_NOTE and add it. */
|
||
insn = emit_move_insn (to, to);
|
||
set_unique_reg_note (insn,
|
||
REG_EQUAL,
|
||
gen_rtx_fmt_e (UNSIGNED_FIX,
|
||
GET_MODE (to),
|
||
copy_rtx (from)));
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* We can't do it with an insn, so use a library call. But first ensure
|
||
that the mode of TO is at least as wide as SImode, since those are the
|
||
only library calls we know about. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
|
||
{
|
||
target = gen_reg_rtx (SImode);
|
||
|
||
expand_fix (target, from, unsignedp);
|
||
}
|
||
else
|
||
{
|
||
rtx insns;
|
||
rtx value;
|
||
rtx libfunc;
|
||
|
||
convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
|
||
libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
|
||
if (!libfunc)
|
||
abort ();
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
start_sequence ();
|
||
|
||
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
||
GET_MODE (to), 1, from,
|
||
GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, value,
|
||
gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
|
||
GET_MODE (to), from));
|
||
}
|
||
|
||
if (target != to)
|
||
{
|
||
if (GET_MODE (to) == GET_MODE (target))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
}
|
||
|
||
/* Report whether we have an instruction to perform the operation
|
||
specified by CODE on operands of mode MODE. */
|
||
int
|
||
have_insn_for (enum rtx_code code, enum machine_mode mode)
|
||
{
|
||
return (code_to_optab[(int) code] != 0
|
||
&& (code_to_optab[(int) code]->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing));
|
||
}
|
||
|
||
/* Create a blank optab. */
|
||
static optab
|
||
new_optab (void)
|
||
{
|
||
int i;
|
||
optab op = ggc_alloc (sizeof (struct optab));
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
op->handlers[i].insn_code = CODE_FOR_nothing;
|
||
op->handlers[i].libfunc = 0;
|
||
}
|
||
|
||
return op;
|
||
}
|
||
|
||
static convert_optab
|
||
new_convert_optab (void)
|
||
{
|
||
int i, j;
|
||
convert_optab op = ggc_alloc (sizeof (struct convert_optab));
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
{
|
||
op->handlers[i][j].insn_code = CODE_FOR_nothing;
|
||
op->handlers[i][j].libfunc = 0;
|
||
}
|
||
return op;
|
||
}
|
||
|
||
/* Same, but fill in its code as CODE, and write it into the
|
||
code_to_optab table. */
|
||
static inline optab
|
||
init_optab (enum rtx_code code)
|
||
{
|
||
optab op = new_optab ();
|
||
op->code = code;
|
||
code_to_optab[(int) code] = op;
|
||
return op;
|
||
}
|
||
|
||
/* Same, but fill in its code as CODE, and do _not_ write it into
|
||
the code_to_optab table. */
|
||
static inline optab
|
||
init_optabv (enum rtx_code code)
|
||
{
|
||
optab op = new_optab ();
|
||
op->code = code;
|
||
return op;
|
||
}
|
||
|
||
/* Conversion optabs never go in the code_to_optab table. */
|
||
static inline convert_optab
|
||
init_convert_optab (enum rtx_code code)
|
||
{
|
||
convert_optab op = new_convert_optab ();
|
||
op->code = code;
|
||
return op;
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab. Each entry is set equal to a string consisting of a leading
|
||
pair of underscores followed by a generic operation name followed by
|
||
a mode name (downshifted to lowercase) followed by a single character
|
||
representing the number of operands for the given operation (which is
|
||
usually one of the characters '2', '3', or '4').
|
||
|
||
OPTABLE is the table in which libfunc fields are to be initialized.
|
||
FIRST_MODE is the first machine mode index in the given optab to
|
||
initialize.
|
||
LAST_MODE is the last machine mode index in the given optab to
|
||
initialize.
|
||
OPNAME is the generic (string) name of the operation.
|
||
SUFFIX is the character which specifies the number of operands for
|
||
the given generic operation.
|
||
*/
|
||
|
||
static void
|
||
init_libfuncs (optab optable, int first_mode, int last_mode,
|
||
const char *opname, int suffix)
|
||
{
|
||
int mode;
|
||
unsigned opname_len = strlen (opname);
|
||
|
||
for (mode = first_mode; (int) mode <= (int) last_mode;
|
||
mode = (enum machine_mode) ((int) mode + 1))
|
||
{
|
||
const char *mname = GET_MODE_NAME (mode);
|
||
unsigned mname_len = strlen (mname);
|
||
char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
|
||
char *p;
|
||
const char *q;
|
||
|
||
p = libfunc_name;
|
||
*p++ = '_';
|
||
*p++ = '_';
|
||
for (q = opname; *q; )
|
||
*p++ = *q++;
|
||
for (q = mname; *q; q++)
|
||
*p++ = TOLOWER (*q);
|
||
*p++ = suffix;
|
||
*p = '\0';
|
||
|
||
optable->handlers[(int) mode].libfunc
|
||
= init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
|
||
}
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab which correspond to all integer mode operations. The parameters
|
||
have the same meaning as similarly named ones for the `init_libfuncs'
|
||
routine. (See above). */
|
||
|
||
static void
|
||
init_integral_libfuncs (optab optable, const char *opname, int suffix)
|
||
{
|
||
int maxsize = 2*BITS_PER_WORD;
|
||
if (maxsize < LONG_LONG_TYPE_SIZE)
|
||
maxsize = LONG_LONG_TYPE_SIZE;
|
||
init_libfuncs (optable, word_mode,
|
||
mode_for_size (maxsize, MODE_INT, 0),
|
||
opname, suffix);
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries in some
|
||
optab which correspond to all real mode operations. The parameters
|
||
have the same meaning as similarly named ones for the `init_libfuncs'
|
||
routine. (See above). */
|
||
|
||
static void
|
||
init_floating_libfuncs (optab optable, const char *opname, int suffix)
|
||
{
|
||
init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries of an
|
||
inter-mode-class conversion optab. The string formation rules are
|
||
similar to the ones for init_libfuncs, above, but instead of having
|
||
a mode name and an operand count these functions have two mode names
|
||
and no operand count. */
|
||
static void
|
||
init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
|
||
enum mode_class from_class,
|
||
enum mode_class to_class)
|
||
{
|
||
enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
|
||
enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
|
||
size_t opname_len = strlen (opname);
|
||
size_t max_mname_len = 0;
|
||
|
||
enum machine_mode fmode, tmode;
|
||
const char *fname, *tname;
|
||
const char *q;
|
||
char *libfunc_name, *suffix;
|
||
char *p;
|
||
|
||
for (fmode = first_from_mode;
|
||
fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
|
||
|
||
for (tmode = first_to_mode;
|
||
tmode != VOIDmode;
|
||
tmode = GET_MODE_WIDER_MODE (tmode))
|
||
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
|
||
|
||
libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
|
||
libfunc_name[0] = '_';
|
||
libfunc_name[1] = '_';
|
||
memcpy (&libfunc_name[2], opname, opname_len);
|
||
suffix = libfunc_name + opname_len + 2;
|
||
|
||
for (fmode = first_from_mode; fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
for (tmode = first_to_mode; tmode != VOIDmode;
|
||
tmode = GET_MODE_WIDER_MODE (tmode))
|
||
{
|
||
fname = GET_MODE_NAME (fmode);
|
||
tname = GET_MODE_NAME (tmode);
|
||
|
||
p = suffix;
|
||
for (q = fname; *q; p++, q++)
|
||
*p = TOLOWER (*q);
|
||
for (q = tname; *q; p++, q++)
|
||
*p = TOLOWER (*q);
|
||
|
||
*p = '\0';
|
||
|
||
tab->handlers[tmode][fmode].libfunc
|
||
= init_one_libfunc (ggc_alloc_string (libfunc_name,
|
||
p - libfunc_name));
|
||
}
|
||
}
|
||
|
||
/* Initialize the libfunc fields of an entire group of entries of an
|
||
intra-mode-class conversion optab. The string formation rules are
|
||
similar to the ones for init_libfunc, above. WIDENING says whether
|
||
the optab goes from narrow to wide modes or vice versa. These functions
|
||
have two mode names _and_ an operand count. */
|
||
static void
|
||
init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
|
||
enum mode_class class, bool widening)
|
||
{
|
||
enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
|
||
size_t opname_len = strlen (opname);
|
||
size_t max_mname_len = 0;
|
||
|
||
enum machine_mode nmode, wmode;
|
||
const char *nname, *wname;
|
||
const char *q;
|
||
char *libfunc_name, *suffix;
|
||
char *p;
|
||
|
||
for (nmode = first_mode; nmode != VOIDmode;
|
||
nmode = GET_MODE_WIDER_MODE (nmode))
|
||
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
|
||
|
||
libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
|
||
libfunc_name[0] = '_';
|
||
libfunc_name[1] = '_';
|
||
memcpy (&libfunc_name[2], opname, opname_len);
|
||
suffix = libfunc_name + opname_len + 2;
|
||
|
||
for (nmode = first_mode; nmode != VOIDmode;
|
||
nmode = GET_MODE_WIDER_MODE (nmode))
|
||
for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
|
||
wmode = GET_MODE_WIDER_MODE (wmode))
|
||
{
|
||
nname = GET_MODE_NAME (nmode);
|
||
wname = GET_MODE_NAME (wmode);
|
||
|
||
p = suffix;
|
||
for (q = widening ? nname : wname; *q; p++, q++)
|
||
*p = TOLOWER (*q);
|
||
for (q = widening ? wname : nname; *q; p++, q++)
|
||
*p = TOLOWER (*q);
|
||
|
||
*p++ = '2';
|
||
*p = '\0';
|
||
|
||
tab->handlers[widening ? wmode : nmode]
|
||
[widening ? nmode : wmode].libfunc
|
||
= init_one_libfunc (ggc_alloc_string (libfunc_name,
|
||
p - libfunc_name));
|
||
}
|
||
}
|
||
|
||
|
||
rtx
|
||
init_one_libfunc (const char *name)
|
||
{
|
||
rtx symbol;
|
||
|
||
/* Create a FUNCTION_DECL that can be passed to
|
||
targetm.encode_section_info. */
|
||
/* ??? We don't have any type information except for this is
|
||
a function. Pretend this is "int foo()". */
|
||
tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
|
||
build_function_type (integer_type_node, NULL_TREE));
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
|
||
symbol = XEXP (DECL_RTL (decl), 0);
|
||
|
||
/* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
|
||
are the flags assigned by targetm.encode_section_info. */
|
||
SYMBOL_REF_DECL (symbol) = 0;
|
||
|
||
return symbol;
|
||
}
|
||
|
||
/* Call this to reset the function entry for one optab (OPTABLE) in mode
|
||
MODE to NAME, which should be either 0 or a string constant. */
|
||
void
|
||
set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
|
||
{
|
||
if (name)
|
||
optable->handlers[mode].libfunc = init_one_libfunc (name);
|
||
else
|
||
optable->handlers[mode].libfunc = 0;
|
||
}
|
||
|
||
/* Call this to reset the function entry for one conversion optab
|
||
(OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
|
||
either 0 or a string constant. */
|
||
void
|
||
set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
|
||
enum machine_mode fmode, const char *name)
|
||
{
|
||
if (name)
|
||
optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
|
||
else
|
||
optable->handlers[tmode][fmode].libfunc = 0;
|
||
}
|
||
|
||
/* Call this once to initialize the contents of the optabs
|
||
appropriately for the current target machine. */
|
||
|
||
void
|
||
init_optabs (void)
|
||
{
|
||
unsigned int i;
|
||
|
||
/* Start by initializing all tables to contain CODE_FOR_nothing. */
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
setcc_gen_code[i] = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_conditional_move
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
movcc_gen_code[i] = CODE_FOR_nothing;
|
||
#endif
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
vcond_gen_code[i] = CODE_FOR_nothing;
|
||
vcondu_gen_code[i] = CODE_FOR_nothing;
|
||
}
|
||
|
||
add_optab = init_optab (PLUS);
|
||
addv_optab = init_optabv (PLUS);
|
||
sub_optab = init_optab (MINUS);
|
||
subv_optab = init_optabv (MINUS);
|
||
smul_optab = init_optab (MULT);
|
||
smulv_optab = init_optabv (MULT);
|
||
smul_highpart_optab = init_optab (UNKNOWN);
|
||
umul_highpart_optab = init_optab (UNKNOWN);
|
||
smul_widen_optab = init_optab (UNKNOWN);
|
||
umul_widen_optab = init_optab (UNKNOWN);
|
||
sdiv_optab = init_optab (DIV);
|
||
sdivv_optab = init_optabv (DIV);
|
||
sdivmod_optab = init_optab (UNKNOWN);
|
||
udiv_optab = init_optab (UDIV);
|
||
udivmod_optab = init_optab (UNKNOWN);
|
||
smod_optab = init_optab (MOD);
|
||
umod_optab = init_optab (UMOD);
|
||
fmod_optab = init_optab (UNKNOWN);
|
||
drem_optab = init_optab (UNKNOWN);
|
||
ftrunc_optab = init_optab (UNKNOWN);
|
||
and_optab = init_optab (AND);
|
||
ior_optab = init_optab (IOR);
|
||
xor_optab = init_optab (XOR);
|
||
ashl_optab = init_optab (ASHIFT);
|
||
ashr_optab = init_optab (ASHIFTRT);
|
||
lshr_optab = init_optab (LSHIFTRT);
|
||
rotl_optab = init_optab (ROTATE);
|
||
rotr_optab = init_optab (ROTATERT);
|
||
smin_optab = init_optab (SMIN);
|
||
smax_optab = init_optab (SMAX);
|
||
umin_optab = init_optab (UMIN);
|
||
umax_optab = init_optab (UMAX);
|
||
pow_optab = init_optab (UNKNOWN);
|
||
atan2_optab = init_optab (UNKNOWN);
|
||
|
||
/* These three have codes assigned exclusively for the sake of
|
||
have_insn_for. */
|
||
mov_optab = init_optab (SET);
|
||
movstrict_optab = init_optab (STRICT_LOW_PART);
|
||
cmp_optab = init_optab (COMPARE);
|
||
|
||
ucmp_optab = init_optab (UNKNOWN);
|
||
tst_optab = init_optab (UNKNOWN);
|
||
|
||
eq_optab = init_optab (EQ);
|
||
ne_optab = init_optab (NE);
|
||
gt_optab = init_optab (GT);
|
||
ge_optab = init_optab (GE);
|
||
lt_optab = init_optab (LT);
|
||
le_optab = init_optab (LE);
|
||
unord_optab = init_optab (UNORDERED);
|
||
|
||
neg_optab = init_optab (NEG);
|
||
negv_optab = init_optabv (NEG);
|
||
abs_optab = init_optab (ABS);
|
||
absv_optab = init_optabv (ABS);
|
||
addcc_optab = init_optab (UNKNOWN);
|
||
one_cmpl_optab = init_optab (NOT);
|
||
ffs_optab = init_optab (FFS);
|
||
clz_optab = init_optab (CLZ);
|
||
ctz_optab = init_optab (CTZ);
|
||
popcount_optab = init_optab (POPCOUNT);
|
||
parity_optab = init_optab (PARITY);
|
||
sqrt_optab = init_optab (SQRT);
|
||
floor_optab = init_optab (UNKNOWN);
|
||
lfloor_optab = init_optab (UNKNOWN);
|
||
ceil_optab = init_optab (UNKNOWN);
|
||
lceil_optab = init_optab (UNKNOWN);
|
||
round_optab = init_optab (UNKNOWN);
|
||
btrunc_optab = init_optab (UNKNOWN);
|
||
nearbyint_optab = init_optab (UNKNOWN);
|
||
rint_optab = init_optab (UNKNOWN);
|
||
lrint_optab = init_optab (UNKNOWN);
|
||
sincos_optab = init_optab (UNKNOWN);
|
||
sin_optab = init_optab (UNKNOWN);
|
||
asin_optab = init_optab (UNKNOWN);
|
||
cos_optab = init_optab (UNKNOWN);
|
||
acos_optab = init_optab (UNKNOWN);
|
||
exp_optab = init_optab (UNKNOWN);
|
||
exp10_optab = init_optab (UNKNOWN);
|
||
exp2_optab = init_optab (UNKNOWN);
|
||
expm1_optab = init_optab (UNKNOWN);
|
||
ldexp_optab = init_optab (UNKNOWN);
|
||
logb_optab = init_optab (UNKNOWN);
|
||
ilogb_optab = init_optab (UNKNOWN);
|
||
log_optab = init_optab (UNKNOWN);
|
||
log10_optab = init_optab (UNKNOWN);
|
||
log2_optab = init_optab (UNKNOWN);
|
||
log1p_optab = init_optab (UNKNOWN);
|
||
tan_optab = init_optab (UNKNOWN);
|
||
atan_optab = init_optab (UNKNOWN);
|
||
copysign_optab = init_optab (UNKNOWN);
|
||
|
||
strlen_optab = init_optab (UNKNOWN);
|
||
cbranch_optab = init_optab (UNKNOWN);
|
||
cmov_optab = init_optab (UNKNOWN);
|
||
cstore_optab = init_optab (UNKNOWN);
|
||
push_optab = init_optab (UNKNOWN);
|
||
|
||
vec_extract_optab = init_optab (UNKNOWN);
|
||
vec_set_optab = init_optab (UNKNOWN);
|
||
vec_init_optab = init_optab (UNKNOWN);
|
||
vec_realign_load_optab = init_optab (UNKNOWN);
|
||
movmisalign_optab = init_optab (UNKNOWN);
|
||
|
||
powi_optab = init_optab (UNKNOWN);
|
||
|
||
/* Conversions. */
|
||
sext_optab = init_convert_optab (SIGN_EXTEND);
|
||
zext_optab = init_convert_optab (ZERO_EXTEND);
|
||
trunc_optab = init_convert_optab (TRUNCATE);
|
||
sfix_optab = init_convert_optab (FIX);
|
||
ufix_optab = init_convert_optab (UNSIGNED_FIX);
|
||
sfixtrunc_optab = init_convert_optab (UNKNOWN);
|
||
ufixtrunc_optab = init_convert_optab (UNKNOWN);
|
||
sfloat_optab = init_convert_optab (FLOAT);
|
||
ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
movmem_optab[i] = CODE_FOR_nothing;
|
||
clrmem_optab[i] = CODE_FOR_nothing;
|
||
cmpstr_optab[i] = CODE_FOR_nothing;
|
||
cmpmem_optab[i] = CODE_FOR_nothing;
|
||
|
||
sync_add_optab[i] = CODE_FOR_nothing;
|
||
sync_sub_optab[i] = CODE_FOR_nothing;
|
||
sync_ior_optab[i] = CODE_FOR_nothing;
|
||
sync_and_optab[i] = CODE_FOR_nothing;
|
||
sync_xor_optab[i] = CODE_FOR_nothing;
|
||
sync_nand_optab[i] = CODE_FOR_nothing;
|
||
sync_old_add_optab[i] = CODE_FOR_nothing;
|
||
sync_old_sub_optab[i] = CODE_FOR_nothing;
|
||
sync_old_ior_optab[i] = CODE_FOR_nothing;
|
||
sync_old_and_optab[i] = CODE_FOR_nothing;
|
||
sync_old_xor_optab[i] = CODE_FOR_nothing;
|
||
sync_old_nand_optab[i] = CODE_FOR_nothing;
|
||
sync_new_add_optab[i] = CODE_FOR_nothing;
|
||
sync_new_sub_optab[i] = CODE_FOR_nothing;
|
||
sync_new_ior_optab[i] = CODE_FOR_nothing;
|
||
sync_new_and_optab[i] = CODE_FOR_nothing;
|
||
sync_new_xor_optab[i] = CODE_FOR_nothing;
|
||
sync_new_nand_optab[i] = CODE_FOR_nothing;
|
||
sync_compare_and_swap[i] = CODE_FOR_nothing;
|
||
sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
|
||
sync_lock_test_and_set[i] = CODE_FOR_nothing;
|
||
sync_lock_release[i] = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_SECONDARY_RELOADS
|
||
reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
|
||
#endif
|
||
}
|
||
|
||
/* Fill in the optabs with the insns we support. */
|
||
init_all_optabs ();
|
||
|
||
/* Initialize the optabs with the names of the library functions. */
|
||
init_integral_libfuncs (add_optab, "add", '3');
|
||
init_floating_libfuncs (add_optab, "add", '3');
|
||
init_integral_libfuncs (addv_optab, "addv", '3');
|
||
init_floating_libfuncs (addv_optab, "add", '3');
|
||
init_integral_libfuncs (sub_optab, "sub", '3');
|
||
init_floating_libfuncs (sub_optab, "sub", '3');
|
||
init_integral_libfuncs (subv_optab, "subv", '3');
|
||
init_floating_libfuncs (subv_optab, "sub", '3');
|
||
init_integral_libfuncs (smul_optab, "mul", '3');
|
||
init_floating_libfuncs (smul_optab, "mul", '3');
|
||
init_integral_libfuncs (smulv_optab, "mulv", '3');
|
||
init_floating_libfuncs (smulv_optab, "mul", '3');
|
||
init_integral_libfuncs (sdiv_optab, "div", '3');
|
||
init_floating_libfuncs (sdiv_optab, "div", '3');
|
||
init_integral_libfuncs (sdivv_optab, "divv", '3');
|
||
init_integral_libfuncs (udiv_optab, "udiv", '3');
|
||
init_integral_libfuncs (sdivmod_optab, "divmod", '4');
|
||
init_integral_libfuncs (udivmod_optab, "udivmod", '4');
|
||
init_integral_libfuncs (smod_optab, "mod", '3');
|
||
init_integral_libfuncs (umod_optab, "umod", '3');
|
||
init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
|
||
init_integral_libfuncs (and_optab, "and", '3');
|
||
init_integral_libfuncs (ior_optab, "ior", '3');
|
||
init_integral_libfuncs (xor_optab, "xor", '3');
|
||
init_integral_libfuncs (ashl_optab, "ashl", '3');
|
||
init_integral_libfuncs (ashr_optab, "ashr", '3');
|
||
init_integral_libfuncs (lshr_optab, "lshr", '3');
|
||
init_integral_libfuncs (smin_optab, "min", '3');
|
||
init_floating_libfuncs (smin_optab, "min", '3');
|
||
init_integral_libfuncs (smax_optab, "max", '3');
|
||
init_floating_libfuncs (smax_optab, "max", '3');
|
||
init_integral_libfuncs (umin_optab, "umin", '3');
|
||
init_integral_libfuncs (umax_optab, "umax", '3');
|
||
init_integral_libfuncs (neg_optab, "neg", '2');
|
||
init_floating_libfuncs (neg_optab, "neg", '2');
|
||
init_integral_libfuncs (negv_optab, "negv", '2');
|
||
init_floating_libfuncs (negv_optab, "neg", '2');
|
||
init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
|
||
init_integral_libfuncs (ffs_optab, "ffs", '2');
|
||
init_integral_libfuncs (clz_optab, "clz", '2');
|
||
init_integral_libfuncs (ctz_optab, "ctz", '2');
|
||
init_integral_libfuncs (popcount_optab, "popcount", '2');
|
||
init_integral_libfuncs (parity_optab, "parity", '2');
|
||
|
||
/* Comparison libcalls for integers MUST come in pairs,
|
||
signed/unsigned. */
|
||
init_integral_libfuncs (cmp_optab, "cmp", '2');
|
||
init_integral_libfuncs (ucmp_optab, "ucmp", '2');
|
||
init_floating_libfuncs (cmp_optab, "cmp", '2');
|
||
|
||
/* EQ etc are floating point only. */
|
||
init_floating_libfuncs (eq_optab, "eq", '2');
|
||
init_floating_libfuncs (ne_optab, "ne", '2');
|
||
init_floating_libfuncs (gt_optab, "gt", '2');
|
||
init_floating_libfuncs (ge_optab, "ge", '2');
|
||
init_floating_libfuncs (lt_optab, "lt", '2');
|
||
init_floating_libfuncs (le_optab, "le", '2');
|
||
init_floating_libfuncs (unord_optab, "unord", '2');
|
||
|
||
init_floating_libfuncs (powi_optab, "powi", '2');
|
||
|
||
/* Conversions. */
|
||
init_interclass_conv_libfuncs (sfloat_optab, "float",
|
||
MODE_INT, MODE_FLOAT);
|
||
init_interclass_conv_libfuncs (sfix_optab, "fix",
|
||
MODE_FLOAT, MODE_INT);
|
||
init_interclass_conv_libfuncs (ufix_optab, "fixuns",
|
||
MODE_FLOAT, MODE_INT);
|
||
|
||
/* sext_optab is also used for FLOAT_EXTEND. */
|
||
init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
|
||
init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
|
||
|
||
/* Use cabs for double complex abs, since systems generally have cabs.
|
||
Don't define any libcall for float complex, so that cabs will be used. */
|
||
if (complex_double_type_node)
|
||
abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
|
||
= init_one_libfunc ("cabs");
|
||
|
||
/* The ffs function operates on `int'. */
|
||
ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
|
||
= init_one_libfunc ("ffs");
|
||
|
||
abort_libfunc = init_one_libfunc ("abort");
|
||
memcpy_libfunc = init_one_libfunc ("memcpy");
|
||
memmove_libfunc = init_one_libfunc ("memmove");
|
||
memcmp_libfunc = init_one_libfunc ("memcmp");
|
||
memset_libfunc = init_one_libfunc ("memset");
|
||
setbits_libfunc = init_one_libfunc ("__setbits");
|
||
|
||
unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
|
||
? "_Unwind_SjLj_Resume"
|
||
: "_Unwind_Resume");
|
||
#ifndef DONT_USE_BUILTIN_SETJMP
|
||
setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
|
||
longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
|
||
#else
|
||
setjmp_libfunc = init_one_libfunc ("setjmp");
|
||
longjmp_libfunc = init_one_libfunc ("longjmp");
|
||
#endif
|
||
unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
|
||
unwind_sjlj_unregister_libfunc
|
||
= init_one_libfunc ("_Unwind_SjLj_Unregister");
|
||
|
||
/* For function entry/exit instrumentation. */
|
||
profile_function_entry_libfunc
|
||
= init_one_libfunc ("__cyg_profile_func_enter");
|
||
profile_function_exit_libfunc
|
||
= init_one_libfunc ("__cyg_profile_func_exit");
|
||
|
||
gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
|
||
|
||
if (HAVE_conditional_trap)
|
||
trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
|
||
|
||
/* Allow the target to add more libcalls or rename some, etc. */
|
||
targetm.init_libfuncs ();
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
|
||
/* Print information about the current contents of the optabs on
|
||
STDERR. */
|
||
|
||
static void
|
||
debug_optab_libfuncs (void)
|
||
{
|
||
int i;
|
||
int j;
|
||
int k;
|
||
|
||
/* Dump the arithmetic optabs. */
|
||
for (i = 0; i != (int) OTI_MAX; i++)
|
||
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
||
{
|
||
optab o;
|
||
struct optab_handlers *h;
|
||
|
||
o = optab_table[i];
|
||
h = &o->handlers[j];
|
||
if (h->libfunc)
|
||
{
|
||
if (GET_CODE (h->libfunc) != SYMBOL_REF)
|
||
abort ();
|
||
fprintf (stderr, "%s\t%s:\t%s\n",
|
||
GET_RTX_NAME (o->code),
|
||
GET_MODE_NAME (j),
|
||
XSTR (h->libfunc, 0));
|
||
}
|
||
}
|
||
|
||
/* Dump the conversion optabs. */
|
||
for (i = 0; i < (int) CTI_MAX; ++i)
|
||
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
||
for (k = 0; k < NUM_MACHINE_MODES; ++k)
|
||
{
|
||
convert_optab o;
|
||
struct optab_handlers *h;
|
||
|
||
o = &convert_optab_table[i];
|
||
h = &o->handlers[j][k];
|
||
if (h->libfunc)
|
||
{
|
||
if (GET_CODE (h->libfunc) != SYMBOL_REF)
|
||
abort ();
|
||
fprintf (stderr, "%s\t%s\t%s:\t%s\n",
|
||
GET_RTX_NAME (o->code),
|
||
GET_MODE_NAME (j),
|
||
GET_MODE_NAME (k),
|
||
XSTR (h->libfunc, 0));
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif /* DEBUG */
|
||
|
||
|
||
/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
|
||
CODE. Return 0 on failure. */
|
||
|
||
rtx
|
||
gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
|
||
rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
|
||
{
|
||
enum machine_mode mode = GET_MODE (op1);
|
||
enum insn_code icode;
|
||
rtx insn;
|
||
|
||
if (!HAVE_conditional_trap)
|
||
return 0;
|
||
|
||
if (mode == VOIDmode)
|
||
return 0;
|
||
|
||
icode = cmp_optab->handlers[(int) mode].insn_code;
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
start_sequence ();
|
||
op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
|
||
op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
|
||
if (!op1 || !op2)
|
||
{
|
||
end_sequence ();
|
||
return 0;
|
||
}
|
||
emit_insn (GEN_FCN (icode) (op1, op2));
|
||
|
||
PUT_CODE (trap_rtx, code);
|
||
insn = gen_conditional_trap (trap_rtx, tcode);
|
||
if (insn)
|
||
{
|
||
emit_insn (insn);
|
||
insn = get_insns ();
|
||
}
|
||
end_sequence ();
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
|
||
or unsigned operation code. */
|
||
|
||
static enum rtx_code
|
||
get_rtx_code (enum tree_code tcode, bool unsignedp)
|
||
{
|
||
enum rtx_code code;
|
||
switch (tcode)
|
||
{
|
||
case EQ_EXPR:
|
||
code = EQ;
|
||
break;
|
||
case NE_EXPR:
|
||
code = NE;
|
||
break;
|
||
case LT_EXPR:
|
||
code = unsignedp ? LTU : LT;
|
||
break;
|
||
case LE_EXPR:
|
||
code = unsignedp ? LEU : LE;
|
||
break;
|
||
case GT_EXPR:
|
||
code = unsignedp ? GTU : GT;
|
||
break;
|
||
case GE_EXPR:
|
||
code = unsignedp ? GEU : GE;
|
||
break;
|
||
|
||
case UNORDERED_EXPR:
|
||
code = UNORDERED;
|
||
break;
|
||
case ORDERED_EXPR:
|
||
code = ORDERED;
|
||
break;
|
||
case UNLT_EXPR:
|
||
code = UNLT;
|
||
break;
|
||
case UNLE_EXPR:
|
||
code = UNLE;
|
||
break;
|
||
case UNGT_EXPR:
|
||
code = UNGT;
|
||
break;
|
||
case UNGE_EXPR:
|
||
code = UNGE;
|
||
break;
|
||
case UNEQ_EXPR:
|
||
code = UNEQ;
|
||
break;
|
||
case LTGT_EXPR:
|
||
code = LTGT;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
return code;
|
||
}
|
||
|
||
/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
|
||
unsigned operators. Do not generate compare instruction. */
|
||
|
||
static rtx
|
||
vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
|
||
{
|
||
enum rtx_code rcode;
|
||
tree t_op0, t_op1;
|
||
rtx rtx_op0, rtx_op1;
|
||
|
||
if (!COMPARISON_CLASS_P (cond))
|
||
{
|
||
/* This is unlikely. While generating VEC_COND_EXPR,
|
||
auto vectorizer ensures that condition is a relational
|
||
operation. */
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
|
||
t_op0 = TREE_OPERAND (cond, 0);
|
||
t_op1 = TREE_OPERAND (cond, 1);
|
||
}
|
||
|
||
/* Expand operands. */
|
||
rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1);
|
||
rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1);
|
||
|
||
if (!(*insn_data[icode].operand[4].predicate) (rtx_op0, GET_MODE (rtx_op0))
|
||
&& GET_MODE (rtx_op0) != VOIDmode)
|
||
rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
|
||
|
||
if (!(*insn_data[icode].operand[5].predicate) (rtx_op1, GET_MODE (rtx_op1))
|
||
&& GET_MODE (rtx_op1) != VOIDmode)
|
||
rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
|
||
|
||
return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
|
||
}
|
||
|
||
/* Return insn code for VEC_COND_EXPR EXPR. */
|
||
|
||
static inline enum insn_code
|
||
get_vcond_icode (tree expr, enum machine_mode mode)
|
||
{
|
||
enum insn_code icode = CODE_FOR_nothing;
|
||
|
||
if (TYPE_UNSIGNED (TREE_TYPE (expr)))
|
||
icode = vcondu_gen_code[mode];
|
||
else
|
||
icode = vcond_gen_code[mode];
|
||
return icode;
|
||
}
|
||
|
||
/* Return TRUE iff, appropriate vector insns are available
|
||
for vector cond expr expr in VMODE mode. */
|
||
|
||
bool
|
||
expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
|
||
{
|
||
if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Generate insns for VEC_COND_EXPR. */
|
||
|
||
rtx
|
||
expand_vec_cond_expr (tree vec_cond_expr, rtx target)
|
||
{
|
||
enum insn_code icode;
|
||
rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
|
||
bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
|
||
|
||
icode = get_vcond_icode (vec_cond_expr, mode);
|
||
if (icode == CODE_FOR_nothing)
|
||
return 0;
|
||
|
||
if (!target)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Get comparison rtx. First expand both cond expr operands. */
|
||
comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
|
||
unsignedp, icode);
|
||
cc_op0 = XEXP (comparison, 0);
|
||
cc_op1 = XEXP (comparison, 1);
|
||
/* Expand both operands and force them in reg, if required. */
|
||
rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1),
|
||
NULL_RTX, VOIDmode, 1);
|
||
if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode)
|
||
&& mode != VOIDmode)
|
||
rtx_op1 = force_reg (mode, rtx_op1);
|
||
|
||
rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2),
|
||
NULL_RTX, VOIDmode, 1);
|
||
if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode)
|
||
&& mode != VOIDmode)
|
||
rtx_op2 = force_reg (mode, rtx_op2);
|
||
|
||
/* Emit instruction! */
|
||
emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
|
||
comparison, cc_op0, cc_op1));
|
||
|
||
return target;
|
||
}
|
||
|
||
|
||
/* This is an internal subroutine of the other compare_and_swap expanders.
|
||
MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
|
||
operation. TARGET is an optional place to store the value result of
|
||
the operation. ICODE is the particular instruction to expand. Return
|
||
the result of the operation. */
|
||
|
||
static rtx
|
||
expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
|
||
rtx target, enum insn_code icode)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
rtx insn;
|
||
|
||
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
|
||
old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
|
||
if (!insn_data[icode].operand[2].predicate (old_val, mode))
|
||
old_val = force_reg (mode, old_val);
|
||
|
||
if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
|
||
new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
|
||
if (!insn_data[icode].operand[3].predicate (new_val, mode))
|
||
new_val = force_reg (mode, new_val);
|
||
|
||
insn = GEN_FCN (icode) (target, mem, old_val, new_val);
|
||
if (insn == NULL_RTX)
|
||
return NULL_RTX;
|
||
emit_insn (insn);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand a compare-and-swap operation and return its value. */
|
||
|
||
rtx
|
||
expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code icode = sync_compare_and_swap[mode];
|
||
|
||
if (icode == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
|
||
}
|
||
|
||
/* Expand a compare-and-swap operation and store true into the result if
|
||
the operation was successful and false otherwise. Return the result.
|
||
Unlike other routines, TARGET is not optional. */
|
||
|
||
rtx
|
||
expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code icode;
|
||
rtx subtarget, label0, label1;
|
||
|
||
/* If the target supports a compare-and-swap pattern that simultaneously
|
||
sets some flag for success, then use it. Otherwise use the regular
|
||
compare-and-swap and follow that immediately with a compare insn. */
|
||
icode = sync_compare_and_swap_cc[mode];
|
||
switch (icode)
|
||
{
|
||
default:
|
||
subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
|
||
NULL_RTX, icode);
|
||
if (subtarget != NULL_RTX)
|
||
break;
|
||
|
||
/* FALLTHRU */
|
||
case CODE_FOR_nothing:
|
||
icode = sync_compare_and_swap[mode];
|
||
if (icode == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
|
||
NULL_RTX, icode);
|
||
if (subtarget == NULL_RTX)
|
||
return NULL_RTX;
|
||
|
||
emit_cmp_insn (subtarget, new_val, EQ, const0_rtx, mode, true);
|
||
}
|
||
|
||
/* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
|
||
setcc instruction from the beginning. We don't work too hard here,
|
||
but it's nice to not be stupid about initial code gen either. */
|
||
if (STORE_FLAG_VALUE == 1)
|
||
{
|
||
icode = setcc_gen_code[EQ];
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
enum machine_mode cmode = insn_data[icode].operand[0].mode;
|
||
rtx insn;
|
||
|
||
subtarget = target;
|
||
if (!insn_data[icode].operand[0].predicate (target, cmode))
|
||
subtarget = gen_reg_rtx (cmode);
|
||
|
||
insn = GEN_FCN (icode) (subtarget);
|
||
if (insn)
|
||
{
|
||
emit_insn (insn);
|
||
if (GET_MODE (target) != GET_MODE (subtarget))
|
||
{
|
||
convert_move (target, subtarget, 1);
|
||
subtarget = target;
|
||
}
|
||
return subtarget;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Without an appropriate setcc instruction, use a set of branches to
|
||
get 1 and 0 stored into target. Presumably if the target has a
|
||
STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */
|
||
|
||
label0 = gen_label_rtx ();
|
||
label1 = gen_label_rtx ();
|
||
|
||
emit_jump_insn (bcc_gen_fctn[EQ] (label0));
|
||
emit_move_insn (target, const0_rtx);
|
||
emit_jump_insn (gen_jump (label1));
|
||
emit_label (label0);
|
||
emit_move_insn (target, const1_rtx);
|
||
emit_label (label1);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* This is a helper function for the other atomic operations. This function
|
||
emits a loop that contains SEQ that iterates until a compare-and-swap
|
||
operation at the end succeeds. MEM is the memory to be modified. SEQ is
|
||
a set of instructions that takes a value from OLD_REG as an input and
|
||
produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
|
||
set to the current contents of MEM. After SEQ, a compare-and-swap will
|
||
attempt to update MEM with NEW_REG. The function returns true when the
|
||
loop was generated successfully. */
|
||
|
||
static bool
|
||
expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code icode;
|
||
rtx label, subtarget;
|
||
|
||
/* The loop we want to generate looks like
|
||
|
||
old_reg = mem;
|
||
label:
|
||
seq;
|
||
old_reg = compare-and-swap(mem, old_reg, new_reg)
|
||
if (old_reg != new_reg)
|
||
goto label;
|
||
|
||
Note that we only do the plain load from memory once. Subsequent
|
||
iterations use the value loaded by the compare-and-swap pattern. */
|
||
|
||
label = gen_label_rtx ();
|
||
|
||
emit_move_insn (old_reg, mem);
|
||
emit_label (label);
|
||
if (seq)
|
||
emit_insn (seq);
|
||
|
||
/* If the target supports a compare-and-swap pattern that simultaneously
|
||
sets some flag for success, then use it. Otherwise use the regular
|
||
compare-and-swap and follow that immediately with a compare insn. */
|
||
icode = sync_compare_and_swap_cc[mode];
|
||
switch (icode)
|
||
{
|
||
default:
|
||
subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
|
||
old_reg, icode);
|
||
if (subtarget != NULL_RTX)
|
||
break;
|
||
|
||
/* FALLTHRU */
|
||
case CODE_FOR_nothing:
|
||
icode = sync_compare_and_swap[mode];
|
||
if (icode == CODE_FOR_nothing)
|
||
return false;
|
||
|
||
subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
|
||
old_reg, icode);
|
||
if (subtarget == NULL_RTX)
|
||
return false;
|
||
|
||
emit_cmp_insn (subtarget, new_reg, EQ, const0_rtx, mode, true);
|
||
}
|
||
|
||
/* ??? Mark this jump predicted not taken? */
|
||
emit_jump_insn (bcc_gen_fctn[NE] (label));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This function generates the atomic operation MEM CODE= VAL. In this
|
||
case, we do not care about any resulting value. Returns NULL if we
|
||
cannot generate the operation. */
|
||
|
||
rtx
|
||
expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code icode;
|
||
rtx insn;
|
||
|
||
/* Look to see if the target supports the operation directly. */
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
icode = sync_add_optab[mode];
|
||
break;
|
||
case IOR:
|
||
icode = sync_ior_optab[mode];
|
||
break;
|
||
case XOR:
|
||
icode = sync_xor_optab[mode];
|
||
break;
|
||
case AND:
|
||
icode = sync_and_optab[mode];
|
||
break;
|
||
|
||
case MINUS:
|
||
icode = sync_sub_optab[mode];
|
||
if (icode == CODE_FOR_nothing)
|
||
{
|
||
icode = sync_add_optab[mode];
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
|
||
code = PLUS;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
icode = sync_nand_optab[mode];
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
icode = sync_and_optab[mode];
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, 1);
|
||
code = AND;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Generate the direct operation, if present. */
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
||
val = convert_modes (mode, GET_MODE (val), val, 1);
|
||
if (!insn_data[icode].operand[1].predicate (val, mode))
|
||
val = force_reg (mode, val);
|
||
|
||
insn = GEN_FCN (icode) (mem, val);
|
||
if (insn)
|
||
{
|
||
emit_insn (insn);
|
||
return const0_rtx;
|
||
}
|
||
}
|
||
|
||
/* Failing that, generate a compare-and-swap loop in which we perform the
|
||
operation with normal arithmetic instructions. */
|
||
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
||
{
|
||
rtx t0 = gen_reg_rtx (mode), t1;
|
||
|
||
start_sequence ();
|
||
|
||
if (code == NOT)
|
||
{
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, true);
|
||
code = AND;
|
||
}
|
||
t1 = expand_simple_binop (mode, code, t0, val, NULL_RTX,
|
||
true, OPTAB_LIB_WIDEN);
|
||
|
||
insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
|
||
return const0_rtx;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* This function generates the atomic operation MEM CODE= VAL. In this
|
||
case, we do care about the resulting value: if AFTER is true then
|
||
return the value MEM holds after the operation, if AFTER is false
|
||
then return the value MEM holds before the operation. TARGET is an
|
||
optional place for the result value to be stored. */
|
||
|
||
rtx
|
||
expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
|
||
bool after, rtx target)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code old_code, new_code, icode;
|
||
bool compensate;
|
||
rtx insn;
|
||
|
||
/* Look to see if the target supports the operation directly. */
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
old_code = sync_old_add_optab[mode];
|
||
new_code = sync_new_add_optab[mode];
|
||
break;
|
||
case IOR:
|
||
old_code = sync_old_ior_optab[mode];
|
||
new_code = sync_new_ior_optab[mode];
|
||
break;
|
||
case XOR:
|
||
old_code = sync_old_xor_optab[mode];
|
||
new_code = sync_new_xor_optab[mode];
|
||
break;
|
||
case AND:
|
||
old_code = sync_old_and_optab[mode];
|
||
new_code = sync_new_and_optab[mode];
|
||
break;
|
||
|
||
case MINUS:
|
||
old_code = sync_old_sub_optab[mode];
|
||
new_code = sync_new_sub_optab[mode];
|
||
if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
|
||
{
|
||
old_code = sync_old_add_optab[mode];
|
||
new_code = sync_new_add_optab[mode];
|
||
if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
|
||
{
|
||
val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
|
||
code = PLUS;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
old_code = sync_old_nand_optab[mode];
|
||
new_code = sync_new_nand_optab[mode];
|
||
if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
|
||
{
|
||
old_code = sync_old_sub_optab[mode];
|
||
new_code = sync_new_sub_optab[mode];
|
||
if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
|
||
{
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, 1);
|
||
code = AND;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* If the target does supports the proper new/old operation, great. But
|
||
if we only support the opposite old/new operation, check to see if we
|
||
can compensate. In the case in which the old value is supported, then
|
||
we can always perform the operation again with normal arithmetic. In
|
||
the case in which the new value is supported, then we can only handle
|
||
this in the case the operation is reversible. */
|
||
compensate = false;
|
||
if (after)
|
||
{
|
||
icode = new_code;
|
||
if (icode == CODE_FOR_nothing)
|
||
{
|
||
icode = old_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
compensate = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
icode = old_code;
|
||
if (icode == CODE_FOR_nothing
|
||
&& (code == PLUS || code == MINUS || code == XOR))
|
||
{
|
||
icode = new_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
compensate = true;
|
||
}
|
||
}
|
||
|
||
/* If we found something supported, great. */
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
||
val = convert_modes (mode, GET_MODE (val), val, 1);
|
||
if (!insn_data[icode].operand[2].predicate (val, mode))
|
||
val = force_reg (mode, val);
|
||
|
||
insn = GEN_FCN (icode) (target, mem, val);
|
||
if (insn)
|
||
{
|
||
emit_insn (insn);
|
||
|
||
/* If we need to compensate for using an operation with the
|
||
wrong return value, do so now. */
|
||
if (compensate)
|
||
{
|
||
if (!after)
|
||
{
|
||
if (code == PLUS)
|
||
code = MINUS;
|
||
else if (code == MINUS)
|
||
code = PLUS;
|
||
}
|
||
target = expand_simple_binop (mode, code, target, val, NULL_RTX,
|
||
true, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* Failing that, generate a compare-and-swap loop in which we perform the
|
||
operation with normal arithmetic instructions. */
|
||
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
||
{
|
||
rtx t0 = gen_reg_rtx (mode), t1;
|
||
|
||
if (!target || !register_operand (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
if (code == NOT)
|
||
{
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, true);
|
||
code = AND;
|
||
}
|
||
if (!after)
|
||
emit_move_insn (target, t0);
|
||
t1 = expand_simple_binop (mode, code, t0, val, NULL_RTX,
|
||
true, OPTAB_LIB_WIDEN);
|
||
if (after)
|
||
emit_move_insn (target, t1);
|
||
|
||
insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
|
||
return target;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* This function expands a test-and-set operation. Ideally we atomically
|
||
store VAL in MEM and return the previous value in MEM. Some targets
|
||
may not support this operation and only support VAL with the constant 1;
|
||
in this case while the return value will be 0/1, but the exact value
|
||
stored in MEM is target defined. TARGET is an option place to stick
|
||
the return value. */
|
||
|
||
rtx
|
||
expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
|
||
{
|
||
enum machine_mode mode = GET_MODE (mem);
|
||
enum insn_code icode;
|
||
rtx insn;
|
||
|
||
/* If the target supports the test-and-set directly, great. */
|
||
icode = sync_lock_test_and_set[mode];
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
||
val = convert_modes (mode, GET_MODE (val), val, 1);
|
||
if (!insn_data[icode].operand[2].predicate (val, mode))
|
||
val = force_reg (mode, val);
|
||
|
||
insn = GEN_FCN (icode) (target, mem, val);
|
||
if (insn)
|
||
{
|
||
emit_insn (insn);
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* Otherwise, use a compare-and-swap loop for the exchange. */
|
||
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
||
{
|
||
if (!target || !register_operand (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
||
val = convert_modes (mode, GET_MODE (val), val, 1);
|
||
if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
|
||
return target;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
#include "gt-optabs.h"
|