gcc/libgfortran/m4/matmul_internal.m4
Thomas Koenig 5d98fe096b Implement MATMUL and DOT_PRODUCT for unsigned.
gcc/fortran/ChangeLog:

	* arith.cc (gfc_arith_uminus): Fix warning.
	(gfc_arith_minus): Correctly truncate unsigneds.
	* check.cc (gfc_check_dot_product): Handle unsigned arguments.
	(gfc_check_matmul): Likewise.
	* expr.cc (gfc_get_unsigned_expr): New function.
	* gfortran.h (gfc_get_unsigned_expr): Add prototype.
	* iresolve.cc (gfc_resolve_matmul): If using UNSIGNED, use the
	signed integer version.
	* gfortran.texi: Document MATMUL and DOT_PRODUCT for unsigned.
	* simplify.cc (compute_dot_product): Handle unsigneds.

libgfortran/ChangeLog:

	* m4/iparm.m4: Add UNSIGED if type is m.
	* m4/matmul.m4: If type is GFC_INTEGER, use GFC_UINTEGER instead.
	Whitespace fixes.
	* m4/matmul_internal.m4: Whitespace fixes.

	* generated/matmul_c10.c: Regenerated.
	* generated/matmul_c16.c: Regenerated.
	* generated/matmul_c17.c: Regenerated.
	* generated/matmul_c4.c: Regenerated.
	* generated/matmul_c8.c: Regeneraated.
	* generated/matmul_i1.c: Regenerated.
	* generated/matmul_i16.c: Regenerated.
	* generated/matmul_i2.c: Regenerated.
	* generated/matmul_i4.c: Regenerated.
	* generated/matmul_i8.c: Regenerated.
	* generated/matmul_r10.c: Regenerated.
	* generated/matmul_r16.c: Regenerated.
	* generated/matmul_r17.c: Regenerated.
	* generated/matmul_r4.c: Regenerated.
	* generated/matmul_r8.c: Regenerated.
	* libgfortran.h: Add array types for unsiged.

gcc/testsuite/ChangeLog:

	* gfortran.dg/unsigned_25.f90: New test.
	* gfortran.dg/unsigned_26.f90: New test.
2024-09-24 21:51:42 +02:00

564 lines
16 KiB
Plaintext

`void
'matmul_name` ('rtype` * const restrict retarray,
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
int blas_limit, blas_call gemm)
{
const 'rtype_name` * restrict abase;
const 'rtype_name` * restrict bbase;
'rtype_name` * restrict dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->base_addr == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
}
else
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
GFC_DIMENSION_SET(retarray->dim[1], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
GFC_DESCRIPTOR_EXTENT(retarray,0));
}
retarray->base_addr
= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
retarray->offset = 0;
}
else if (unlikely (compile_options.bounds_check))
{
index_type ret_extent, arg_extent;
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Array bound mismatch for dimension 1 of "
"array (%ld/%ld) ",
(long int) ret_extent, (long int) arg_extent);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Array bound mismatch for dimension 1 of "
"array (%ld/%ld) ",
(long int) ret_extent, (long int) arg_extent);
}
else
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Array bound mismatch for dimension 1 of "
"array (%ld/%ld) ",
(long int) ret_extent, (long int) arg_extent);
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
if (arg_extent != ret_extent)
runtime_error ("Array bound mismatch for dimension 2 of "
"array (%ld/%ld) ",
(long int) ret_extent, (long int) arg_extent);
}
}
'
sinclude(`matmul_asm_'rtype_code`.m4')dnl
`
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
}
else
{
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
aystride = 1;
xcount = 1;
count = GFC_DESCRIPTOR_EXTENT(a,0);
}
else
{
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
aystride = GFC_DESCRIPTOR_STRIDE(a,1);
count = GFC_DESCRIPTOR_EXTENT(a,1);
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
}
if (count != GFC_DESCRIPTOR_EXTENT(b,0))
{
if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
"in dimension 1: is %ld, should be %ld",
(long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
/* bystride should never be used for 1-dimensional b.
The value is only used for calculation of the
memory by the buffer. */
bystride = 256;
ycount = 1;
}
else
{
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
bystride = GFC_DESCRIPTOR_STRIDE(b,1);
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
}
abase = a->base_addr;
bbase = b->base_addr;
dest = retarray->base_addr;
/* Now that everything is set up, we perform the multiplication
itself. */
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
&& (bxstride == 1 || bystride == 1)
&& (((float) xcount) * ((float) ycount) * ((float) count)
> POW3(blas_limit)))
{
const int m = xcount, n = ycount, k = count, ldc = rystride;
const 'rtype_name` one = 1, zero = 0;
const int lda = (axstride == 1) ? aystride : axstride,
ldb = (bxstride == 1) ? bystride : bxstride;
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
{
assert (gemm != NULL);
const char *transa, *transb;
if (try_blas & 2)
transa = "C";
else
transa = axstride == 1 ? "N" : "T";
if (try_blas & 4)
transb = "C";
else
transb = bxstride == 1 ? "N" : "T";
gemm (transa, transb , &m,
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
&ldc, 1, 1);
return;
}
}
if (rxstride == 1 && axstride == 1 && bxstride == 1
&& GFC_DESCRIPTOR_RANK (b) != 1)
{
/* This block of code implements a tuned matmul, derived from
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
Bo Kagstrom and Per Ling
Department of Computing Science
Umea University
S-901 87 Umea, Sweden
from netlib.org, translated to C, and modified for matmul.m4. */
const 'rtype_name` *a, *b;
'rtype_name` *c;
const index_type m = xcount, n = ycount, k = count;
/* System generated locals */
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
i1, i2, i3, i4, i5, i6;
/* Local variables */
'rtype_name` f11, f12, f21, f22, f31, f32, f41, f42,
f13, f14, f23, f24, f33, f34, f43, f44;
index_type i, j, l, ii, jj, ll;
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
'rtype_name` *t1;
a = abase;
b = bbase;
c = retarray->base_addr;
/* Parameter adjustments */
c_dim1 = rystride;
c_offset = 1 + c_dim1;
c -= c_offset;
a_dim1 = aystride;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = bystride;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Empty c first. */
for (j=1; j<=n; j++)
for (i=1; i<=m; i++)
c[i + j * c_dim1] = ('rtype_name`)0;
/* Early exit if possible */
if (m == 0 || n == 0 || k == 0)
return;
/* Adjust size of t1 to what is needed. */
index_type t1_dim, a_sz;
if (aystride == 1)
a_sz = rystride;
else
a_sz = a_dim1;
t1_dim = a_sz * 256 + b_dim1;
if (t1_dim > 65536)
t1_dim = 65536;
t1 = malloc (t1_dim * sizeof('rtype_name`));
/* Start turning the crank. */
i1 = n;
for (jj = 1; jj <= i1; jj += 512)
{
/* Computing MIN */
i2 = 512;
i3 = n - jj + 1;
jsec = min(i2,i3);
ujsec = jsec - jsec % 4;
i2 = k;
for (ll = 1; ll <= i2; ll += 256)
{
/* Computing MIN */
i3 = 256;
i4 = k - ll + 1;
lsec = min(i3,i4);
ulsec = lsec - lsec % 2;
i3 = m;
for (ii = 1; ii <= i3; ii += 256)
{
/* Computing MIN */
i4 = 256;
i5 = m - ii + 1;
isec = min(i4,i5);
uisec = isec - isec % 2;
i4 = ll + ulsec - 1;
for (l = ll; l <= i4; l += 2)
{
i5 = ii + uisec - 1;
for (i = ii; i <= i5; i += 2)
{
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
a[i + l * a_dim1];
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
a[i + (l + 1) * a_dim1];
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
a[i + 1 + l * a_dim1];
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
a[i + 1 + (l + 1) * a_dim1];
}
if (uisec < isec)
{
t1[l - ll + 1 + (isec << 8) - 257] =
a[ii + isec - 1 + l * a_dim1];
t1[l - ll + 2 + (isec << 8) - 257] =
a[ii + isec - 1 + (l + 1) * a_dim1];
}
}
if (ulsec < lsec)
{
i4 = ii + isec - 1;
for (i = ii; i<= i4; ++i)
{
t1[lsec + ((i - ii + 1) << 8) - 257] =
a[i + (ll + lsec - 1) * a_dim1];
}
}
uisec = isec - isec % 4;
i4 = jj + ujsec - 1;
for (j = jj; j <= i4; j += 4)
{
i5 = ii + uisec - 1;
for (i = ii; i <= i5; i += 4)
{
f11 = c[i + j * c_dim1];
f21 = c[i + 1 + j * c_dim1];
f12 = c[i + (j + 1) * c_dim1];
f22 = c[i + 1 + (j + 1) * c_dim1];
f13 = c[i + (j + 2) * c_dim1];
f23 = c[i + 1 + (j + 2) * c_dim1];
f14 = c[i + (j + 3) * c_dim1];
f24 = c[i + 1 + (j + 3) * c_dim1];
f31 = c[i + 2 + j * c_dim1];
f41 = c[i + 3 + j * c_dim1];
f32 = c[i + 2 + (j + 1) * c_dim1];
f42 = c[i + 3 + (j + 1) * c_dim1];
f33 = c[i + 2 + (j + 2) * c_dim1];
f43 = c[i + 3 + (j + 2) * c_dim1];
f34 = c[i + 2 + (j + 3) * c_dim1];
f44 = c[i + 3 + (j + 3) * c_dim1];
i6 = ll + lsec - 1;
for (l = ll; l <= i6; ++l)
{
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
* b[l + j * b_dim1];
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
* b[l + j * b_dim1];
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
* b[l + (j + 1) * b_dim1];
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
* b[l + (j + 1) * b_dim1];
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
* b[l + (j + 2) * b_dim1];
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
* b[l + (j + 2) * b_dim1];
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
* b[l + (j + 3) * b_dim1];
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
* b[l + (j + 3) * b_dim1];
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
* b[l + j * b_dim1];
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
* b[l + j * b_dim1];
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
* b[l + (j + 1) * b_dim1];
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
* b[l + (j + 1) * b_dim1];
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
* b[l + (j + 2) * b_dim1];
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
* b[l + (j + 2) * b_dim1];
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
* b[l + (j + 3) * b_dim1];
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
* b[l + (j + 3) * b_dim1];
}
c[i + j * c_dim1] = f11;
c[i + 1 + j * c_dim1] = f21;
c[i + (j + 1) * c_dim1] = f12;
c[i + 1 + (j + 1) * c_dim1] = f22;
c[i + (j + 2) * c_dim1] = f13;
c[i + 1 + (j + 2) * c_dim1] = f23;
c[i + (j + 3) * c_dim1] = f14;
c[i + 1 + (j + 3) * c_dim1] = f24;
c[i + 2 + j * c_dim1] = f31;
c[i + 3 + j * c_dim1] = f41;
c[i + 2 + (j + 1) * c_dim1] = f32;
c[i + 3 + (j + 1) * c_dim1] = f42;
c[i + 2 + (j + 2) * c_dim1] = f33;
c[i + 3 + (j + 2) * c_dim1] = f43;
c[i + 2 + (j + 3) * c_dim1] = f34;
c[i + 3 + (j + 3) * c_dim1] = f44;
}
if (uisec < isec)
{
i5 = ii + isec - 1;
for (i = ii + uisec; i <= i5; ++i)
{
f11 = c[i + j * c_dim1];
f12 = c[i + (j + 1) * c_dim1];
f13 = c[i + (j + 2) * c_dim1];
f14 = c[i + (j + 3) * c_dim1];
i6 = ll + lsec - 1;
for (l = ll; l <= i6; ++l)
{
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + j * b_dim1];
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + (j + 1) * b_dim1];
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + (j + 2) * b_dim1];
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + (j + 3) * b_dim1];
}
c[i + j * c_dim1] = f11;
c[i + (j + 1) * c_dim1] = f12;
c[i + (j + 2) * c_dim1] = f13;
c[i + (j + 3) * c_dim1] = f14;
}
}
}
if (ujsec < jsec)
{
i4 = jj + jsec - 1;
for (j = jj + ujsec; j <= i4; ++j)
{
i5 = ii + uisec - 1;
for (i = ii; i <= i5; i += 4)
{
f11 = c[i + j * c_dim1];
f21 = c[i + 1 + j * c_dim1];
f31 = c[i + 2 + j * c_dim1];
f41 = c[i + 3 + j * c_dim1];
i6 = ll + lsec - 1;
for (l = ll; l <= i6; ++l)
{
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + j * b_dim1];
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
257] * b[l + j * b_dim1];
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
257] * b[l + j * b_dim1];
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
257] * b[l + j * b_dim1];
}
c[i + j * c_dim1] = f11;
c[i + 1 + j * c_dim1] = f21;
c[i + 2 + j * c_dim1] = f31;
c[i + 3 + j * c_dim1] = f41;
}
i5 = ii + isec - 1;
for (i = ii + uisec; i <= i5; ++i)
{
f11 = c[i + j * c_dim1];
i6 = ll + lsec - 1;
for (l = ll; l <= i6; ++l)
{
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
257] * b[l + j * b_dim1];
}
c[i + j * c_dim1] = f11;
}
}
}
}
}
}
free(t1);
return;
}
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
{
if (GFC_DESCRIPTOR_RANK (a) != 1)
{
const 'rtype_name` *restrict abase_x;
const 'rtype_name` *restrict bbase_y;
'rtype_name` *restrict dest_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase_x[n] * bbase_y[n];
dest_y[x] = s;
}
}
}
else
{
const 'rtype_name` *restrict bbase_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n];
dest[y*rystride] = s;
}
}
}
else if (GFC_DESCRIPTOR_RANK (a) == 1)
{
const 'rtype_name` *restrict bbase_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n*bxstride];
dest[y*rxstride] = s;
}
}
else if (axstride < aystride)
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = ('rtype_name`)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] +=
abase[x*axstride + n*aystride] *
bbase[n*bxstride + y*bystride];
}
else
{
const 'rtype_name` *restrict abase_x;
const 'rtype_name` *restrict bbase_y;
'rtype_name` *restrict dest_y;
'rtype_name` s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = ('rtype_name`) 0;
for (n = 0; n < count; n++)
s += abase_x[n*aystride] * bbase_y[n*bxstride];
dest_y[x*rxstride] = s;
}
}
}
}
#undef POW3
#undef min
#undef max
'