gcc/libsanitizer/sanitizer_common/sanitizer_win.cpp

1253 lines
38 KiB
C++

//===-- sanitizer_win.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <io.h>
#include <psapi.h>
#include <stdlib.h>
#include "sanitizer_common.h"
#include "sanitizer_file.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_win_defs.h"
#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
#pragma comment(lib, "psapi")
#endif
#if SANITIZER_WIN_TRACE
#include <traceloggingprovider.h>
// Windows trace logging provider init
#pragma comment(lib, "advapi32.lib")
TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
(0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
0x53, 0x0b, 0xd0, 0xf3, 0xfa));
#else
#define TraceLoggingUnregister(x)
#endif
// For WaitOnAddress
# pragma comment(lib, "synchronization.lib")
// A macro to tell the compiler that this part of the code cannot be reached,
// if the compiler supports this feature. Since we're using this in
// code that is called when terminating the process, the expansion of the
// macro should not terminate the process to avoid infinite recursion.
#if defined(__clang__)
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define BUILTIN_UNREACHABLE() __assume(0)
#else
# define BUILTIN_UNREACHABLE()
#endif
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
// --------------------- sanitizer_common.h
uptr GetPageSize() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
}
uptr GetMmapGranularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwAllocationGranularity;
}
uptr GetMaxUserVirtualAddress() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (uptr)si.lpMaximumApplicationAddress;
}
uptr GetMaxVirtualAddress() {
return GetMaxUserVirtualAddress();
}
bool FileExists(const char *filename) {
return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
}
bool DirExists(const char *path) {
auto attr = ::GetFileAttributesA(path);
return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
}
uptr internal_getpid() {
return GetProcessId(GetCurrentProcess());
}
int internal_dlinfo(void *handle, int request, void *p) {
UNIMPLEMENTED();
}
// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
tid_t GetTid() {
return GetCurrentThreadId();
}
uptr GetThreadSelf() {
return GetTid();
}
#if !SANITIZER_GO
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
MEMORY_BASIC_INFORMATION mbi;
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
// FIXME: is it possible for the stack to not be a single allocation?
// Are these values what ASan expects to get (reserved, not committed;
// including stack guard page) ?
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
*stack_bottom = (uptr)mbi.AllocationBase;
}
#endif // #if !SANITIZER_GO
bool ErrorIsOOM(error_t err) {
// TODO: This should check which `err`s correspond to OOM.
return false;
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0)
ReportMmapFailureAndDie(size, mem_type, "allocate",
GetLastError(), raw_report);
return rv;
}
void UnmapOrDie(void *addr, uptr size, bool raw_report) {
if (!size || !addr)
return;
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
// MEM_RELEASE can only be used to unmap whole regions previously mapped with
// VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
// fails try MEM_DECOMMIT.
if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report);
}
}
}
static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
const char *mmap_type) {
error_t last_error = GetLastError();
if (last_error == ERROR_NOT_ENOUGH_MEMORY)
return nullptr;
ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
return rv;
}
// We want to map a chunk of address space aligned to 'alignment'.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
// Windows will align our allocations to at least 64K.
alignment = Max(alignment, GetMmapGranularity());
uptr mapped_addr =
(uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (!mapped_addr)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
// If we got it right on the first try, return. Otherwise, unmap it and go to
// the slow path.
if (IsAligned(mapped_addr, alignment))
return (void*)mapped_addr;
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// If we didn't get an aligned address, overallocate, find an aligned address,
// unmap, and try to allocate at that aligned address.
int retries = 0;
const int kMaxRetries = 10;
for (; retries < kMaxRetries &&
(mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
retries++) {
// Overallocate size + alignment bytes.
mapped_addr =
(uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
if (!mapped_addr)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
// Find the aligned address.
uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
// Free the overallocation.
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// Attempt to allocate exactly the number of bytes we need at the aligned
// address. This may fail for a number of reasons, in which case we continue
// the loop.
mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
}
// Fail if we can't make this work quickly.
if (retries == kMaxRetries && mapped_addr == 0)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
return (void *)mapped_addr;
}
// ZeroMmapFixedRegion zero's out a region of memory previously returned from a
// call to one of the MmapFixed* helpers. On non-windows systems this would be
// done with another mmap, but on windows remapping is not an option.
// VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
// memory, but we can't do this atomically, so instead we fall back to using
// internal_memset.
bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
internal_memset((void*) fixed_addr, 0, size);
return true;
}
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
// but on Win64 it does.
(void)name; // unsupported
#if !SANITIZER_GO && SANITIZER_WINDOWS64
// On asan/Windows64, use MEM_COMMIT would result in error
// 1455:ERROR_COMMITMENT_LIMIT.
// Asan uses exception handler to commit page on demand.
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
#else
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
#endif
if (p == 0) {
Report("ERROR: %s failed to "
"allocate %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return false;
}
return true;
}
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
// FIXME: Windows support large pages too. Might be worth checking
return MmapFixedNoReserve(fixed_addr, size, name);
}
// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
// 'MmapFixedNoAccess'.
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
(void *)fixed_addr);
ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
}
return p;
}
// Uses fixed_addr for now.
// Will use offset instead once we've implemented this function for real.
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
const char *name) {
return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
// Only unmap if it covers the entire range.
CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
// We unmap the whole range, just null out the base.
base_ = nullptr;
size_ = 0;
UnmapOrDie(reinterpret_cast<void*>(addr), size);
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p",
(void *)fixed_addr);
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
}
return p;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
// FIXME: make this really NoReserve?
return MmapOrDie(size, mem_type);
}
uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
size_ = size;
name_ = name;
(void)os_handle_; // unsupported
return reinterpret_cast<uptr>(base_);
}
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
(void)name; // unsupported
void *res = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return res;
}
void *MmapNoAccess(uptr size) {
void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes (error code: %d)\n",
SanitizerToolName, size, size, GetLastError());
return res;
}
bool MprotectNoAccess(uptr addr, uptr size) {
DWORD old_protection;
return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
}
bool MprotectReadOnly(uptr addr, uptr size) {
DWORD old_protection;
return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
}
bool MprotectReadWrite(uptr addr, uptr size) {
DWORD old_protection;
return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
}
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
end_aligned = RoundDownTo(end, GetPageSizeCached());
CHECK(beg < end); // make sure the region is sane
if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
return;
UnmapOrDie((void *)beg, end_aligned - beg_aligned);
}
void SetShadowRegionHugePageMode(uptr addr, uptr size) {
// FIXME: probably similar to ReleaseMemoryToOS.
}
bool DontDumpShadowMemory(uptr addr, uptr length) {
// This is almost useless on 32-bits.
// FIXME: add madvise-analog when we move to 64-bits.
return true;
}
uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end,
uptr granularity) {
const uptr alignment =
Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
const uptr left_padding =
Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
uptr space_size = shadow_size_bytes + left_padding;
uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
granularity, nullptr, nullptr);
CHECK_NE((uptr)0, shadow_start);
CHECK(IsAligned(shadow_start, alignment));
return shadow_start;
}
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found,
uptr *max_occupied_addr) {
uptr address = 0;
while (true) {
MEMORY_BASIC_INFORMATION info;
if (!::VirtualQuery((void*)address, &info, sizeof(info)))
return 0;
if (info.State == MEM_FREE) {
uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
alignment);
if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
return shadow_address;
}
// Move to the next region.
address = (uptr)info.BaseAddress + info.RegionSize;
}
return 0;
}
uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
uptr num_aliases, uptr ring_buffer_size) {
CHECK(false && "HWASan aliasing is unimplemented on Windows");
return 0;
}
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
return mbi.Protect == PAGE_NOACCESS &&
(uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
UNIMPLEMENTED();
}
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
UNIMPLEMENTED();
}
static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;
namespace {
struct EnvVariable {
char name[kMaxEnvNameLength];
char value[kMaxEnvValueLength];
};
} // namespace
static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;
const char *GetEnv(const char *name) {
// Note: this implementation caches the values of the environment variables
// and limits their quantity.
for (int i = 0; i < num_env_vars; i++) {
if (0 == internal_strcmp(name, env_vars[i].name))
return env_vars[i].value;
}
CHECK_LT(num_env_vars, kEnvVariables);
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
kMaxEnvValueLength);
if (rv > 0 && rv < kMaxEnvValueLength) {
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
num_env_vars++;
return env_vars[num_env_vars - 1].value;
}
return 0;
}
const char *GetPwd() {
UNIMPLEMENTED();
}
u32 GetUid() {
UNIMPLEMENTED();
}
namespace {
struct ModuleInfo {
const char *filepath;
uptr base_address;
uptr end_address;
};
#if !SANITIZER_GO
int CompareModulesBase(const void *pl, const void *pr) {
const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
if (l->base_address < r->base_address)
return -1;
return l->base_address > r->base_address;
}
#endif
} // namespace
#if !SANITIZER_GO
void DumpProcessMap() {
Report("Dumping process modules:\n");
ListOfModules modules;
modules.init();
uptr num_modules = modules.size();
InternalMmapVector<ModuleInfo> module_infos(num_modules);
for (size_t i = 0; i < num_modules; ++i) {
module_infos[i].filepath = modules[i].full_name();
module_infos[i].base_address = modules[i].ranges().front()->beg;
module_infos[i].end_address = modules[i].ranges().back()->end;
}
qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
CompareModulesBase);
for (size_t i = 0; i < num_modules; ++i) {
const ModuleInfo &mi = module_infos[i];
if (mi.end_address != 0) {
Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
mi.filepath[0] ? mi.filepath : "[no name]");
} else if (mi.filepath[0]) {
Printf("\t??\?-??? %s\n", mi.filepath);
} else {
Printf("\t???\n");
}
}
}
#endif
void DisableCoreDumperIfNecessary() {
// Do nothing.
}
void ReExec() {
UNIMPLEMENTED();
}
void PlatformPrepareForSandboxing(void *args) {}
bool StackSizeIsUnlimited() {
UNIMPLEMENTED();
}
void SetStackSizeLimitInBytes(uptr limit) {
UNIMPLEMENTED();
}
bool AddressSpaceIsUnlimited() {
UNIMPLEMENTED();
}
void SetAddressSpaceUnlimited() {
UNIMPLEMENTED();
}
bool IsPathSeparator(const char c) {
return c == '\\' || c == '/';
}
static bool IsAlpha(char c) {
c = ToLower(c);
return c >= 'a' && c <= 'z';
}
bool IsAbsolutePath(const char *path) {
return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
IsPathSeparator(path[2]);
}
void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
u64 NanoTime() {
static LARGE_INTEGER frequency = {};
LARGE_INTEGER counter;
if (UNLIKELY(frequency.QuadPart == 0)) {
QueryPerformanceFrequency(&frequency);
CHECK_NE(frequency.QuadPart, 0);
}
QueryPerformanceCounter(&counter);
counter.QuadPart *= 1000ULL * 1000000ULL;
counter.QuadPart /= frequency.QuadPart;
return counter.QuadPart;
}
u64 MonotonicNanoTime() { return NanoTime(); }
void Abort() {
internal__exit(3);
}
bool CreateDir(const char *pathname) {
return CreateDirectoryA(pathname, nullptr) != 0;
}
#if !SANITIZER_GO
// Read the file to extract the ImageBase field from the PE header. If ASLR is
// disabled and this virtual address is available, the loader will typically
// load the image at this address. Therefore, we call it the preferred base. Any
// addresses in the DWARF typically assume that the object has been loaded at
// this address.
static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
fd_t fd = OpenFile(modname, RdOnly, nullptr);
if (fd == kInvalidFd)
return 0;
FileCloser closer(fd);
// Read just the DOS header.
IMAGE_DOS_HEADER dos_header;
uptr bytes_read;
if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
bytes_read != sizeof(dos_header))
return 0;
// The file should start with the right signature.
if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
return 0;
// The layout at e_lfanew is:
// "PE\0\0"
// IMAGE_FILE_HEADER
// IMAGE_OPTIONAL_HEADER
// Seek to e_lfanew and read all that data.
if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
INVALID_SET_FILE_POINTER)
return 0;
if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
return 0;
// Check for "PE\0\0" before the PE header.
char *pe_sig = &buf[0];
if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
return 0;
// Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
IMAGE_OPTIONAL_HEADER *pe_header =
(IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
// Check for more magic in the PE header.
if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
return 0;
// Finally, return the ImageBase.
return (uptr)pe_header->ImageBase;
}
void ListOfModules::init() {
clearOrInit();
HANDLE cur_process = GetCurrentProcess();
// Query the list of modules. Start by assuming there are no more than 256
// modules and retry if that's not sufficient.
HMODULE *hmodules = 0;
uptr modules_buffer_size = sizeof(HMODULE) * 256;
DWORD bytes_required;
while (!hmodules) {
hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
&bytes_required));
if (bytes_required > modules_buffer_size) {
// Either there turned out to be more than 256 hmodules, or new hmodules
// could have loaded since the last try. Retry.
UnmapOrDie(hmodules, modules_buffer_size);
hmodules = 0;
modules_buffer_size = bytes_required;
}
}
InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
sizeof(IMAGE_OPTIONAL_HEADER));
InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
InternalMmapVector<char> module_name(kMaxPathLength);
// |num_modules| is the number of modules actually present,
size_t num_modules = bytes_required / sizeof(HMODULE);
for (size_t i = 0; i < num_modules; ++i) {
HMODULE handle = hmodules[i];
MODULEINFO mi;
if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
continue;
// Get the UTF-16 path and convert to UTF-8.
int modname_utf16_len =
GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
if (modname_utf16_len == 0)
modname_utf16[0] = '\0';
int module_name_len = ::WideCharToMultiByte(
CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
kMaxPathLength, NULL, NULL);
module_name[module_name_len] = '\0';
uptr base_address = (uptr)mi.lpBaseOfDll;
uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
// Adjust the base address of the module so that we get a VA instead of an
// RVA when computing the module offset. This helps llvm-symbolizer find the
// right DWARF CU. In the common case that the image is loaded at it's
// preferred address, we will now print normal virtual addresses.
uptr preferred_base =
GetPreferredBase(&module_name[0], &buf[0], buf.size());
uptr adjusted_base = base_address - preferred_base;
modules_.push_back(LoadedModule());
LoadedModule &cur_module = modules_.back();
cur_module.set(&module_name[0], adjusted_base);
// We add the whole module as one single address range.
cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
/*writable*/ true);
}
UnmapOrDie(hmodules, modules_buffer_size);
}
void ListOfModules::fallbackInit() { clear(); }
// We can't use atexit() directly at __asan_init time as the CRT is not fully
// initialized at this point. Place the functions into a vector and use
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
static int queueAtexit(void (*function)(void)) {
atexit_functions.push_back(function);
return 0;
}
// If Atexit() is being called after RunAtexit() has already been run, it needs
// to be able to call atexit() directly. Here we use a function ponter to
// switch out its behaviour.
// An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
// On this environment, __asan_init is called during global constructor phase,
// way after calling the .CRT$XID initializer.
static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
static int RunAtexit() {
TraceLoggingUnregister(g_asan_provider);
queueOrCallAtExit = &atexit;
int ret = 0;
for (uptr i = 0; i < atexit_functions.size(); ++i) {
ret |= atexit(atexit_functions[i]);
}
return ret;
}
#pragma section(".CRT$XID", long, read)
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
#endif
// ------------------ sanitizer_libc.h
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
// FIXME: Use the wide variants to handle Unicode filenames.
fd_t res;
if (mode == RdOnly) {
res = CreateFileA(filename, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
} else if (mode == WrOnly) {
res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, nullptr);
} else {
UNIMPLEMENTED();
}
CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
if (res == kInvalidFd && last_error)
*last_error = GetLastError();
return res;
}
void CloseFile(fd_t fd) {
CloseHandle(fd);
}
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// bytes_read can't be passed directly to ReadFile:
// uptr is unsigned long long on 64-bit Windows.
unsigned long num_read_long;
bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
if (!success && error_p)
*error_p = GetLastError();
if (bytes_read)
*bytes_read = num_read_long;
return success;
}
bool SupportsColoredOutput(fd_t fd) {
// FIXME: support colored output.
return false;
}
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// Handle null optional parameters.
error_t dummy_error;
error_p = error_p ? error_p : &dummy_error;
uptr dummy_bytes_written;
bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
// Initialize output parameters in case we fail.
*error_p = 0;
*bytes_written = 0;
// Map the conventional Unix fds 1 and 2 to Windows handles. They might be
// closed, in which case this will fail.
if (fd == kStdoutFd || fd == kStderrFd) {
fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
if (fd == 0) {
*error_p = ERROR_INVALID_HANDLE;
return false;
}
}
DWORD bytes_written_32;
if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
*error_p = GetLastError();
return false;
} else {
*bytes_written = bytes_written_32;
return true;
}
}
uptr internal_sched_yield() {
Sleep(0);
return 0;
}
void internal__exit(int exitcode) {
TraceLoggingUnregister(g_asan_provider);
// ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
// The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
// so add our own breakpoint here.
if (::IsDebuggerPresent())
__debugbreak();
TerminateProcess(GetCurrentProcess(), exitcode);
BUILTIN_UNREACHABLE();
}
uptr internal_ftruncate(fd_t fd, uptr size) {
UNIMPLEMENTED();
}
uptr GetRSS() {
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
return 0;
return counters.WorkingSetSize;
}
void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) { }
void FutexWait(atomic_uint32_t *p, u32 cmp) {
WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
}
void FutexWake(atomic_uint32_t *p, u32 count) {
if (count == 1)
WakeByAddressSingle(p);
else
WakeByAddressAll(p);
}
uptr GetTlsSize() {
return 0;
}
void GetThreadStackAndTls(bool main, uptr *stk_begin, uptr *stk_end,
uptr *tls_begin, uptr *tls_end) {
# if SANITIZER_GO
*stk_begin = 0;
*stk_end = 0;
*tls_begin = 0;
*tls_end = 0;
# else
GetThreadStackTopAndBottom(main, stk_end, stk_begin);
*tls_begin = 0;
*tls_end = 0;
# endif
}
void ReportFile::Write(const char *buffer, uptr length) {
SpinMutexLock l(mu);
ReopenIfNecessary();
if (!WriteToFile(fd, buffer, length)) {
// stderr may be closed, but we may be able to print to the debugger
// instead. This is the case when launching a program from Visual Studio,
// and the following routine should write to its console.
OutputDebugStringA(buffer);
}
}
void SetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void UnsetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {
(void)handler;
// FIXME: Decide what to do on Windows.
}
HandleSignalMode GetHandleSignalMode(int signum) {
// FIXME: Decide what to do on Windows.
return kHandleSignalNo;
}
// Check based on flags if we should handle this exception.
bool IsHandledDeadlyException(DWORD exceptionCode) {
switch (exceptionCode) {
case EXCEPTION_ACCESS_VIOLATION:
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
case EXCEPTION_STACK_OVERFLOW:
case EXCEPTION_DATATYPE_MISALIGNMENT:
case EXCEPTION_IN_PAGE_ERROR:
return common_flags()->handle_segv;
case EXCEPTION_ILLEGAL_INSTRUCTION:
case EXCEPTION_PRIV_INSTRUCTION:
case EXCEPTION_BREAKPOINT:
return common_flags()->handle_sigill;
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_INVALID_OPERATION:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_STACK_CHECK:
case EXCEPTION_FLT_UNDERFLOW:
case EXCEPTION_INT_DIVIDE_BY_ZERO:
case EXCEPTION_INT_OVERFLOW:
return common_flags()->handle_sigfpe;
}
return false;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
SYSTEM_INFO si;
GetNativeSystemInfo(&si);
uptr page_size = si.dwPageSize;
uptr page_mask = ~(page_size - 1);
for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
page <= end;) {
MEMORY_BASIC_INFORMATION info;
if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
return false;
if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
info.Protect == PAGE_EXECUTE)
return false;
if (info.RegionSize == 0)
return false;
page += info.RegionSize;
}
return true;
}
bool TryMemCpy(void *dest, const void *src, uptr n) {
// TODO: implement.
return false;
}
bool SignalContext::IsStackOverflow() const {
return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
}
void SignalContext::InitPcSpBp() {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
CONTEXT *context_record = (CONTEXT *)context;
pc = (uptr)exception_record->ExceptionAddress;
# if SANITIZER_WINDOWS64
# if SANITIZER_ARM64
bp = (uptr)context_record->Fp;
sp = (uptr)context_record->Sp;
# else
bp = (uptr)context_record->Rbp;
sp = (uptr)context_record->Rsp;
# endif
# else
# if SANITIZER_ARM
bp = (uptr)context_record->R11;
sp = (uptr)context_record->Sp;
# else
bp = (uptr)context_record->Ebp;
sp = (uptr)context_record->Esp;
# endif
# endif
}
uptr SignalContext::GetAddress() const {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
return exception_record->ExceptionInformation[1];
return (uptr)exception_record->ExceptionAddress;
}
bool SignalContext::IsMemoryAccess() const {
return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
EXCEPTION_ACCESS_VIOLATION;
}
bool SignalContext::IsTrueFaultingAddress() const { return true; }
SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
// The write flag is only available for access violation exceptions.
if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return SignalContext::Unknown;
// The contents of this array are documented at
// https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
// The first element indicates read as 0, write as 1, or execute as 8. The
// second element is the faulting address.
switch (exception_record->ExceptionInformation[0]) {
case 0:
return SignalContext::Read;
case 1:
return SignalContext::Write;
case 8:
return SignalContext::Unknown;
}
return SignalContext::Unknown;
}
void SignalContext::DumpAllRegisters(void *context) {
CONTEXT *ctx = (CONTEXT *)context;
# if defined(_M_X64)
Report("Register values:\n");
Printf("rax = %llx ", ctx->Rax);
Printf("rbx = %llx ", ctx->Rbx);
Printf("rcx = %llx ", ctx->Rcx);
Printf("rdx = %llx ", ctx->Rdx);
Printf("\n");
Printf("rdi = %llx ", ctx->Rdi);
Printf("rsi = %llx ", ctx->Rsi);
Printf("rbp = %llx ", ctx->Rbp);
Printf("rsp = %llx ", ctx->Rsp);
Printf("\n");
Printf("r8 = %llx ", ctx->R8);
Printf("r9 = %llx ", ctx->R9);
Printf("r10 = %llx ", ctx->R10);
Printf("r11 = %llx ", ctx->R11);
Printf("\n");
Printf("r12 = %llx ", ctx->R12);
Printf("r13 = %llx ", ctx->R13);
Printf("r14 = %llx ", ctx->R14);
Printf("r15 = %llx ", ctx->R15);
Printf("\n");
# elif defined(_M_IX86)
Report("Register values:\n");
Printf("eax = %lx ", ctx->Eax);
Printf("ebx = %lx ", ctx->Ebx);
Printf("ecx = %lx ", ctx->Ecx);
Printf("edx = %lx ", ctx->Edx);
Printf("\n");
Printf("edi = %lx ", ctx->Edi);
Printf("esi = %lx ", ctx->Esi);
Printf("ebp = %lx ", ctx->Ebp);
Printf("esp = %lx ", ctx->Esp);
Printf("\n");
# elif defined(_M_ARM64)
Report("Register values:\n");
for (int i = 0; i <= 30; i++) {
Printf("x%d%s = %llx", i < 10 ? " " : "", ctx->X[i]);
if (i % 4 == 3)
Printf("\n");
}
# else
// TODO
(void)ctx;
# endif
}
int SignalContext::GetType() const {
return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
}
const char *SignalContext::Describe() const {
unsigned code = GetType();
// Get the string description of the exception if this is a known deadly
// exception.
switch (code) {
case EXCEPTION_ACCESS_VIOLATION:
return "access-violation";
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
return "array-bounds-exceeded";
case EXCEPTION_STACK_OVERFLOW:
return "stack-overflow";
case EXCEPTION_DATATYPE_MISALIGNMENT:
return "datatype-misalignment";
case EXCEPTION_IN_PAGE_ERROR:
return "in-page-error";
case EXCEPTION_ILLEGAL_INSTRUCTION:
return "illegal-instruction";
case EXCEPTION_PRIV_INSTRUCTION:
return "priv-instruction";
case EXCEPTION_BREAKPOINT:
return "breakpoint";
case EXCEPTION_FLT_DENORMAL_OPERAND:
return "flt-denormal-operand";
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
return "flt-divide-by-zero";
case EXCEPTION_FLT_INEXACT_RESULT:
return "flt-inexact-result";
case EXCEPTION_FLT_INVALID_OPERATION:
return "flt-invalid-operation";
case EXCEPTION_FLT_OVERFLOW:
return "flt-overflow";
case EXCEPTION_FLT_STACK_CHECK:
return "flt-stack-check";
case EXCEPTION_FLT_UNDERFLOW:
return "flt-underflow";
case EXCEPTION_INT_DIVIDE_BY_ZERO:
return "int-divide-by-zero";
case EXCEPTION_INT_OVERFLOW:
return "int-overflow";
}
return "unknown exception";
}
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
if (buf_len == 0)
return 0;
// Get the UTF-16 path and convert to UTF-8.
InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
int binname_utf16_len =
GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
if (binname_utf16_len == 0) {
buf[0] = '\0';
return 0;
}
int binary_name_len =
::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
buf, buf_len, NULL, NULL);
if ((unsigned)binary_name_len == buf_len)
--binary_name_len;
buf[binary_name_len] = '\0';
return binary_name_len;
}
uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
void CheckVMASize() {
// Do nothing.
}
void InitializePlatformEarly() {
// Do nothing.
}
void CheckASLR() {
// Do nothing
}
void CheckMPROTECT() {
// Do nothing
}
char **GetArgv() {
// FIXME: Actually implement this function.
return 0;
}
char **GetEnviron() {
// FIXME: Actually implement this function.
return 0;
}
pid_t StartSubprocess(const char *program, const char *const argv[],
const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
fd_t stderr_fd) {
// FIXME: implement on this platform
// Should be implemented based on
// SymbolizerProcess::StarAtSymbolizerSubprocess
// from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
return -1;
}
bool IsProcessRunning(pid_t pid) {
// FIXME: implement on this platform.
return false;
}
int WaitForProcess(pid_t pid) { return -1; }
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
void CheckNoDeepBind(const char *filename, int flag) {
// Do nothing.
}
// FIXME: implement on this platform.
bool GetRandom(void *buffer, uptr length, bool blocking) {
UNIMPLEMENTED();
}
u32 GetNumberOfCPUs() {
SYSTEM_INFO sysinfo = {};
GetNativeSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
}
#if SANITIZER_WIN_TRACE
// TODO(mcgov): Rename this project-wide to PlatformLogInit
void AndroidLogInit(void) {
HRESULT hr = TraceLoggingRegister(g_asan_provider);
if (!SUCCEEDED(hr))
return;
}
void SetAbortMessage(const char *) {}
void LogFullErrorReport(const char *buffer) {
if (common_flags()->log_to_syslog) {
InternalMmapVector<wchar_t> filename;
DWORD filename_length = 0;
do {
filename.resize(filename.size() + 0x100);
filename_length =
GetModuleFileNameW(NULL, filename.begin(), filename.size());
} while (filename_length >= filename.size());
TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
TraceLoggingValue(filename.begin(), "ExecutableName"),
TraceLoggingValue(buffer, "AsanReportContents"));
}
}
#endif // SANITIZER_WIN_TRACE
void InitializePlatformCommonFlags(CommonFlags *cf) {}
} // namespace __sanitizer
#endif // _WIN32