mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
28219f7f99
The following patch is result of libsanitizer/merge.sh from c425db2eb558c263 (yesterday evening). Bootstrapped/regtested on x86_64-linux and i686-linux (together with the follow-up 3 patches I'm about to post). BTW, seems upstream has added riscv64 support for I think lsan/tsan, so if anyone is willing to try it there, it would be a matter of copying e.g. the s390*-*-linux* libsanitizer/configure.tgt entry to riscv64-*-linux* with the obvious s/s390x/riscv64/ change in it.
200 lines
6.4 KiB
C++
200 lines
6.4 KiB
C++
//===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the Sanitizer Allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
#error This file must be included inside sanitizer_allocator.h
|
|
#endif
|
|
|
|
// This class implements a complete memory allocator by using two
|
|
// internal allocators:
|
|
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
|
|
// When allocating 2^x bytes it should return 2^x aligned chunk.
|
|
// PrimaryAllocator is used via a local AllocatorCache.
|
|
// SecondaryAllocator can allocate anything, but is not efficient.
|
|
template <class PrimaryAllocator,
|
|
class LargeMmapAllocatorPtrArray = DefaultLargeMmapAllocatorPtrArray>
|
|
class CombinedAllocator {
|
|
public:
|
|
using AllocatorCache = typename PrimaryAllocator::AllocatorCache;
|
|
using SecondaryAllocator =
|
|
LargeMmapAllocator<typename PrimaryAllocator::MapUnmapCallback,
|
|
LargeMmapAllocatorPtrArray,
|
|
typename PrimaryAllocator::AddressSpaceView>;
|
|
|
|
void InitLinkerInitialized(s32 release_to_os_interval_ms,
|
|
uptr heap_start = 0) {
|
|
primary_.Init(release_to_os_interval_ms, heap_start);
|
|
secondary_.InitLinkerInitialized();
|
|
}
|
|
|
|
void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
|
|
stats_.Init();
|
|
primary_.Init(release_to_os_interval_ms, heap_start);
|
|
secondary_.Init();
|
|
}
|
|
|
|
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) {
|
|
// Returning 0 on malloc(0) may break a lot of code.
|
|
if (size == 0)
|
|
size = 1;
|
|
if (size + alignment < size) {
|
|
Report("WARNING: %s: CombinedAllocator allocation overflow: "
|
|
"0x%zx bytes with 0x%zx alignment requested\n",
|
|
SanitizerToolName, size, alignment);
|
|
return nullptr;
|
|
}
|
|
uptr original_size = size;
|
|
// If alignment requirements are to be fulfilled by the frontend allocator
|
|
// rather than by the primary or secondary, passing an alignment lower than
|
|
// or equal to 8 will prevent any further rounding up, as well as the later
|
|
// alignment check.
|
|
if (alignment > 8)
|
|
size = RoundUpTo(size, alignment);
|
|
// The primary allocator should return a 2^x aligned allocation when
|
|
// requested 2^x bytes, hence using the rounded up 'size' when being
|
|
// serviced by the primary (this is no longer true when the primary is
|
|
// using a non-fixed base address). The secondary takes care of the
|
|
// alignment without such requirement, and allocating 'size' would use
|
|
// extraneous memory, so we employ 'original_size'.
|
|
void *res;
|
|
if (primary_.CanAllocate(size, alignment))
|
|
res = cache->Allocate(&primary_, primary_.ClassID(size));
|
|
else
|
|
res = secondary_.Allocate(&stats_, original_size, alignment);
|
|
if (alignment > 8)
|
|
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
|
|
return res;
|
|
}
|
|
|
|
s32 ReleaseToOSIntervalMs() const {
|
|
return primary_.ReleaseToOSIntervalMs();
|
|
}
|
|
|
|
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
|
|
primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms);
|
|
}
|
|
|
|
void ForceReleaseToOS() {
|
|
primary_.ForceReleaseToOS();
|
|
}
|
|
|
|
void Deallocate(AllocatorCache *cache, void *p) {
|
|
if (!p) return;
|
|
if (primary_.PointerIsMine(p))
|
|
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
|
|
else
|
|
secondary_.Deallocate(&stats_, p);
|
|
}
|
|
|
|
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
|
|
uptr alignment) {
|
|
if (!p)
|
|
return Allocate(cache, new_size, alignment);
|
|
if (!new_size) {
|
|
Deallocate(cache, p);
|
|
return nullptr;
|
|
}
|
|
CHECK(PointerIsMine(p));
|
|
uptr old_size = GetActuallyAllocatedSize(p);
|
|
uptr memcpy_size = Min(new_size, old_size);
|
|
void *new_p = Allocate(cache, new_size, alignment);
|
|
if (new_p)
|
|
internal_memcpy(new_p, p, memcpy_size);
|
|
Deallocate(cache, p);
|
|
return new_p;
|
|
}
|
|
|
|
bool PointerIsMine(const void *p) const {
|
|
if (primary_.PointerIsMine(p))
|
|
return true;
|
|
return secondary_.PointerIsMine(p);
|
|
}
|
|
|
|
bool FromPrimary(const void *p) const { return primary_.PointerIsMine(p); }
|
|
|
|
void *GetMetaData(const void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetMetaData(p);
|
|
return secondary_.GetMetaData(p);
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetBlockBegin(p);
|
|
return secondary_.GetBlockBegin(p);
|
|
}
|
|
|
|
// This function does the same as GetBlockBegin, but is much faster.
|
|
// Must be called with the allocator locked.
|
|
void *GetBlockBeginFastLocked(const void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetBlockBegin(p);
|
|
return secondary_.GetBlockBeginFastLocked(p);
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetActuallyAllocatedSize(p);
|
|
return secondary_.GetActuallyAllocatedSize(p);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
|
|
}
|
|
|
|
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
|
|
|
|
void InitCache(AllocatorCache *cache) {
|
|
cache->Init(&stats_);
|
|
}
|
|
|
|
void DestroyCache(AllocatorCache *cache) {
|
|
cache->Destroy(&primary_, &stats_);
|
|
}
|
|
|
|
void SwallowCache(AllocatorCache *cache) {
|
|
cache->Drain(&primary_);
|
|
}
|
|
|
|
void GetStats(AllocatorStatCounters s) const {
|
|
stats_.Get(s);
|
|
}
|
|
|
|
void PrintStats() {
|
|
primary_.PrintStats();
|
|
secondary_.PrintStats();
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
primary_.ForceLock();
|
|
secondary_.ForceLock();
|
|
}
|
|
|
|
void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
|
|
secondary_.ForceUnlock();
|
|
primary_.ForceUnlock();
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
primary_.ForEachChunk(callback, arg);
|
|
secondary_.ForEachChunk(callback, arg);
|
|
}
|
|
|
|
private:
|
|
PrimaryAllocator primary_;
|
|
SecondaryAllocator secondary_;
|
|
AllocatorGlobalStats stats_;
|
|
};
|