mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
4239f144ce
libquadmath sources are mostly based on glibc sources at present, but derived from them by a manual editing / substitution process and with subsequent manual merges. The manual effort involved in merges means they are sometimes incomplete and long-delayed. Since libquadmath was first created, glibc's support for this format has undergone significant changes so that it can also be used in glibc to provide *f128 functions for the _Float128 type from TS 18661-3. This makes it significantly easier to use it for libquadmath in a more automated fashion, since glibc has a float128_private.h header that redefines many identifiers as macros as needed for building *f128 functions. Simply using float128_private.h directly in libquadmath, with unmodified glibc sources except for changing function names in that one header to be *q instead of *f128, would be tricky, given its dependence on lots of other glibc-internal headers (whereas libquadmath supports non-glibc systems), and also given how some libm functions in glibc are built from type-generic templates using a further set of macros rather than from separate function implementations for each type. So instead this patch adds a script update-quadmath.py to convert glibc sources into libquadmath ones, and the script reads float128_private.h to identify many of the substitutions it should make. quadmath-imp.h is updated with various new internal definitions, taken from glibc as needed; this is the main place expected to need updating manually when subsequent merges from glibc are done using the script. No attempt is made to make the script output match the details of existing formatting, although the differences are of a size that makes a rough comparison (ignoring whitespace) possible. Two new public interfaces are added to libquadmath, exp2q and issignalingq, at a new QUADMATH_1.2 symbol version, since those interfaces are used internally by some of the glibc sources being merged into libquadmath; although there is a new symbol version, no change however is made to the libtool version in the libtool-version file. Although there are various other interfaces now in glibc libm but not in libquadmath, this patch does nothing to add such interfaces (although adding many of them would in fact be easy to do, given the script). One internal file (not providing any public interfaces), math/isinf_nsq.c, is removed, as no longer used by anything in libquadmath after the merge. Conditionals in individual source files on <fenv.h> availability or features are moved into quadmath-imp.h (providing trivial macro versions of the functions if real implementations aren't available), to simplify the substitutions in individual source files. Note however that I haven't tested for any configurations lacking <fenv.h>, so further changes could well be needed there. Two files in libquadmath/math/ are based on glibc sources but not updated in this patch: fmaq.c and rem_pio2q.c. Both could be updated after further changes to the script (and quadmath-imp.h as needed); in the case of rem_pio2q.c, based on two separate glibc source files, those separate files would naturally be split out into separate libquadmath source files in the process (as done in this patch with expq_table.h and tanq_kernel.c, where previously two glibc source files had been merged into one libquadmath source file). complex.c, nanq.c and sqrtq.c are not based on glibc sources (though four of the (trivial) functions in complex.c could readily be replaced by instead using the four corresponding files from glibc, if desired). libquadmath also has printf/ and strtod/ sources based on glibc, also mostly not updated for a long time. Again the script could no doubt be made to generate those automatically, although that would be a larger change (effectively some completely separate logic in the script, not sharing much if anything with the existing code). Bootstrapped with no regressions on x86_64-pc-linux-gnu. PR libquadmath/68686 * Makefile.am: (libquadmath_la_SOURCES): Remove math/isinf_nsq.c. Add math/exp2q.c math/issignalingq.c math/lgammaq_neg.c math/lgammaq_product.c math/tanq_kernel.c math/tgammaq_product.c math/casinhq_kernel.c. * Makefile.in: Regenerate. * libquadmath.texi (exp2q, issignalingq): Document. * quadmath-imp.h: Include <errno.h>, <limits.h>, <stdbool.h> and <fenv.h>. (HIGH_ORDER_BIT_IS_SET_FOR_SNAN, FIX_FLT128_LONG_CONVERT_OVERFLOW) (FIX_FLT128_LLONG_CONVERT_OVERFLOW, __quadmath_kernel_tanq) (__quadmath_gamma_productq, __quadmath_gammaq_r) (__quadmath_lgamma_negq, __quadmath_lgamma_productq) (__quadmath_lgammaq_r, __quadmath_kernel_casinhq, mul_splitq) (math_check_force_underflow_complex, __glibc_likely) (__glibc_unlikely, struct rm_ctx, SET_RESTORE_ROUNDF128) (libc_feholdsetround_ctx, libc_feresetround_ctx): New. (feraiseexcept, fenv_t, feholdexcept, fesetround, feupdateenv) (fesetenv, fetestexcept, feclearexcept): Define if not supported through <fenv.h>. (__quadmath_isinf_nsq): Remove. * quadmath.h (exp2q, issignalingq): New. * quadmath.map (QUADMATH_1.2): New. * quadmath_weak.h (exp2q, issignalingq): New. * update-quadmath.py: New file. * math/isinf_nsq.c: Remove file. * math/casinhq_kernel.c, math/exp2q.c, math/expq_table.h, math/issignalingq.c, math/lgammaq_neg.c, math/lgammaq_product.c, math/tanq_kernel.c, math/tgammaq_product.c: New files. Generated from glibc sources with update-quadmath.py. * math/acoshq.c, math/acosq.c, math/asinhq.c, math/asinq.c, math/atan2q.c, math/atanhq.c, math/atanq.c, math/cacoshq.c, math/cacosq.c, math/casinhq.c, math/casinq.c, math/catanhq.c, math/catanq.c, math/cbrtq.c, math/ccoshq.c, math/ceilq.c, math/cexpq.c, math/cimagq.c, math/clog10q.c, math/clogq.c, math/conjq.c, math/copysignq.c, math/coshq.c, math/cosq.c, math/cosq_kernel.c, math/cprojq.c, math/crealq.c, math/csinhq.c, math/csinq.c, math/csqrtq.c, math/ctanhq.c, math/ctanq.c, math/erfq.c, math/expm1q.c, math/expq.c, math/fabsq.c, math/fdimq.c, math/finiteq.c, math/floorq.c, math/fmaxq.c, math/fminq.c, math/fmodq.c, math/frexpq.c, math/hypotq.c, math/ilogbq.c, math/isinfq.c, math/isnanq.c, math/j0q.c, math/j1q.c, math/jnq.c, math/ldexpq.c, math/lgammaq.c, math/llrintq.c, math/llroundq.c, math/log10q.c, math/log1pq.c, math/log2q.c, math/logbq.c, math/logq.c, math/lrintq.c, math/lroundq.c, math/modfq.c, math/nearbyintq.c, math/nextafterq.c, math/powq.c, math/remainderq.c, math/remquoq.c, math/rintq.c, math/roundq.c, math/scalblnq.c, math/scalbnq.c, math/signbitq.c, math/sincos_table.c, math/sincosq.c, math/sincosq_kernel.c, math/sinhq.c, math/sinq.c, math/sinq_kernel.c, math/tanhq.c, math/tanq.c, math/tgammaq.c, math/truncq.c, math/x2y2m1q.c: Regenerate from glibc sources with update-quadmath.py. From-SVN: r265822
958 lines
32 KiB
C
958 lines
32 KiB
C
/* j1l.c
|
|
*
|
|
* Bessel function of order one
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, j1l();
|
|
*
|
|
* y = j1l( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns Bessel function of first kind, order one of the argument.
|
|
*
|
|
* The domain is divided into two major intervals [0, 2] and
|
|
* (2, infinity). In the first interval the rational approximation is
|
|
* J1(x) = .5x + x x^2 R(x^2)
|
|
*
|
|
* The second interval is further partitioned into eight equal segments
|
|
* of 1/x.
|
|
* J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
|
|
* X = x - 3 pi / 4,
|
|
*
|
|
* and the auxiliary functions are given by
|
|
*
|
|
* J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
|
|
* P1(x) = 1 + 1/x^2 R(1/x^2)
|
|
*
|
|
* Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
|
|
* Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Absolute error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 100000 2.8e-34 2.7e-35
|
|
*
|
|
*
|
|
*/
|
|
|
|
/* y1l.c
|
|
*
|
|
* Bessel function of the second kind, order one
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, y1l();
|
|
*
|
|
* y = y1l( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns Bessel function of the second kind, of order
|
|
* one, of the argument.
|
|
*
|
|
* The domain is divided into two major intervals [0, 2] and
|
|
* (2, infinity). In the first interval the rational approximation is
|
|
* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
|
|
* In the second interval the approximation is the same as for J1(x), and
|
|
* Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
|
|
* X = x - 3 pi / 4.
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Absolute error, when y0(x) < 1; else relative error:
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 100000 2.7e-34 2.9e-35
|
|
*
|
|
*/
|
|
|
|
/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
/* 1 / sqrt(pi) */
|
|
static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
|
|
/* 2 / pi */
|
|
static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
|
|
static const __float128 zero = 0;
|
|
|
|
/* J1(x) = .5x + x x^2 R(x^2)
|
|
Peak relative error 1.9e-35
|
|
0 <= x <= 2 */
|
|
#define NJ0_2N 6
|
|
static const __float128 J0_2N[NJ0_2N + 1] = {
|
|
-5.943799577386942855938508697619735179660E16Q,
|
|
1.812087021305009192259946997014044074711E15Q,
|
|
-2.761698314264509665075127515729146460895E13Q,
|
|
2.091089497823600978949389109350658815972E11Q,
|
|
-8.546413231387036372945453565654130054307E8Q,
|
|
1.797229225249742247475464052741320612261E6Q,
|
|
-1.559552840946694171346552770008812083969E3Q
|
|
};
|
|
#define NJ0_2D 6
|
|
static const __float128 J0_2D[NJ0_2D + 1] = {
|
|
9.510079323819108569501613916191477479397E17Q,
|
|
1.063193817503280529676423936545854693915E16Q,
|
|
5.934143516050192600795972192791775226920E13Q,
|
|
2.168000911950620999091479265214368352883E11Q,
|
|
5.673775894803172808323058205986256928794E8Q,
|
|
1.080329960080981204840966206372671147224E6Q,
|
|
1.411951256636576283942477881535283304912E3Q,
|
|
/* 1.000000000000000000000000000000000000000E0L */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0 <= 1/x <= .0625
|
|
Peak relative error 3.6e-36 */
|
|
#define NP16_IN 9
|
|
static const __float128 P16_IN[NP16_IN + 1] = {
|
|
5.143674369359646114999545149085139822905E-16Q,
|
|
4.836645664124562546056389268546233577376E-13Q,
|
|
1.730945562285804805325011561498453013673E-10Q,
|
|
3.047976856147077889834905908605310585810E-8Q,
|
|
2.855227609107969710407464739188141162386E-6Q,
|
|
1.439362407936705484122143713643023998457E-4Q,
|
|
3.774489768532936551500999699815873422073E-3Q,
|
|
4.723962172984642566142399678920790598426E-2Q,
|
|
2.359289678988743939925017240478818248735E-1Q,
|
|
3.032580002220628812728954785118117124520E-1Q,
|
|
};
|
|
#define NP16_ID 9
|
|
static const __float128 P16_ID[NP16_ID + 1] = {
|
|
4.389268795186898018132945193912677177553E-15Q,
|
|
4.132671824807454334388868363256830961655E-12Q,
|
|
1.482133328179508835835963635130894413136E-9Q,
|
|
2.618941412861122118906353737117067376236E-7Q,
|
|
2.467854246740858470815714426201888034270E-5Q,
|
|
1.257192927368839847825938545925340230490E-3Q,
|
|
3.362739031941574274949719324644120720341E-2Q,
|
|
4.384458231338934105875343439265370178858E-1Q,
|
|
2.412830809841095249170909628197264854651E0Q,
|
|
4.176078204111348059102962617368214856874E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0.0625 <= 1/x <= 0.125
|
|
Peak relative error 1.9e-36 */
|
|
#define NP8_16N 11
|
|
static const __float128 P8_16N[NP8_16N + 1] = {
|
|
2.984612480763362345647303274082071598135E-16Q,
|
|
1.923651877544126103941232173085475682334E-13Q,
|
|
4.881258879388869396043760693256024307743E-11Q,
|
|
6.368866572475045408480898921866869811889E-9Q,
|
|
4.684818344104910450523906967821090796737E-7Q,
|
|
2.005177298271593587095982211091300382796E-5Q,
|
|
4.979808067163957634120681477207147536182E-4Q,
|
|
6.946005761642579085284689047091173581127E-3Q,
|
|
5.074601112955765012750207555985299026204E-2Q,
|
|
1.698599455896180893191766195194231825379E-1Q,
|
|
1.957536905259237627737222775573623779638E-1Q,
|
|
2.991314703282528370270179989044994319374E-2Q,
|
|
};
|
|
#define NP8_16D 10
|
|
static const __float128 P8_16D[NP8_16D + 1] = {
|
|
2.546869316918069202079580939942463010937E-15Q,
|
|
1.644650111942455804019788382157745229955E-12Q,
|
|
4.185430770291694079925607420808011147173E-10Q,
|
|
5.485331966975218025368698195861074143153E-8Q,
|
|
4.062884421686912042335466327098932678905E-6Q,
|
|
1.758139661060905948870523641319556816772E-4Q,
|
|
4.445143889306356207566032244985607493096E-3Q,
|
|
6.391901016293512632765621532571159071158E-2Q,
|
|
4.933040207519900471177016015718145795434E-1Q,
|
|
1.839144086168947712971630337250761842976E0Q,
|
|
2.715120873995490920415616716916149586579E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
0.125 <= 1/x <= 0.1875
|
|
Peak relative error 1.3e-36 */
|
|
#define NP5_8N 10
|
|
static const __float128 P5_8N[NP5_8N + 1] = {
|
|
2.837678373978003452653763806968237227234E-12Q,
|
|
9.726641165590364928442128579282742354806E-10Q,
|
|
1.284408003604131382028112171490633956539E-7Q,
|
|
8.524624695868291291250573339272194285008E-6Q,
|
|
3.111516908953172249853673787748841282846E-4Q,
|
|
6.423175156126364104172801983096596409176E-3Q,
|
|
7.430220589989104581004416356260692450652E-2Q,
|
|
4.608315409833682489016656279567605536619E-1Q,
|
|
1.396870223510964882676225042258855977512E0Q,
|
|
1.718500293904122365894630460672081526236E0Q,
|
|
5.465927698800862172307352821870223855365E-1Q
|
|
};
|
|
#define NP5_8D 10
|
|
static const __float128 P5_8D[NP5_8D + 1] = {
|
|
2.421485545794616609951168511612060482715E-11Q,
|
|
8.329862750896452929030058039752327232310E-9Q,
|
|
1.106137992233383429630592081375289010720E-6Q,
|
|
7.405786153760681090127497796448503306939E-5Q,
|
|
2.740364785433195322492093333127633465227E-3Q,
|
|
5.781246470403095224872243564165254652198E-2Q,
|
|
6.927711353039742469918754111511109983546E-1Q,
|
|
4.558679283460430281188304515922826156690E0Q,
|
|
1.534468499844879487013168065728837900009E1Q,
|
|
2.313927430889218597919624843161569422745E1Q,
|
|
1.194506341319498844336768473218382828637E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.4e-36
|
|
0.1875 <= 1/x <= 0.25 */
|
|
#define NP4_5N 10
|
|
static const __float128 P4_5N[NP4_5N + 1] = {
|
|
1.846029078268368685834261260420933914621E-10Q,
|
|
3.916295939611376119377869680335444207768E-8Q,
|
|
3.122158792018920627984597530935323997312E-6Q,
|
|
1.218073444893078303994045653603392272450E-4Q,
|
|
2.536420827983485448140477159977981844883E-3Q,
|
|
2.883011322006690823959367922241169171315E-2Q,
|
|
1.755255190734902907438042414495469810830E-1Q,
|
|
5.379317079922628599870898285488723736599E-1Q,
|
|
7.284904050194300773890303361501726561938E-1Q,
|
|
3.270110346613085348094396323925000362813E-1Q,
|
|
1.804473805689725610052078464951722064757E-2Q,
|
|
};
|
|
#define NP4_5D 9
|
|
static const __float128 P4_5D[NP4_5D + 1] = {
|
|
1.575278146806816970152174364308980863569E-9Q,
|
|
3.361289173657099516191331123405675054321E-7Q,
|
|
2.704692281550877810424745289838790693708E-5Q,
|
|
1.070854930483999749316546199273521063543E-3Q,
|
|
2.282373093495295842598097265627962125411E-2Q,
|
|
2.692025460665354148328762368240343249830E-1Q,
|
|
1.739892942593664447220951225734811133759E0Q,
|
|
5.890727576752230385342377570386657229324E0Q,
|
|
9.517442287057841500750256954117735128153E0Q,
|
|
6.100616353935338240775363403030137736013E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 3.0e-36
|
|
0.25 <= 1/x <= 0.3125 */
|
|
#define NP3r2_4N 9
|
|
static const __float128 P3r2_4N[NP3r2_4N + 1] = {
|
|
8.240803130988044478595580300846665863782E-8Q,
|
|
1.179418958381961224222969866406483744580E-5Q,
|
|
6.179787320956386624336959112503824397755E-4Q,
|
|
1.540270833608687596420595830747166658383E-2Q,
|
|
1.983904219491512618376375619598837355076E-1Q,
|
|
1.341465722692038870390470651608301155565E0Q,
|
|
4.617865326696612898792238245990854646057E0Q,
|
|
7.435574801812346424460233180412308000587E0Q,
|
|
4.671327027414635292514599201278557680420E0Q,
|
|
7.299530852495776936690976966995187714739E-1Q,
|
|
};
|
|
#define NP3r2_4D 9
|
|
static const __float128 P3r2_4D[NP3r2_4D + 1] = {
|
|
7.032152009675729604487575753279187576521E-7Q,
|
|
1.015090352324577615777511269928856742848E-4Q,
|
|
5.394262184808448484302067955186308730620E-3Q,
|
|
1.375291438480256110455809354836988584325E-1Q,
|
|
1.836247144461106304788160919310404376670E0Q,
|
|
1.314378564254376655001094503090935880349E1Q,
|
|
4.957184590465712006934452500894672343488E1Q,
|
|
9.287394244300647738855415178790263465398E1Q,
|
|
7.652563275535900609085229286020552768399E1Q,
|
|
2.147042473003074533150718117770093209096E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.0e-35
|
|
0.3125 <= 1/x <= 0.375 */
|
|
#define NP2r7_3r2N 9
|
|
static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
|
|
4.599033469240421554219816935160627085991E-7Q,
|
|
4.665724440345003914596647144630893997284E-5Q,
|
|
1.684348845667764271596142716944374892756E-3Q,
|
|
2.802446446884455707845985913454440176223E-2Q,
|
|
2.321937586453963310008279956042545173930E-1Q,
|
|
9.640277413988055668692438709376437553804E-1Q,
|
|
1.911021064710270904508663334033003246028E0Q,
|
|
1.600811610164341450262992138893970224971E0Q,
|
|
4.266299218652587901171386591543457861138E-1Q,
|
|
1.316470424456061252962568223251247207325E-2Q,
|
|
};
|
|
#define NP2r7_3r2D 8
|
|
static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
|
|
3.924508608545520758883457108453520099610E-6Q,
|
|
4.029707889408829273226495756222078039823E-4Q,
|
|
1.484629715787703260797886463307469600219E-2Q,
|
|
2.553136379967180865331706538897231588685E-1Q,
|
|
2.229457223891676394409880026887106228740E0Q,
|
|
1.005708903856384091956550845198392117318E1Q,
|
|
2.277082659664386953166629360352385889558E1Q,
|
|
2.384726835193630788249826630376533988245E1Q,
|
|
9.700989749041320895890113781610939632410E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.7e-36
|
|
0.3125 <= 1/x <= 0.4375 */
|
|
#define NP2r3_2r7N 9
|
|
static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
|
|
3.916766777108274628543759603786857387402E-6Q,
|
|
3.212176636756546217390661984304645137013E-4Q,
|
|
9.255768488524816445220126081207248947118E-3Q,
|
|
1.214853146369078277453080641911700735354E-1Q,
|
|
7.855163309847214136198449861311404633665E-1Q,
|
|
2.520058073282978403655488662066019816540E0Q,
|
|
3.825136484837545257209234285382183711466E0Q,
|
|
2.432569427554248006229715163865569506873E0Q,
|
|
4.877934835018231178495030117729800489743E-1Q,
|
|
1.109902737860249670981355149101343427885E-2Q,
|
|
};
|
|
#define NP2r3_2r7D 8
|
|
static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
|
|
3.342307880794065640312646341190547184461E-5Q,
|
|
2.782182891138893201544978009012096558265E-3Q,
|
|
8.221304931614200702142049236141249929207E-2Q,
|
|
1.123728246291165812392918571987858010949E0Q,
|
|
7.740482453652715577233858317133423434590E0Q,
|
|
2.737624677567945952953322566311201919139E1Q,
|
|
4.837181477096062403118304137851260715475E1Q,
|
|
3.941098643468580791437772701093795299274E1Q,
|
|
1.245821247166544627558323920382547533630E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
|
|
Peak relative error 1.7e-35
|
|
0.4375 <= 1/x <= 0.5 */
|
|
#define NP2_2r3N 8
|
|
static const __float128 P2_2r3N[NP2_2r3N + 1] = {
|
|
3.397930802851248553545191160608731940751E-4Q,
|
|
2.104020902735482418784312825637833698217E-2Q,
|
|
4.442291771608095963935342749477836181939E-1Q,
|
|
4.131797328716583282869183304291833754967E0Q,
|
|
1.819920169779026500146134832455189917589E1Q,
|
|
3.781779616522937565300309684282401791291E1Q,
|
|
3.459605449728864218972931220783543410347E1Q,
|
|
1.173594248397603882049066603238568316561E1Q,
|
|
9.455702270242780642835086549285560316461E-1Q,
|
|
};
|
|
#define NP2_2r3D 8
|
|
static const __float128 P2_2r3D[NP2_2r3D + 1] = {
|
|
2.899568897241432883079888249845707400614E-3Q,
|
|
1.831107138190848460767699919531132426356E-1Q,
|
|
3.999350044057883839080258832758908825165E0Q,
|
|
3.929041535867957938340569419874195303712E1Q,
|
|
1.884245613422523323068802689915538908291E2Q,
|
|
4.461469948819229734353852978424629815929E2Q,
|
|
5.004998753999796821224085972610636347903E2Q,
|
|
2.386342520092608513170837883757163414100E2Q,
|
|
3.791322528149347975999851588922424189957E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 8.0e-36
|
|
0 <= 1/x <= .0625 */
|
|
#define NQ16_IN 10
|
|
static const __float128 Q16_IN[NQ16_IN + 1] = {
|
|
-3.917420835712508001321875734030357393421E-18Q,
|
|
-4.440311387483014485304387406538069930457E-15Q,
|
|
-1.951635424076926487780929645954007139616E-12Q,
|
|
-4.318256438421012555040546775651612810513E-10Q,
|
|
-5.231244131926180765270446557146989238020E-8Q,
|
|
-3.540072702902043752460711989234732357653E-6Q,
|
|
-1.311017536555269966928228052917534882984E-4Q,
|
|
-2.495184669674631806622008769674827575088E-3Q,
|
|
-2.141868222987209028118086708697998506716E-2Q,
|
|
-6.184031415202148901863605871197272650090E-2Q,
|
|
-1.922298704033332356899546792898156493887E-2Q,
|
|
};
|
|
#define NQ16_ID 9
|
|
static const __float128 Q16_ID[NQ16_ID + 1] = {
|
|
3.820418034066293517479619763498400162314E-17Q,
|
|
4.340702810799239909648911373329149354911E-14Q,
|
|
1.914985356383416140706179933075303538524E-11Q,
|
|
4.262333682610888819476498617261895474330E-9Q,
|
|
5.213481314722233980346462747902942182792E-7Q,
|
|
3.585741697694069399299005316809954590558E-5Q,
|
|
1.366513429642842006385029778105539457546E-3Q,
|
|
2.745282599850704662726337474371355160594E-2Q,
|
|
2.637644521611867647651200098449903330074E-1Q,
|
|
1.006953426110765984590782655598680488746E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.9e-36
|
|
0.0625 <= 1/x <= 0.125 */
|
|
#define NQ8_16N 11
|
|
static const __float128 Q8_16N[NQ8_16N + 1] = {
|
|
-2.028630366670228670781362543615221542291E-17Q,
|
|
-1.519634620380959966438130374006858864624E-14Q,
|
|
-4.540596528116104986388796594639405114524E-12Q,
|
|
-7.085151756671466559280490913558388648274E-10Q,
|
|
-6.351062671323970823761883833531546885452E-8Q,
|
|
-3.390817171111032905297982523519503522491E-6Q,
|
|
-1.082340897018886970282138836861233213972E-4Q,
|
|
-2.020120801187226444822977006648252379508E-3Q,
|
|
-2.093169910981725694937457070649605557555E-2Q,
|
|
-1.092176538874275712359269481414448063393E-1Q,
|
|
-2.374790947854765809203590474789108718733E-1Q,
|
|
-1.365364204556573800719985118029601401323E-1Q,
|
|
};
|
|
#define NQ8_16D 11
|
|
static const __float128 Q8_16D[NQ8_16D + 1] = {
|
|
1.978397614733632533581207058069628242280E-16Q,
|
|
1.487361156806202736877009608336766720560E-13Q,
|
|
4.468041406888412086042576067133365913456E-11Q,
|
|
7.027822074821007443672290507210594648877E-9Q,
|
|
6.375740580686101224127290062867976007374E-7Q,
|
|
3.466887658320002225888644977076410421940E-5Q,
|
|
1.138625640905289601186353909213719596986E-3Q,
|
|
2.224470799470414663443449818235008486439E-2Q,
|
|
2.487052928527244907490589787691478482358E-1Q,
|
|
1.483927406564349124649083853892380899217E0Q,
|
|
4.182773513276056975777258788903489507705E0Q,
|
|
4.419665392573449746043880892524360870944E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.5e-35
|
|
0.125 <= 1/x <= 0.1875 */
|
|
#define NQ5_8N 10
|
|
static const __float128 Q5_8N[NQ5_8N + 1] = {
|
|
-3.656082407740970534915918390488336879763E-13Q,
|
|
-1.344660308497244804752334556734121771023E-10Q,
|
|
-1.909765035234071738548629788698150760791E-8Q,
|
|
-1.366668038160120210269389551283666716453E-6Q,
|
|
-5.392327355984269366895210704976314135683E-5Q,
|
|
-1.206268245713024564674432357634540343884E-3Q,
|
|
-1.515456784370354374066417703736088291287E-2Q,
|
|
-1.022454301137286306933217746545237098518E-1Q,
|
|
-3.373438906472495080504907858424251082240E-1Q,
|
|
-4.510782522110845697262323973549178453405E-1Q,
|
|
-1.549000892545288676809660828213589804884E-1Q,
|
|
};
|
|
#define NQ5_8D 10
|
|
static const __float128 Q5_8D[NQ5_8D + 1] = {
|
|
3.565550843359501079050699598913828460036E-12Q,
|
|
1.321016015556560621591847454285330528045E-9Q,
|
|
1.897542728662346479999969679234270605975E-7Q,
|
|
1.381720283068706710298734234287456219474E-5Q,
|
|
5.599248147286524662305325795203422873725E-4Q,
|
|
1.305442352653121436697064782499122164843E-2Q,
|
|
1.750234079626943298160445750078631894985E-1Q,
|
|
1.311420542073436520965439883806946678491E0Q,
|
|
5.162757689856842406744504211089724926650E0Q,
|
|
9.527760296384704425618556332087850581308E0Q,
|
|
6.604648207463236667912921642545100248584E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.3e-35
|
|
0.1875 <= 1/x <= 0.25 */
|
|
#define NQ4_5N 10
|
|
static const __float128 Q4_5N[NQ4_5N + 1] = {
|
|
-4.079513568708891749424783046520200903755E-11Q,
|
|
-9.326548104106791766891812583019664893311E-9Q,
|
|
-8.016795121318423066292906123815687003356E-7Q,
|
|
-3.372350544043594415609295225664186750995E-5Q,
|
|
-7.566238665947967882207277686375417983917E-4Q,
|
|
-9.248861580055565402130441618521591282617E-3Q,
|
|
-6.033106131055851432267702948850231270338E-2Q,
|
|
-1.966908754799996793730369265431584303447E-1Q,
|
|
-2.791062741179964150755788226623462207560E-1Q,
|
|
-1.255478605849190549914610121863534191666E-1Q,
|
|
-4.320429862021265463213168186061696944062E-3Q,
|
|
};
|
|
#define NQ4_5D 9
|
|
static const __float128 Q4_5D[NQ4_5D + 1] = {
|
|
3.978497042580921479003851216297330701056E-10Q,
|
|
9.203304163828145809278568906420772246666E-8Q,
|
|
8.059685467088175644915010485174545743798E-6Q,
|
|
3.490187375993956409171098277561669167446E-4Q,
|
|
8.189109654456872150100501732073810028829E-3Q,
|
|
1.072572867311023640958725265762483033769E-1Q,
|
|
7.790606862409960053675717185714576937994E-1Q,
|
|
3.016049768232011196434185423512777656328E0Q,
|
|
5.722963851442769787733717162314477949360E0Q,
|
|
4.510527838428473279647251350931380867663E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 2.1e-35
|
|
0.25 <= 1/x <= 0.3125 */
|
|
#define NQ3r2_4N 9
|
|
static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
|
|
-1.087480809271383885936921889040388133627E-8Q,
|
|
-1.690067828697463740906962973479310170932E-6Q,
|
|
-9.608064416995105532790745641974762550982E-5Q,
|
|
-2.594198839156517191858208513873961837410E-3Q,
|
|
-3.610954144421543968160459863048062977822E-2Q,
|
|
-2.629866798251843212210482269563961685666E-1Q,
|
|
-9.709186825881775885917984975685752956660E-1Q,
|
|
-1.667521829918185121727268867619982417317E0Q,
|
|
-1.109255082925540057138766105229900943501E0Q,
|
|
-1.812932453006641348145049323713469043328E-1Q,
|
|
};
|
|
#define NQ3r2_4D 9
|
|
static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
|
|
1.060552717496912381388763753841473407026E-7Q,
|
|
1.676928002024920520786883649102388708024E-5Q,
|
|
9.803481712245420839301400601140812255737E-4Q,
|
|
2.765559874262309494758505158089249012930E-2Q,
|
|
4.117921827792571791298862613287549140706E-1Q,
|
|
3.323769515244751267093378361930279161413E0Q,
|
|
1.436602494405814164724810151689705353670E1Q,
|
|
3.163087869617098638064881410646782408297E1Q,
|
|
3.198181264977021649489103980298349589419E1Q,
|
|
1.203649258862068431199471076202897823272E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.6e-36
|
|
0.3125 <= 1/x <= 0.375 */
|
|
#define NQ2r7_3r2N 9
|
|
static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
|
|
-1.723405393982209853244278760171643219530E-7Q,
|
|
-2.090508758514655456365709712333460087442E-5Q,
|
|
-9.140104013370974823232873472192719263019E-4Q,
|
|
-1.871349499990714843332742160292474780128E-2Q,
|
|
-1.948930738119938669637865956162512983416E-1Q,
|
|
-1.048764684978978127908439526343174139788E0Q,
|
|
-2.827714929925679500237476105843643064698E0Q,
|
|
-3.508761569156476114276988181329773987314E0Q,
|
|
-1.669332202790211090973255098624488308989E0Q,
|
|
-1.930796319299022954013840684651016077770E-1Q,
|
|
};
|
|
#define NQ2r7_3r2D 9
|
|
static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
|
|
1.680730662300831976234547482334347983474E-6Q,
|
|
2.084241442440551016475972218719621841120E-4Q,
|
|
9.445316642108367479043541702688736295579E-3Q,
|
|
2.044637889456631896650179477133252184672E-1Q,
|
|
2.316091982244297350829522534435350078205E0Q,
|
|
1.412031891783015085196708811890448488865E1Q,
|
|
4.583830154673223384837091077279595496149E1Q,
|
|
7.549520609270909439885998474045974122261E1Q,
|
|
5.697605832808113367197494052388203310638E1Q,
|
|
1.601496240876192444526383314589371686234E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 9.5e-36
|
|
0.375 <= 1/x <= 0.4375 */
|
|
#define NQ2r3_2r7N 9
|
|
static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
|
|
-8.603042076329122085722385914954878953775E-7Q,
|
|
-7.701746260451647874214968882605186675720E-5Q,
|
|
-2.407932004380727587382493696877569654271E-3Q,
|
|
-3.403434217607634279028110636919987224188E-2Q,
|
|
-2.348707332185238159192422084985713102877E-1Q,
|
|
-7.957498841538254916147095255700637463207E-1Q,
|
|
-1.258469078442635106431098063707934348577E0Q,
|
|
-8.162415474676345812459353639449971369890E-1Q,
|
|
-1.581783890269379690141513949609572806898E-1Q,
|
|
-1.890595651683552228232308756569450822905E-3Q,
|
|
};
|
|
#define NQ2r3_2r7D 8
|
|
static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
|
|
8.390017524798316921170710533381568175665E-6Q,
|
|
7.738148683730826286477254659973968763659E-4Q,
|
|
2.541480810958665794368759558791634341779E-2Q,
|
|
3.878879789711276799058486068562386244873E-1Q,
|
|
3.003783779325811292142957336802456109333E0Q,
|
|
1.206480374773322029883039064575464497400E1Q,
|
|
2.458414064785315978408974662900438351782E1Q,
|
|
2.367237826273668567199042088835448715228E1Q,
|
|
9.231451197519171090875569102116321676763E0Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
|
|
Peak relative error 1.4e-36
|
|
0.4375 <= 1/x <= 0.5 */
|
|
#define NQ2_2r3N 9
|
|
static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
|
|
-5.552507516089087822166822364590806076174E-6Q,
|
|
-4.135067659799500521040944087433752970297E-4Q,
|
|
-1.059928728869218962607068840646564457980E-2Q,
|
|
-1.212070036005832342565792241385459023801E-1Q,
|
|
-6.688350110633603958684302153362735625156E-1Q,
|
|
-1.793587878197360221340277951304429821582E0Q,
|
|
-2.225407682237197485644647380483725045326E0Q,
|
|
-1.123402135458940189438898496348239744403E0Q,
|
|
-1.679187241566347077204805190763597299805E-1Q,
|
|
-1.458550613639093752909985189067233504148E-3Q,
|
|
};
|
|
#define NQ2_2r3D 8
|
|
static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
|
|
5.415024336507980465169023996403597916115E-5Q,
|
|
4.179246497380453022046357404266022870788E-3Q,
|
|
1.136306384261959483095442402929502368598E-1Q,
|
|
1.422640343719842213484515445393284072830E0Q,
|
|
8.968786703393158374728850922289204805764E0Q,
|
|
2.914542473339246127533384118781216495934E1Q,
|
|
4.781605421020380669870197378210457054685E1Q,
|
|
3.693865837171883152382820584714795072937E1Q,
|
|
1.153220502744204904763115556224395893076E1Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static __float128
|
|
neval (__float128 x, const __float128 *p, int n)
|
|
{
|
|
__float128 y;
|
|
|
|
p += n;
|
|
y = *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static __float128
|
|
deval (__float128 x, const __float128 *p, int n)
|
|
{
|
|
__float128 y;
|
|
|
|
p += n;
|
|
y = x + *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Bessel function of the first kind, order one. */
|
|
|
|
__float128
|
|
j1q (__float128 x)
|
|
{
|
|
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
|
|
|
if (! finiteq (x))
|
|
{
|
|
if (x != x)
|
|
return x + x;
|
|
else
|
|
return 0;
|
|
}
|
|
if (x == 0)
|
|
return x;
|
|
xx = fabsq (x);
|
|
if (xx <= 0x1p-58Q)
|
|
{
|
|
__float128 ret = x * 0.5Q;
|
|
math_check_force_underflow (ret);
|
|
if (ret == 0)
|
|
errno = ERANGE;
|
|
return ret;
|
|
}
|
|
if (xx <= 2)
|
|
{
|
|
/* 0 <= x <= 2 */
|
|
z = xx * xx;
|
|
p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
|
|
p += 0.5Q * xx;
|
|
if (x < 0)
|
|
p = -p;
|
|
return p;
|
|
}
|
|
|
|
/* X = x - 3 pi/4
|
|
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
|
= 1/sqrt(2) * (-cos(x) + sin(x))
|
|
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
|
= -1/sqrt(2) * (sin(x) + cos(x))
|
|
cf. Fdlibm. */
|
|
sincosq (xx, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (xx <= FLT128_MAX / 2)
|
|
{
|
|
z = cosq (xx + xx);
|
|
if ((s * c) > 0)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
|
|
if (xx > 0x1p256Q)
|
|
{
|
|
z = ONEOSQPI * cc / sqrtq (xx);
|
|
if (x < 0)
|
|
z = -z;
|
|
return z;
|
|
}
|
|
|
|
xinv = 1 / xx;
|
|
z = xinv * xinv;
|
|
if (xinv <= 0.25)
|
|
{
|
|
if (xinv <= 0.125)
|
|
{
|
|
if (xinv <= 0.0625)
|
|
{
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.1875)
|
|
{
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
|
}
|
|
} /* .25 */
|
|
else /* if (xinv <= 0.5) */
|
|
{
|
|
if (xinv <= 0.375)
|
|
{
|
|
if (xinv <= 0.3125)
|
|
{
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.4375)
|
|
{
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
|
}
|
|
}
|
|
p = 1 + z * p;
|
|
q = z * q;
|
|
q = q * xinv + 0.375Q * xinv;
|
|
z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
|
|
if (x < 0)
|
|
z = -z;
|
|
return z;
|
|
}
|
|
|
|
|
|
|
|
/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
|
|
Peak relative error 6.2e-38
|
|
0 <= x <= 2 */
|
|
#define NY0_2N 7
|
|
static const __float128 Y0_2N[NY0_2N + 1] = {
|
|
-6.804415404830253804408698161694720833249E19Q,
|
|
1.805450517967019908027153056150465849237E19Q,
|
|
-8.065747497063694098810419456383006737312E17Q,
|
|
1.401336667383028259295830955439028236299E16Q,
|
|
-1.171654432898137585000399489686629680230E14Q,
|
|
5.061267920943853732895341125243428129150E11Q,
|
|
-1.096677850566094204586208610960870217970E9Q,
|
|
9.541172044989995856117187515882879304461E5Q,
|
|
};
|
|
#define NY0_2D 7
|
|
static const __float128 Y0_2D[NY0_2D + 1] = {
|
|
3.470629591820267059538637461549677594549E20Q,
|
|
4.120796439009916326855848107545425217219E18Q,
|
|
2.477653371652018249749350657387030814542E16Q,
|
|
9.954678543353888958177169349272167762797E13Q,
|
|
2.957927997613630118216218290262851197754E11Q,
|
|
6.748421382188864486018861197614025972118E8Q,
|
|
1.173453425218010888004562071020305709319E6Q,
|
|
1.450335662961034949894009554536003377187E3Q,
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
};
|
|
|
|
|
|
/* Bessel function of the second kind, order one. */
|
|
|
|
__float128
|
|
y1q (__float128 x)
|
|
{
|
|
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
|
|
|
if (! finiteq (x))
|
|
return 1 / (x + x * x);
|
|
if (x <= 0)
|
|
{
|
|
if (x < 0)
|
|
return (zero / (zero * x));
|
|
return -1 / zero; /* -inf and divide by zero exception. */
|
|
}
|
|
xx = fabsq (x);
|
|
if (xx <= 0x1p-114)
|
|
{
|
|
z = -TWOOPI / x;
|
|
if (isinfq (z))
|
|
errno = ERANGE;
|
|
return z;
|
|
}
|
|
if (xx <= 2)
|
|
{
|
|
/* 0 <= x <= 2 */
|
|
SET_RESTORE_ROUNDF128 (FE_TONEAREST);
|
|
z = xx * xx;
|
|
p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
|
|
p = -TWOOPI / xx + p;
|
|
p = TWOOPI * logq (x) * j1q (x) + p;
|
|
return p;
|
|
}
|
|
|
|
/* X = x - 3 pi/4
|
|
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
|
= 1/sqrt(2) * (-cos(x) + sin(x))
|
|
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
|
= -1/sqrt(2) * (sin(x) + cos(x))
|
|
cf. Fdlibm. */
|
|
sincosq (xx, &s, &c);
|
|
ss = -s - c;
|
|
cc = s - c;
|
|
if (xx <= FLT128_MAX / 2)
|
|
{
|
|
z = cosq (xx + xx);
|
|
if ((s * c) > 0)
|
|
cc = z / ss;
|
|
else
|
|
ss = z / cc;
|
|
}
|
|
|
|
if (xx > 0x1p256Q)
|
|
return ONEOSQPI * ss / sqrtq (xx);
|
|
|
|
xinv = 1 / xx;
|
|
z = xinv * xinv;
|
|
if (xinv <= 0.25)
|
|
{
|
|
if (xinv <= 0.125)
|
|
{
|
|
if (xinv <= 0.0625)
|
|
{
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.1875)
|
|
{
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
|
}
|
|
} /* .25 */
|
|
else /* if (xinv <= 0.5) */
|
|
{
|
|
if (xinv <= 0.375)
|
|
{
|
|
if (xinv <= 0.3125)
|
|
{
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
|
}
|
|
}
|
|
else if (xinv <= 0.4375)
|
|
{
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
|
}
|
|
else
|
|
{
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
|
}
|
|
}
|
|
p = 1 + z * p;
|
|
q = z * q;
|
|
q = q * xinv + 0.375Q * xinv;
|
|
z = ONEOSQPI * (p * ss + q * cc) / sqrtq (xx);
|
|
return z;
|
|
}
|