gcc/libquadmath/math/j1q.c
Joseph Myers 4239f144ce Update most of libquadmath/math/ from glibc, automate update (PR libquadmath/68686).
libquadmath sources are mostly based on glibc sources at present, but
derived from them by a manual editing / substitution process and with
subsequent manual merges.  The manual effort involved in merges means
they are sometimes incomplete and long-delayed.

Since libquadmath was first created, glibc's support for this format
has undergone significant changes so that it can also be used in glibc
to provide *f128 functions for the _Float128 type from TS 18661-3.
This makes it significantly easier to use it for libquadmath in a more
automated fashion, since glibc has a float128_private.h header that
redefines many identifiers as macros as needed for building *f128
functions.

Simply using float128_private.h directly in libquadmath, with
unmodified glibc sources except for changing function names in that
one header to be *q instead of *f128, would be tricky, given its
dependence on lots of other glibc-internal headers (whereas
libquadmath supports non-glibc systems), and also given how some libm
functions in glibc are built from type-generic templates using a
further set of macros rather than from separate function
implementations for each type.

So instead this patch adds a script update-quadmath.py to convert
glibc sources into libquadmath ones, and the script reads
float128_private.h to identify many of the substitutions it should
make.  quadmath-imp.h is updated with various new internal
definitions, taken from glibc as needed; this is the main place
expected to need updating manually when subsequent merges from glibc
are done using the script.  No attempt is made to make the script
output match the details of existing formatting, although the
differences are of a size that makes a rough comparison (ignoring
whitespace) possible.

Two new public interfaces are added to libquadmath, exp2q and
issignalingq, at a new QUADMATH_1.2 symbol version, since those
interfaces are used internally by some of the glibc sources being
merged into libquadmath; although there is a new symbol version, no
change however is made to the libtool version in the libtool-version
file.  Although there are various other interfaces now in glibc libm
but not in libquadmath, this patch does nothing to add such interfaces
(although adding many of them would in fact be easy to do, given the
script).

One internal file (not providing any public interfaces),
math/isinf_nsq.c, is removed, as no longer used by anything in
libquadmath after the merge.

Conditionals in individual source files on <fenv.h> availability or
features are moved into quadmath-imp.h (providing trivial macro
versions of the functions if real implementations aren't available),
to simplify the substitutions in individual source files.  Note
however that I haven't tested for any configurations lacking <fenv.h>,
so further changes could well be needed there.

Two files in libquadmath/math/ are based on glibc sources but not
updated in this patch: fmaq.c and rem_pio2q.c.  Both could be updated
after further changes to the script (and quadmath-imp.h as needed); in
the case of rem_pio2q.c, based on two separate glibc source files,
those separate files would naturally be split out into separate
libquadmath source files in the process (as done in this patch with
expq_table.h and tanq_kernel.c, where previously two glibc source
files had been merged into one libquadmath source file).  complex.c,
nanq.c and sqrtq.c are not based on glibc sources (though four of the
(trivial) functions in complex.c could readily be replaced by instead
using the four corresponding files from glibc, if desired).

libquadmath also has printf/ and strtod/ sources based on glibc, also
mostly not updated for a long time.  Again the script could no doubt
be made to generate those automatically, although that would be a
larger change (effectively some completely separate logic in the
script, not sharing much if anything with the existing code).

Bootstrapped with no regressions on x86_64-pc-linux-gnu.

	PR libquadmath/68686
	* Makefile.am: (libquadmath_la_SOURCES): Remove math/isinf_nsq.c.
	Add math/exp2q.c math/issignalingq.c math/lgammaq_neg.c
	math/lgammaq_product.c math/tanq_kernel.c math/tgammaq_product.c
	math/casinhq_kernel.c.
	* Makefile.in: Regenerate.
	* libquadmath.texi (exp2q, issignalingq): Document.
	* quadmath-imp.h: Include <errno.h>, <limits.h>, <stdbool.h> and
	<fenv.h>.
	(HIGH_ORDER_BIT_IS_SET_FOR_SNAN, FIX_FLT128_LONG_CONVERT_OVERFLOW)
	(FIX_FLT128_LLONG_CONVERT_OVERFLOW, __quadmath_kernel_tanq)
	(__quadmath_gamma_productq, __quadmath_gammaq_r)
	(__quadmath_lgamma_negq, __quadmath_lgamma_productq)
	(__quadmath_lgammaq_r, __quadmath_kernel_casinhq, mul_splitq)
	(math_check_force_underflow_complex, __glibc_likely)
	(__glibc_unlikely, struct rm_ctx, SET_RESTORE_ROUNDF128)
	(libc_feholdsetround_ctx, libc_feresetround_ctx): New.
	(feraiseexcept, fenv_t, feholdexcept, fesetround, feupdateenv)
	(fesetenv, fetestexcept, feclearexcept): Define if not supported
	through <fenv.h>.
	(__quadmath_isinf_nsq): Remove.
	* quadmath.h (exp2q, issignalingq): New.
	* quadmath.map (QUADMATH_1.2): New.
	* quadmath_weak.h (exp2q, issignalingq): New.
	* update-quadmath.py: New file.
	* math/isinf_nsq.c: Remove file.
	* math/casinhq_kernel.c, math/exp2q.c, math/expq_table.h,
	math/issignalingq.c, math/lgammaq_neg.c, math/lgammaq_product.c,
	math/tanq_kernel.c, math/tgammaq_product.c: New files.  Generated
	from glibc sources with update-quadmath.py.
	* math/acoshq.c, math/acosq.c, math/asinhq.c, math/asinq.c,
	math/atan2q.c, math/atanhq.c, math/atanq.c, math/cacoshq.c,
	math/cacosq.c, math/casinhq.c, math/casinq.c, math/catanhq.c,
	math/catanq.c, math/cbrtq.c, math/ccoshq.c, math/ceilq.c,
	math/cexpq.c, math/cimagq.c, math/clog10q.c, math/clogq.c,
	math/conjq.c, math/copysignq.c, math/coshq.c, math/cosq.c,
	math/cosq_kernel.c, math/cprojq.c, math/crealq.c, math/csinhq.c,
	math/csinq.c, math/csqrtq.c, math/ctanhq.c, math/ctanq.c,
	math/erfq.c, math/expm1q.c, math/expq.c, math/fabsq.c,
	math/fdimq.c, math/finiteq.c, math/floorq.c, math/fmaxq.c,
	math/fminq.c, math/fmodq.c, math/frexpq.c, math/hypotq.c,
	math/ilogbq.c, math/isinfq.c, math/isnanq.c, math/j0q.c,
	math/j1q.c, math/jnq.c, math/ldexpq.c, math/lgammaq.c,
	math/llrintq.c, math/llroundq.c, math/log10q.c, math/log1pq.c,
	math/log2q.c, math/logbq.c, math/logq.c, math/lrintq.c,
	math/lroundq.c, math/modfq.c, math/nearbyintq.c,
	math/nextafterq.c, math/powq.c, math/remainderq.c, math/remquoq.c,
	math/rintq.c, math/roundq.c, math/scalblnq.c, math/scalbnq.c,
	math/signbitq.c, math/sincos_table.c, math/sincosq.c,
	math/sincosq_kernel.c, math/sinhq.c, math/sinq.c,
	math/sinq_kernel.c, math/tanhq.c, math/tanq.c, math/tgammaq.c,
	math/truncq.c, math/x2y2m1q.c: Regenerate from glibc sources with
	update-quadmath.py.

From-SVN: r265822
2018-11-05 23:03:55 +00:00

958 lines
32 KiB
C

/* j1l.c
*
* Bessel function of order one
*
*
*
* SYNOPSIS:
*
* long double x, y, j1l();
*
* y = j1l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of first kind, order one of the argument.
*
* The domain is divided into two major intervals [0, 2] and
* (2, infinity). In the first interval the rational approximation is
* J1(x) = .5x + x x^2 R(x^2)
*
* The second interval is further partitioned into eight equal segments
* of 1/x.
* J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
* X = x - 3 pi / 4,
*
* and the auxiliary functions are given by
*
* J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
* P1(x) = 1 + 1/x^2 R(1/x^2)
*
* Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
* Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 100000 2.8e-34 2.7e-35
*
*
*/
/* y1l.c
*
* Bessel function of the second kind, order one
*
*
*
* SYNOPSIS:
*
* double x, y, y1l();
*
* y = y1l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind, of order
* one, of the argument.
*
* The domain is divided into two major intervals [0, 2] and
* (2, infinity). In the first interval the rational approximation is
* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
* In the second interval the approximation is the same as for J1(x), and
* Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
* X = x - 3 pi / 4.
*
* ACCURACY:
*
* Absolute error, when y0(x) < 1; else relative error:
*
* arithmetic domain # trials peak rms
* IEEE 0, 30 100000 2.7e-34 2.9e-35
*
*/
/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
/* 1 / sqrt(pi) */
static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
/* 2 / pi */
static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
static const __float128 zero = 0;
/* J1(x) = .5x + x x^2 R(x^2)
Peak relative error 1.9e-35
0 <= x <= 2 */
#define NJ0_2N 6
static const __float128 J0_2N[NJ0_2N + 1] = {
-5.943799577386942855938508697619735179660E16Q,
1.812087021305009192259946997014044074711E15Q,
-2.761698314264509665075127515729146460895E13Q,
2.091089497823600978949389109350658815972E11Q,
-8.546413231387036372945453565654130054307E8Q,
1.797229225249742247475464052741320612261E6Q,
-1.559552840946694171346552770008812083969E3Q
};
#define NJ0_2D 6
static const __float128 J0_2D[NJ0_2D + 1] = {
9.510079323819108569501613916191477479397E17Q,
1.063193817503280529676423936545854693915E16Q,
5.934143516050192600795972192791775226920E13Q,
2.168000911950620999091479265214368352883E11Q,
5.673775894803172808323058205986256928794E8Q,
1.080329960080981204840966206372671147224E6Q,
1.411951256636576283942477881535283304912E3Q,
/* 1.000000000000000000000000000000000000000E0L */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
0 <= 1/x <= .0625
Peak relative error 3.6e-36 */
#define NP16_IN 9
static const __float128 P16_IN[NP16_IN + 1] = {
5.143674369359646114999545149085139822905E-16Q,
4.836645664124562546056389268546233577376E-13Q,
1.730945562285804805325011561498453013673E-10Q,
3.047976856147077889834905908605310585810E-8Q,
2.855227609107969710407464739188141162386E-6Q,
1.439362407936705484122143713643023998457E-4Q,
3.774489768532936551500999699815873422073E-3Q,
4.723962172984642566142399678920790598426E-2Q,
2.359289678988743939925017240478818248735E-1Q,
3.032580002220628812728954785118117124520E-1Q,
};
#define NP16_ID 9
static const __float128 P16_ID[NP16_ID + 1] = {
4.389268795186898018132945193912677177553E-15Q,
4.132671824807454334388868363256830961655E-12Q,
1.482133328179508835835963635130894413136E-9Q,
2.618941412861122118906353737117067376236E-7Q,
2.467854246740858470815714426201888034270E-5Q,
1.257192927368839847825938545925340230490E-3Q,
3.362739031941574274949719324644120720341E-2Q,
4.384458231338934105875343439265370178858E-1Q,
2.412830809841095249170909628197264854651E0Q,
4.176078204111348059102962617368214856874E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
0.0625 <= 1/x <= 0.125
Peak relative error 1.9e-36 */
#define NP8_16N 11
static const __float128 P8_16N[NP8_16N + 1] = {
2.984612480763362345647303274082071598135E-16Q,
1.923651877544126103941232173085475682334E-13Q,
4.881258879388869396043760693256024307743E-11Q,
6.368866572475045408480898921866869811889E-9Q,
4.684818344104910450523906967821090796737E-7Q,
2.005177298271593587095982211091300382796E-5Q,
4.979808067163957634120681477207147536182E-4Q,
6.946005761642579085284689047091173581127E-3Q,
5.074601112955765012750207555985299026204E-2Q,
1.698599455896180893191766195194231825379E-1Q,
1.957536905259237627737222775573623779638E-1Q,
2.991314703282528370270179989044994319374E-2Q,
};
#define NP8_16D 10
static const __float128 P8_16D[NP8_16D + 1] = {
2.546869316918069202079580939942463010937E-15Q,
1.644650111942455804019788382157745229955E-12Q,
4.185430770291694079925607420808011147173E-10Q,
5.485331966975218025368698195861074143153E-8Q,
4.062884421686912042335466327098932678905E-6Q,
1.758139661060905948870523641319556816772E-4Q,
4.445143889306356207566032244985607493096E-3Q,
6.391901016293512632765621532571159071158E-2Q,
4.933040207519900471177016015718145795434E-1Q,
1.839144086168947712971630337250761842976E0Q,
2.715120873995490920415616716916149586579E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
0.125 <= 1/x <= 0.1875
Peak relative error 1.3e-36 */
#define NP5_8N 10
static const __float128 P5_8N[NP5_8N + 1] = {
2.837678373978003452653763806968237227234E-12Q,
9.726641165590364928442128579282742354806E-10Q,
1.284408003604131382028112171490633956539E-7Q,
8.524624695868291291250573339272194285008E-6Q,
3.111516908953172249853673787748841282846E-4Q,
6.423175156126364104172801983096596409176E-3Q,
7.430220589989104581004416356260692450652E-2Q,
4.608315409833682489016656279567605536619E-1Q,
1.396870223510964882676225042258855977512E0Q,
1.718500293904122365894630460672081526236E0Q,
5.465927698800862172307352821870223855365E-1Q
};
#define NP5_8D 10
static const __float128 P5_8D[NP5_8D + 1] = {
2.421485545794616609951168511612060482715E-11Q,
8.329862750896452929030058039752327232310E-9Q,
1.106137992233383429630592081375289010720E-6Q,
7.405786153760681090127497796448503306939E-5Q,
2.740364785433195322492093333127633465227E-3Q,
5.781246470403095224872243564165254652198E-2Q,
6.927711353039742469918754111511109983546E-1Q,
4.558679283460430281188304515922826156690E0Q,
1.534468499844879487013168065728837900009E1Q,
2.313927430889218597919624843161569422745E1Q,
1.194506341319498844336768473218382828637E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
Peak relative error 1.4e-36
0.1875 <= 1/x <= 0.25 */
#define NP4_5N 10
static const __float128 P4_5N[NP4_5N + 1] = {
1.846029078268368685834261260420933914621E-10Q,
3.916295939611376119377869680335444207768E-8Q,
3.122158792018920627984597530935323997312E-6Q,
1.218073444893078303994045653603392272450E-4Q,
2.536420827983485448140477159977981844883E-3Q,
2.883011322006690823959367922241169171315E-2Q,
1.755255190734902907438042414495469810830E-1Q,
5.379317079922628599870898285488723736599E-1Q,
7.284904050194300773890303361501726561938E-1Q,
3.270110346613085348094396323925000362813E-1Q,
1.804473805689725610052078464951722064757E-2Q,
};
#define NP4_5D 9
static const __float128 P4_5D[NP4_5D + 1] = {
1.575278146806816970152174364308980863569E-9Q,
3.361289173657099516191331123405675054321E-7Q,
2.704692281550877810424745289838790693708E-5Q,
1.070854930483999749316546199273521063543E-3Q,
2.282373093495295842598097265627962125411E-2Q,
2.692025460665354148328762368240343249830E-1Q,
1.739892942593664447220951225734811133759E0Q,
5.890727576752230385342377570386657229324E0Q,
9.517442287057841500750256954117735128153E0Q,
6.100616353935338240775363403030137736013E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
Peak relative error 3.0e-36
0.25 <= 1/x <= 0.3125 */
#define NP3r2_4N 9
static const __float128 P3r2_4N[NP3r2_4N + 1] = {
8.240803130988044478595580300846665863782E-8Q,
1.179418958381961224222969866406483744580E-5Q,
6.179787320956386624336959112503824397755E-4Q,
1.540270833608687596420595830747166658383E-2Q,
1.983904219491512618376375619598837355076E-1Q,
1.341465722692038870390470651608301155565E0Q,
4.617865326696612898792238245990854646057E0Q,
7.435574801812346424460233180412308000587E0Q,
4.671327027414635292514599201278557680420E0Q,
7.299530852495776936690976966995187714739E-1Q,
};
#define NP3r2_4D 9
static const __float128 P3r2_4D[NP3r2_4D + 1] = {
7.032152009675729604487575753279187576521E-7Q,
1.015090352324577615777511269928856742848E-4Q,
5.394262184808448484302067955186308730620E-3Q,
1.375291438480256110455809354836988584325E-1Q,
1.836247144461106304788160919310404376670E0Q,
1.314378564254376655001094503090935880349E1Q,
4.957184590465712006934452500894672343488E1Q,
9.287394244300647738855415178790263465398E1Q,
7.652563275535900609085229286020552768399E1Q,
2.147042473003074533150718117770093209096E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
Peak relative error 1.0e-35
0.3125 <= 1/x <= 0.375 */
#define NP2r7_3r2N 9
static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
4.599033469240421554219816935160627085991E-7Q,
4.665724440345003914596647144630893997284E-5Q,
1.684348845667764271596142716944374892756E-3Q,
2.802446446884455707845985913454440176223E-2Q,
2.321937586453963310008279956042545173930E-1Q,
9.640277413988055668692438709376437553804E-1Q,
1.911021064710270904508663334033003246028E0Q,
1.600811610164341450262992138893970224971E0Q,
4.266299218652587901171386591543457861138E-1Q,
1.316470424456061252962568223251247207325E-2Q,
};
#define NP2r7_3r2D 8
static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
3.924508608545520758883457108453520099610E-6Q,
4.029707889408829273226495756222078039823E-4Q,
1.484629715787703260797886463307469600219E-2Q,
2.553136379967180865331706538897231588685E-1Q,
2.229457223891676394409880026887106228740E0Q,
1.005708903856384091956550845198392117318E1Q,
2.277082659664386953166629360352385889558E1Q,
2.384726835193630788249826630376533988245E1Q,
9.700989749041320895890113781610939632410E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
Peak relative error 1.7e-36
0.3125 <= 1/x <= 0.4375 */
#define NP2r3_2r7N 9
static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
3.916766777108274628543759603786857387402E-6Q,
3.212176636756546217390661984304645137013E-4Q,
9.255768488524816445220126081207248947118E-3Q,
1.214853146369078277453080641911700735354E-1Q,
7.855163309847214136198449861311404633665E-1Q,
2.520058073282978403655488662066019816540E0Q,
3.825136484837545257209234285382183711466E0Q,
2.432569427554248006229715163865569506873E0Q,
4.877934835018231178495030117729800489743E-1Q,
1.109902737860249670981355149101343427885E-2Q,
};
#define NP2r3_2r7D 8
static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
3.342307880794065640312646341190547184461E-5Q,
2.782182891138893201544978009012096558265E-3Q,
8.221304931614200702142049236141249929207E-2Q,
1.123728246291165812392918571987858010949E0Q,
7.740482453652715577233858317133423434590E0Q,
2.737624677567945952953322566311201919139E1Q,
4.837181477096062403118304137851260715475E1Q,
3.941098643468580791437772701093795299274E1Q,
1.245821247166544627558323920382547533630E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
Peak relative error 1.7e-35
0.4375 <= 1/x <= 0.5 */
#define NP2_2r3N 8
static const __float128 P2_2r3N[NP2_2r3N + 1] = {
3.397930802851248553545191160608731940751E-4Q,
2.104020902735482418784312825637833698217E-2Q,
4.442291771608095963935342749477836181939E-1Q,
4.131797328716583282869183304291833754967E0Q,
1.819920169779026500146134832455189917589E1Q,
3.781779616522937565300309684282401791291E1Q,
3.459605449728864218972931220783543410347E1Q,
1.173594248397603882049066603238568316561E1Q,
9.455702270242780642835086549285560316461E-1Q,
};
#define NP2_2r3D 8
static const __float128 P2_2r3D[NP2_2r3D + 1] = {
2.899568897241432883079888249845707400614E-3Q,
1.831107138190848460767699919531132426356E-1Q,
3.999350044057883839080258832758908825165E0Q,
3.929041535867957938340569419874195303712E1Q,
1.884245613422523323068802689915538908291E2Q,
4.461469948819229734353852978424629815929E2Q,
5.004998753999796821224085972610636347903E2Q,
2.386342520092608513170837883757163414100E2Q,
3.791322528149347975999851588922424189957E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 8.0e-36
0 <= 1/x <= .0625 */
#define NQ16_IN 10
static const __float128 Q16_IN[NQ16_IN + 1] = {
-3.917420835712508001321875734030357393421E-18Q,
-4.440311387483014485304387406538069930457E-15Q,
-1.951635424076926487780929645954007139616E-12Q,
-4.318256438421012555040546775651612810513E-10Q,
-5.231244131926180765270446557146989238020E-8Q,
-3.540072702902043752460711989234732357653E-6Q,
-1.311017536555269966928228052917534882984E-4Q,
-2.495184669674631806622008769674827575088E-3Q,
-2.141868222987209028118086708697998506716E-2Q,
-6.184031415202148901863605871197272650090E-2Q,
-1.922298704033332356899546792898156493887E-2Q,
};
#define NQ16_ID 9
static const __float128 Q16_ID[NQ16_ID + 1] = {
3.820418034066293517479619763498400162314E-17Q,
4.340702810799239909648911373329149354911E-14Q,
1.914985356383416140706179933075303538524E-11Q,
4.262333682610888819476498617261895474330E-9Q,
5.213481314722233980346462747902942182792E-7Q,
3.585741697694069399299005316809954590558E-5Q,
1.366513429642842006385029778105539457546E-3Q,
2.745282599850704662726337474371355160594E-2Q,
2.637644521611867647651200098449903330074E-1Q,
1.006953426110765984590782655598680488746E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 1.9e-36
0.0625 <= 1/x <= 0.125 */
#define NQ8_16N 11
static const __float128 Q8_16N[NQ8_16N + 1] = {
-2.028630366670228670781362543615221542291E-17Q,
-1.519634620380959966438130374006858864624E-14Q,
-4.540596528116104986388796594639405114524E-12Q,
-7.085151756671466559280490913558388648274E-10Q,
-6.351062671323970823761883833531546885452E-8Q,
-3.390817171111032905297982523519503522491E-6Q,
-1.082340897018886970282138836861233213972E-4Q,
-2.020120801187226444822977006648252379508E-3Q,
-2.093169910981725694937457070649605557555E-2Q,
-1.092176538874275712359269481414448063393E-1Q,
-2.374790947854765809203590474789108718733E-1Q,
-1.365364204556573800719985118029601401323E-1Q,
};
#define NQ8_16D 11
static const __float128 Q8_16D[NQ8_16D + 1] = {
1.978397614733632533581207058069628242280E-16Q,
1.487361156806202736877009608336766720560E-13Q,
4.468041406888412086042576067133365913456E-11Q,
7.027822074821007443672290507210594648877E-9Q,
6.375740580686101224127290062867976007374E-7Q,
3.466887658320002225888644977076410421940E-5Q,
1.138625640905289601186353909213719596986E-3Q,
2.224470799470414663443449818235008486439E-2Q,
2.487052928527244907490589787691478482358E-1Q,
1.483927406564349124649083853892380899217E0Q,
4.182773513276056975777258788903489507705E0Q,
4.419665392573449746043880892524360870944E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 1.5e-35
0.125 <= 1/x <= 0.1875 */
#define NQ5_8N 10
static const __float128 Q5_8N[NQ5_8N + 1] = {
-3.656082407740970534915918390488336879763E-13Q,
-1.344660308497244804752334556734121771023E-10Q,
-1.909765035234071738548629788698150760791E-8Q,
-1.366668038160120210269389551283666716453E-6Q,
-5.392327355984269366895210704976314135683E-5Q,
-1.206268245713024564674432357634540343884E-3Q,
-1.515456784370354374066417703736088291287E-2Q,
-1.022454301137286306933217746545237098518E-1Q,
-3.373438906472495080504907858424251082240E-1Q,
-4.510782522110845697262323973549178453405E-1Q,
-1.549000892545288676809660828213589804884E-1Q,
};
#define NQ5_8D 10
static const __float128 Q5_8D[NQ5_8D + 1] = {
3.565550843359501079050699598913828460036E-12Q,
1.321016015556560621591847454285330528045E-9Q,
1.897542728662346479999969679234270605975E-7Q,
1.381720283068706710298734234287456219474E-5Q,
5.599248147286524662305325795203422873725E-4Q,
1.305442352653121436697064782499122164843E-2Q,
1.750234079626943298160445750078631894985E-1Q,
1.311420542073436520965439883806946678491E0Q,
5.162757689856842406744504211089724926650E0Q,
9.527760296384704425618556332087850581308E0Q,
6.604648207463236667912921642545100248584E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 1.3e-35
0.1875 <= 1/x <= 0.25 */
#define NQ4_5N 10
static const __float128 Q4_5N[NQ4_5N + 1] = {
-4.079513568708891749424783046520200903755E-11Q,
-9.326548104106791766891812583019664893311E-9Q,
-8.016795121318423066292906123815687003356E-7Q,
-3.372350544043594415609295225664186750995E-5Q,
-7.566238665947967882207277686375417983917E-4Q,
-9.248861580055565402130441618521591282617E-3Q,
-6.033106131055851432267702948850231270338E-2Q,
-1.966908754799996793730369265431584303447E-1Q,
-2.791062741179964150755788226623462207560E-1Q,
-1.255478605849190549914610121863534191666E-1Q,
-4.320429862021265463213168186061696944062E-3Q,
};
#define NQ4_5D 9
static const __float128 Q4_5D[NQ4_5D + 1] = {
3.978497042580921479003851216297330701056E-10Q,
9.203304163828145809278568906420772246666E-8Q,
8.059685467088175644915010485174545743798E-6Q,
3.490187375993956409171098277561669167446E-4Q,
8.189109654456872150100501732073810028829E-3Q,
1.072572867311023640958725265762483033769E-1Q,
7.790606862409960053675717185714576937994E-1Q,
3.016049768232011196434185423512777656328E0Q,
5.722963851442769787733717162314477949360E0Q,
4.510527838428473279647251350931380867663E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 2.1e-35
0.25 <= 1/x <= 0.3125 */
#define NQ3r2_4N 9
static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
-1.087480809271383885936921889040388133627E-8Q,
-1.690067828697463740906962973479310170932E-6Q,
-9.608064416995105532790745641974762550982E-5Q,
-2.594198839156517191858208513873961837410E-3Q,
-3.610954144421543968160459863048062977822E-2Q,
-2.629866798251843212210482269563961685666E-1Q,
-9.709186825881775885917984975685752956660E-1Q,
-1.667521829918185121727268867619982417317E0Q,
-1.109255082925540057138766105229900943501E0Q,
-1.812932453006641348145049323713469043328E-1Q,
};
#define NQ3r2_4D 9
static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
1.060552717496912381388763753841473407026E-7Q,
1.676928002024920520786883649102388708024E-5Q,
9.803481712245420839301400601140812255737E-4Q,
2.765559874262309494758505158089249012930E-2Q,
4.117921827792571791298862613287549140706E-1Q,
3.323769515244751267093378361930279161413E0Q,
1.436602494405814164724810151689705353670E1Q,
3.163087869617098638064881410646782408297E1Q,
3.198181264977021649489103980298349589419E1Q,
1.203649258862068431199471076202897823272E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 1.6e-36
0.3125 <= 1/x <= 0.375 */
#define NQ2r7_3r2N 9
static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
-1.723405393982209853244278760171643219530E-7Q,
-2.090508758514655456365709712333460087442E-5Q,
-9.140104013370974823232873472192719263019E-4Q,
-1.871349499990714843332742160292474780128E-2Q,
-1.948930738119938669637865956162512983416E-1Q,
-1.048764684978978127908439526343174139788E0Q,
-2.827714929925679500237476105843643064698E0Q,
-3.508761569156476114276988181329773987314E0Q,
-1.669332202790211090973255098624488308989E0Q,
-1.930796319299022954013840684651016077770E-1Q,
};
#define NQ2r7_3r2D 9
static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
1.680730662300831976234547482334347983474E-6Q,
2.084241442440551016475972218719621841120E-4Q,
9.445316642108367479043541702688736295579E-3Q,
2.044637889456631896650179477133252184672E-1Q,
2.316091982244297350829522534435350078205E0Q,
1.412031891783015085196708811890448488865E1Q,
4.583830154673223384837091077279595496149E1Q,
7.549520609270909439885998474045974122261E1Q,
5.697605832808113367197494052388203310638E1Q,
1.601496240876192444526383314589371686234E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 9.5e-36
0.375 <= 1/x <= 0.4375 */
#define NQ2r3_2r7N 9
static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
-8.603042076329122085722385914954878953775E-7Q,
-7.701746260451647874214968882605186675720E-5Q,
-2.407932004380727587382493696877569654271E-3Q,
-3.403434217607634279028110636919987224188E-2Q,
-2.348707332185238159192422084985713102877E-1Q,
-7.957498841538254916147095255700637463207E-1Q,
-1.258469078442635106431098063707934348577E0Q,
-8.162415474676345812459353639449971369890E-1Q,
-1.581783890269379690141513949609572806898E-1Q,
-1.890595651683552228232308756569450822905E-3Q,
};
#define NQ2r3_2r7D 8
static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
8.390017524798316921170710533381568175665E-6Q,
7.738148683730826286477254659973968763659E-4Q,
2.541480810958665794368759558791634341779E-2Q,
3.878879789711276799058486068562386244873E-1Q,
3.003783779325811292142957336802456109333E0Q,
1.206480374773322029883039064575464497400E1Q,
2.458414064785315978408974662900438351782E1Q,
2.367237826273668567199042088835448715228E1Q,
9.231451197519171090875569102116321676763E0Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
Peak relative error 1.4e-36
0.4375 <= 1/x <= 0.5 */
#define NQ2_2r3N 9
static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
-5.552507516089087822166822364590806076174E-6Q,
-4.135067659799500521040944087433752970297E-4Q,
-1.059928728869218962607068840646564457980E-2Q,
-1.212070036005832342565792241385459023801E-1Q,
-6.688350110633603958684302153362735625156E-1Q,
-1.793587878197360221340277951304429821582E0Q,
-2.225407682237197485644647380483725045326E0Q,
-1.123402135458940189438898496348239744403E0Q,
-1.679187241566347077204805190763597299805E-1Q,
-1.458550613639093752909985189067233504148E-3Q,
};
#define NQ2_2r3D 8
static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
5.415024336507980465169023996403597916115E-5Q,
4.179246497380453022046357404266022870788E-3Q,
1.136306384261959483095442402929502368598E-1Q,
1.422640343719842213484515445393284072830E0Q,
8.968786703393158374728850922289204805764E0Q,
2.914542473339246127533384118781216495934E1Q,
4.781605421020380669870197378210457054685E1Q,
3.693865837171883152382820584714795072937E1Q,
1.153220502744204904763115556224395893076E1Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
static __float128
neval (__float128 x, const __float128 *p, int n)
{
__float128 y;
p += n;
y = *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
static __float128
deval (__float128 x, const __float128 *p, int n)
{
__float128 y;
p += n;
y = x + *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
/* Bessel function of the first kind, order one. */
__float128
j1q (__float128 x)
{
__float128 xx, xinv, z, p, q, c, s, cc, ss;
if (! finiteq (x))
{
if (x != x)
return x + x;
else
return 0;
}
if (x == 0)
return x;
xx = fabsq (x);
if (xx <= 0x1p-58Q)
{
__float128 ret = x * 0.5Q;
math_check_force_underflow (ret);
if (ret == 0)
errno = ERANGE;
return ret;
}
if (xx <= 2)
{
/* 0 <= x <= 2 */
z = xx * xx;
p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
p += 0.5Q * xx;
if (x < 0)
p = -p;
return p;
}
/* X = x - 3 pi/4
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
= 1/sqrt(2) * (-cos(x) + sin(x))
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
= -1/sqrt(2) * (sin(x) + cos(x))
cf. Fdlibm. */
sincosq (xx, &s, &c);
ss = -s - c;
cc = s - c;
if (xx <= FLT128_MAX / 2)
{
z = cosq (xx + xx);
if ((s * c) > 0)
cc = z / ss;
else
ss = z / cc;
}
if (xx > 0x1p256Q)
{
z = ONEOSQPI * cc / sqrtq (xx);
if (x < 0)
z = -z;
return z;
}
xinv = 1 / xx;
z = xinv * xinv;
if (xinv <= 0.25)
{
if (xinv <= 0.125)
{
if (xinv <= 0.0625)
{
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
}
else
{
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
}
}
else if (xinv <= 0.1875)
{
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
}
else
{
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
}
} /* .25 */
else /* if (xinv <= 0.5) */
{
if (xinv <= 0.375)
{
if (xinv <= 0.3125)
{
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
}
else
{
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
}
}
else if (xinv <= 0.4375)
{
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
}
else
{
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
}
}
p = 1 + z * p;
q = z * q;
q = q * xinv + 0.375Q * xinv;
z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
if (x < 0)
z = -z;
return z;
}
/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
Peak relative error 6.2e-38
0 <= x <= 2 */
#define NY0_2N 7
static const __float128 Y0_2N[NY0_2N + 1] = {
-6.804415404830253804408698161694720833249E19Q,
1.805450517967019908027153056150465849237E19Q,
-8.065747497063694098810419456383006737312E17Q,
1.401336667383028259295830955439028236299E16Q,
-1.171654432898137585000399489686629680230E14Q,
5.061267920943853732895341125243428129150E11Q,
-1.096677850566094204586208610960870217970E9Q,
9.541172044989995856117187515882879304461E5Q,
};
#define NY0_2D 7
static const __float128 Y0_2D[NY0_2D + 1] = {
3.470629591820267059538637461549677594549E20Q,
4.120796439009916326855848107545425217219E18Q,
2.477653371652018249749350657387030814542E16Q,
9.954678543353888958177169349272167762797E13Q,
2.957927997613630118216218290262851197754E11Q,
6.748421382188864486018861197614025972118E8Q,
1.173453425218010888004562071020305709319E6Q,
1.450335662961034949894009554536003377187E3Q,
/* 1.000000000000000000000000000000000000000E0 */
};
/* Bessel function of the second kind, order one. */
__float128
y1q (__float128 x)
{
__float128 xx, xinv, z, p, q, c, s, cc, ss;
if (! finiteq (x))
return 1 / (x + x * x);
if (x <= 0)
{
if (x < 0)
return (zero / (zero * x));
return -1 / zero; /* -inf and divide by zero exception. */
}
xx = fabsq (x);
if (xx <= 0x1p-114)
{
z = -TWOOPI / x;
if (isinfq (z))
errno = ERANGE;
return z;
}
if (xx <= 2)
{
/* 0 <= x <= 2 */
SET_RESTORE_ROUNDF128 (FE_TONEAREST);
z = xx * xx;
p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
p = -TWOOPI / xx + p;
p = TWOOPI * logq (x) * j1q (x) + p;
return p;
}
/* X = x - 3 pi/4
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
= 1/sqrt(2) * (-cos(x) + sin(x))
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
= -1/sqrt(2) * (sin(x) + cos(x))
cf. Fdlibm. */
sincosq (xx, &s, &c);
ss = -s - c;
cc = s - c;
if (xx <= FLT128_MAX / 2)
{
z = cosq (xx + xx);
if ((s * c) > 0)
cc = z / ss;
else
ss = z / cc;
}
if (xx > 0x1p256Q)
return ONEOSQPI * ss / sqrtq (xx);
xinv = 1 / xx;
z = xinv * xinv;
if (xinv <= 0.25)
{
if (xinv <= 0.125)
{
if (xinv <= 0.0625)
{
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
}
else
{
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
}
}
else if (xinv <= 0.1875)
{
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
}
else
{
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
}
} /* .25 */
else /* if (xinv <= 0.5) */
{
if (xinv <= 0.375)
{
if (xinv <= 0.3125)
{
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
}
else
{
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
}
}
else if (xinv <= 0.4375)
{
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
}
else
{
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
}
}
p = 1 + z * p;
q = z * q;
q = q * xinv + 0.375Q * xinv;
z = ONEOSQPI * (p * ss + q * cc) / sqrtq (xx);
return z;
}