gcc/libquadmath/math/erfq.c
Joseph Myers 4239f144ce Update most of libquadmath/math/ from glibc, automate update (PR libquadmath/68686).
libquadmath sources are mostly based on glibc sources at present, but
derived from them by a manual editing / substitution process and with
subsequent manual merges.  The manual effort involved in merges means
they are sometimes incomplete and long-delayed.

Since libquadmath was first created, glibc's support for this format
has undergone significant changes so that it can also be used in glibc
to provide *f128 functions for the _Float128 type from TS 18661-3.
This makes it significantly easier to use it for libquadmath in a more
automated fashion, since glibc has a float128_private.h header that
redefines many identifiers as macros as needed for building *f128
functions.

Simply using float128_private.h directly in libquadmath, with
unmodified glibc sources except for changing function names in that
one header to be *q instead of *f128, would be tricky, given its
dependence on lots of other glibc-internal headers (whereas
libquadmath supports non-glibc systems), and also given how some libm
functions in glibc are built from type-generic templates using a
further set of macros rather than from separate function
implementations for each type.

So instead this patch adds a script update-quadmath.py to convert
glibc sources into libquadmath ones, and the script reads
float128_private.h to identify many of the substitutions it should
make.  quadmath-imp.h is updated with various new internal
definitions, taken from glibc as needed; this is the main place
expected to need updating manually when subsequent merges from glibc
are done using the script.  No attempt is made to make the script
output match the details of existing formatting, although the
differences are of a size that makes a rough comparison (ignoring
whitespace) possible.

Two new public interfaces are added to libquadmath, exp2q and
issignalingq, at a new QUADMATH_1.2 symbol version, since those
interfaces are used internally by some of the glibc sources being
merged into libquadmath; although there is a new symbol version, no
change however is made to the libtool version in the libtool-version
file.  Although there are various other interfaces now in glibc libm
but not in libquadmath, this patch does nothing to add such interfaces
(although adding many of them would in fact be easy to do, given the
script).

One internal file (not providing any public interfaces),
math/isinf_nsq.c, is removed, as no longer used by anything in
libquadmath after the merge.

Conditionals in individual source files on <fenv.h> availability or
features are moved into quadmath-imp.h (providing trivial macro
versions of the functions if real implementations aren't available),
to simplify the substitutions in individual source files.  Note
however that I haven't tested for any configurations lacking <fenv.h>,
so further changes could well be needed there.

Two files in libquadmath/math/ are based on glibc sources but not
updated in this patch: fmaq.c and rem_pio2q.c.  Both could be updated
after further changes to the script (and quadmath-imp.h as needed); in
the case of rem_pio2q.c, based on two separate glibc source files,
those separate files would naturally be split out into separate
libquadmath source files in the process (as done in this patch with
expq_table.h and tanq_kernel.c, where previously two glibc source
files had been merged into one libquadmath source file).  complex.c,
nanq.c and sqrtq.c are not based on glibc sources (though four of the
(trivial) functions in complex.c could readily be replaced by instead
using the four corresponding files from glibc, if desired).

libquadmath also has printf/ and strtod/ sources based on glibc, also
mostly not updated for a long time.  Again the script could no doubt
be made to generate those automatically, although that would be a
larger change (effectively some completely separate logic in the
script, not sharing much if anything with the existing code).

Bootstrapped with no regressions on x86_64-pc-linux-gnu.

	PR libquadmath/68686
	* Makefile.am: (libquadmath_la_SOURCES): Remove math/isinf_nsq.c.
	Add math/exp2q.c math/issignalingq.c math/lgammaq_neg.c
	math/lgammaq_product.c math/tanq_kernel.c math/tgammaq_product.c
	math/casinhq_kernel.c.
	* Makefile.in: Regenerate.
	* libquadmath.texi (exp2q, issignalingq): Document.
	* quadmath-imp.h: Include <errno.h>, <limits.h>, <stdbool.h> and
	<fenv.h>.
	(HIGH_ORDER_BIT_IS_SET_FOR_SNAN, FIX_FLT128_LONG_CONVERT_OVERFLOW)
	(FIX_FLT128_LLONG_CONVERT_OVERFLOW, __quadmath_kernel_tanq)
	(__quadmath_gamma_productq, __quadmath_gammaq_r)
	(__quadmath_lgamma_negq, __quadmath_lgamma_productq)
	(__quadmath_lgammaq_r, __quadmath_kernel_casinhq, mul_splitq)
	(math_check_force_underflow_complex, __glibc_likely)
	(__glibc_unlikely, struct rm_ctx, SET_RESTORE_ROUNDF128)
	(libc_feholdsetround_ctx, libc_feresetround_ctx): New.
	(feraiseexcept, fenv_t, feholdexcept, fesetround, feupdateenv)
	(fesetenv, fetestexcept, feclearexcept): Define if not supported
	through <fenv.h>.
	(__quadmath_isinf_nsq): Remove.
	* quadmath.h (exp2q, issignalingq): New.
	* quadmath.map (QUADMATH_1.2): New.
	* quadmath_weak.h (exp2q, issignalingq): New.
	* update-quadmath.py: New file.
	* math/isinf_nsq.c: Remove file.
	* math/casinhq_kernel.c, math/exp2q.c, math/expq_table.h,
	math/issignalingq.c, math/lgammaq_neg.c, math/lgammaq_product.c,
	math/tanq_kernel.c, math/tgammaq_product.c: New files.  Generated
	from glibc sources with update-quadmath.py.
	* math/acoshq.c, math/acosq.c, math/asinhq.c, math/asinq.c,
	math/atan2q.c, math/atanhq.c, math/atanq.c, math/cacoshq.c,
	math/cacosq.c, math/casinhq.c, math/casinq.c, math/catanhq.c,
	math/catanq.c, math/cbrtq.c, math/ccoshq.c, math/ceilq.c,
	math/cexpq.c, math/cimagq.c, math/clog10q.c, math/clogq.c,
	math/conjq.c, math/copysignq.c, math/coshq.c, math/cosq.c,
	math/cosq_kernel.c, math/cprojq.c, math/crealq.c, math/csinhq.c,
	math/csinq.c, math/csqrtq.c, math/ctanhq.c, math/ctanq.c,
	math/erfq.c, math/expm1q.c, math/expq.c, math/fabsq.c,
	math/fdimq.c, math/finiteq.c, math/floorq.c, math/fmaxq.c,
	math/fminq.c, math/fmodq.c, math/frexpq.c, math/hypotq.c,
	math/ilogbq.c, math/isinfq.c, math/isnanq.c, math/j0q.c,
	math/j1q.c, math/jnq.c, math/ldexpq.c, math/lgammaq.c,
	math/llrintq.c, math/llroundq.c, math/log10q.c, math/log1pq.c,
	math/log2q.c, math/logbq.c, math/logq.c, math/lrintq.c,
	math/lroundq.c, math/modfq.c, math/nearbyintq.c,
	math/nextafterq.c, math/powq.c, math/remainderq.c, math/remquoq.c,
	math/rintq.c, math/roundq.c, math/scalblnq.c, math/scalbnq.c,
	math/signbitq.c, math/sincos_table.c, math/sincosq.c,
	math/sincosq_kernel.c, math/sinhq.c, math/sinq.c,
	math/sinq_kernel.c, math/tanhq.c, math/tanq.c, math/tgammaq.c,
	math/truncq.c, math/x2y2m1q.c: Regenerate from glibc sources with
	update-quadmath.py.

From-SVN: r265822
2018-11-05 23:03:55 +00:00

944 lines
30 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modifications and expansions for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8]
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one.
*
* 1a. erf(x) = 1 - erfc(x), for |x| > 1.0
* erfc(x) = 1 - erf(x) if |x| < 1/4
*
* 2. For |x| in [7/8, 1], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(s + c) = sign(x) * (c + P1(s)/Q1(s))
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
*
* 3. For x in [1/4, 5/4],
* erfc(s + const) = erfc(const) + s P1(s)/Q1(s)
* for const = 1/4, 3/8, ..., 9/8
* and 0 <= s <= 1/8 .
*
* 4. For x in [5/4, 107],
* erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z))
* z=1/x^2
* The interval is partitioned into several segments
* of width 1/8 in 1/x.
*
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
*
* 5. For inf > x >= 107
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
#include "quadmath-imp.h"
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
static __float128
neval (__float128 x, const __float128 *p, int n)
{
__float128 y;
p += n;
y = *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
static __float128
deval (__float128 x, const __float128 *p, int n)
{
__float128 y;
p += n;
y = x + *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
static const __float128
tiny = 1e-4931Q,
one = 1,
two = 2,
/* 2/sqrt(pi) - 1 */
efx = 1.2837916709551257389615890312154517168810E-1Q;
/* erf(x) = x + x R(x^2)
0 <= x <= 7/8
Peak relative error 1.8e-35 */
#define NTN1 8
static const __float128 TN1[NTN1 + 1] =
{
-3.858252324254637124543172907442106422373E10Q,
9.580319248590464682316366876952214879858E10Q,
1.302170519734879977595901236693040544854E10Q,
2.922956950426397417800321486727032845006E9Q,
1.764317520783319397868923218385468729799E8Q,
1.573436014601118630105796794840834145120E7Q,
4.028077380105721388745632295157816229289E5Q,
1.644056806467289066852135096352853491530E4Q,
3.390868480059991640235675479463287886081E1Q
};
#define NTD1 8
static const __float128 TD1[NTD1 + 1] =
{
-3.005357030696532927149885530689529032152E11Q,
-1.342602283126282827411658673839982164042E11Q,
-2.777153893355340961288511024443668743399E10Q,
-3.483826391033531996955620074072768276974E9Q,
-2.906321047071299585682722511260895227921E8Q,
-1.653347985722154162439387878512427542691E7Q,
-6.245520581562848778466500301865173123136E5Q,
-1.402124304177498828590239373389110545142E4Q,
-1.209368072473510674493129989468348633579E2Q
/* 1.0E0 */
};
/* erf(z+1) = erf_const + P(z)/Q(z)
-.125 <= z <= 0
Peak relative error 7.3e-36 */
static const __float128 erf_const = 0.845062911510467529296875Q;
#define NTN2 8
static const __float128 TN2[NTN2 + 1] =
{
-4.088889697077485301010486931817357000235E1Q,
7.157046430681808553842307502826960051036E3Q,
-2.191561912574409865550015485451373731780E3Q,
2.180174916555316874988981177654057337219E3Q,
2.848578658049670668231333682379720943455E2Q,
1.630362490952512836762810462174798925274E2Q,
6.317712353961866974143739396865293596895E0Q,
2.450441034183492434655586496522857578066E1Q,
5.127662277706787664956025545897050896203E-1Q
};
#define NTD2 8
static const __float128 TD2[NTD2 + 1] =
{
1.731026445926834008273768924015161048885E4Q,
1.209682239007990370796112604286048173750E4Q,
1.160950290217993641320602282462976163857E4Q,
5.394294645127126577825507169061355698157E3Q,
2.791239340533632669442158497532521776093E3Q,
8.989365571337319032943005387378993827684E2Q,
2.974016493766349409725385710897298069677E2Q,
6.148192754590376378740261072533527271947E1Q,
1.178502892490738445655468927408440847480E1Q
/* 1.0E0 */
};
/* erfc(x + 0.25) = erfc(0.25) + x R(x)
0 <= x < 0.125
Peak relative error 1.4e-35 */
#define NRNr13 8
static const __float128 RNr13[NRNr13 + 1] =
{
-2.353707097641280550282633036456457014829E3Q,
3.871159656228743599994116143079870279866E2Q,
-3.888105134258266192210485617504098426679E2Q,
-2.129998539120061668038806696199343094971E1Q,
-8.125462263594034672468446317145384108734E1Q,
8.151549093983505810118308635926270319660E0Q,
-5.033362032729207310462422357772568553670E0Q,
-4.253956621135136090295893547735851168471E-2Q,
-8.098602878463854789780108161581050357814E-2Q
};
#define NRDr13 7
static const __float128 RDr13[NRDr13 + 1] =
{
2.220448796306693503549505450626652881752E3Q,
1.899133258779578688791041599040951431383E2Q,
1.061906712284961110196427571557149268454E3Q,
7.497086072306967965180978101974566760042E1Q,
2.146796115662672795876463568170441327274E2Q,
1.120156008362573736664338015952284925592E1Q,
2.211014952075052616409845051695042741074E1Q,
6.469655675326150785692908453094054988938E-1Q
/* 1.0E0 */
};
/* erfc(0.25) = C13a + C13b to extra precision. */
static const __float128 C13a = 0.723663330078125Q;
static const __float128 C13b = 1.0279753638067014931732235184287934646022E-5Q;
/* erfc(x + 0.375) = erfc(0.375) + x R(x)
0 <= x < 0.125
Peak relative error 1.2e-35 */
#define NRNr14 8
static const __float128 RNr14[NRNr14 + 1] =
{
-2.446164016404426277577283038988918202456E3Q,
6.718753324496563913392217011618096698140E2Q,
-4.581631138049836157425391886957389240794E2Q,
-2.382844088987092233033215402335026078208E1Q,
-7.119237852400600507927038680970936336458E1Q,
1.313609646108420136332418282286454287146E1Q,
-6.188608702082264389155862490056401365834E0Q,
-2.787116601106678287277373011101132659279E-2Q,
-2.230395570574153963203348263549700967918E-2Q
};
#define NRDr14 7
static const __float128 RDr14[NRDr14 + 1] =
{
2.495187439241869732696223349840963702875E3Q,
2.503549449872925580011284635695738412162E2Q,
1.159033560988895481698051531263861842461E3Q,
9.493751466542304491261487998684383688622E1Q,
2.276214929562354328261422263078480321204E2Q,
1.367697521219069280358984081407807931847E1Q,
2.276988395995528495055594829206582732682E1Q,
7.647745753648996559837591812375456641163E-1Q
/* 1.0E0 */
};
/* erfc(0.375) = C14a + C14b to extra precision. */
static const __float128 C14a = 0.5958709716796875Q;
static const __float128 C14b = 1.2118885490201676174914080878232469565953E-5Q;
/* erfc(x + 0.5) = erfc(0.5) + x R(x)
0 <= x < 0.125
Peak relative error 4.7e-36 */
#define NRNr15 8
static const __float128 RNr15[NRNr15 + 1] =
{
-2.624212418011181487924855581955853461925E3Q,
8.473828904647825181073831556439301342756E2Q,
-5.286207458628380765099405359607331669027E2Q,
-3.895781234155315729088407259045269652318E1Q,
-6.200857908065163618041240848728398496256E1Q,
1.469324610346924001393137895116129204737E1Q,
-6.961356525370658572800674953305625578903E0Q,
5.145724386641163809595512876629030548495E-3Q,
1.990253655948179713415957791776180406812E-2Q
};
#define NRDr15 7
static const __float128 RDr15[NRDr15 + 1] =
{
2.986190760847974943034021764693341524962E3Q,
5.288262758961073066335410218650047725985E2Q,
1.363649178071006978355113026427856008978E3Q,
1.921707975649915894241864988942255320833E2Q,
2.588651100651029023069013885900085533226E2Q,
2.628752920321455606558942309396855629459E1Q,
2.455649035885114308978333741080991380610E1Q,
1.378826653595128464383127836412100939126E0Q
/* 1.0E0 */
};
/* erfc(0.5) = C15a + C15b to extra precision. */
static const __float128 C15a = 0.4794921875Q;
static const __float128 C15b = 7.9346869534623172533461080354712635484242E-6Q;
/* erfc(x + 0.625) = erfc(0.625) + x R(x)
0 <= x < 0.125
Peak relative error 5.1e-36 */
#define NRNr16 8
static const __float128 RNr16[NRNr16 + 1] =
{
-2.347887943200680563784690094002722906820E3Q,
8.008590660692105004780722726421020136482E2Q,
-5.257363310384119728760181252132311447963E2Q,
-4.471737717857801230450290232600243795637E1Q,
-4.849540386452573306708795324759300320304E1Q,
1.140885264677134679275986782978655952843E1Q,
-6.731591085460269447926746876983786152300E0Q,
1.370831653033047440345050025876085121231E-1Q,
2.022958279982138755020825717073966576670E-2Q,
};
#define NRDr16 7
static const __float128 RDr16[NRDr16 + 1] =
{
3.075166170024837215399323264868308087281E3Q,
8.730468942160798031608053127270430036627E2Q,
1.458472799166340479742581949088453244767E3Q,
3.230423687568019709453130785873540386217E2Q,
2.804009872719893612081109617983169474655E2Q,
4.465334221323222943418085830026979293091E1Q,
2.612723259683205928103787842214809134746E1Q,
2.341526751185244109722204018543276124997E0Q,
/* 1.0E0 */
};
/* erfc(0.625) = C16a + C16b to extra precision. */
static const __float128 C16a = 0.3767547607421875Q;
static const __float128 C16b = 4.3570693945275513594941232097252997287766E-6Q;
/* erfc(x + 0.75) = erfc(0.75) + x R(x)
0 <= x < 0.125
Peak relative error 1.7e-35 */
#define NRNr17 8
static const __float128 RNr17[NRNr17 + 1] =
{
-1.767068734220277728233364375724380366826E3Q,
6.693746645665242832426891888805363898707E2Q,
-4.746224241837275958126060307406616817753E2Q,
-2.274160637728782675145666064841883803196E1Q,
-3.541232266140939050094370552538987982637E1Q,
6.988950514747052676394491563585179503865E0Q,
-5.807687216836540830881352383529281215100E0Q,
3.631915988567346438830283503729569443642E-1Q,
-1.488945487149634820537348176770282391202E-2Q
};
#define NRDr17 7
static const __float128 RDr17[NRDr17 + 1] =
{
2.748457523498150741964464942246913394647E3Q,
1.020213390713477686776037331757871252652E3Q,
1.388857635935432621972601695296561952738E3Q,
3.903363681143817750895999579637315491087E2Q,
2.784568344378139499217928969529219886578E2Q,
5.555800830216764702779238020065345401144E1Q,
2.646215470959050279430447295801291168941E1Q,
2.984905282103517497081766758550112011265E0Q,
/* 1.0E0 */
};
/* erfc(0.75) = C17a + C17b to extra precision. */
static const __float128 C17a = 0.2888336181640625Q;
static const __float128 C17b = 1.0748182422368401062165408589222625794046E-5Q;
/* erfc(x + 0.875) = erfc(0.875) + x R(x)
0 <= x < 0.125
Peak relative error 2.2e-35 */
#define NRNr18 8
static const __float128 RNr18[NRNr18 + 1] =
{
-1.342044899087593397419622771847219619588E3Q,
6.127221294229172997509252330961641850598E2Q,
-4.519821356522291185621206350470820610727E2Q,
1.223275177825128732497510264197915160235E1Q,
-2.730789571382971355625020710543532867692E1Q,
4.045181204921538886880171727755445395862E0Q,
-4.925146477876592723401384464691452700539E0Q,
5.933878036611279244654299924101068088582E-1Q,
-5.557645435858916025452563379795159124753E-2Q
};
#define NRDr18 7
static const __float128 RDr18[NRDr18 + 1] =
{
2.557518000661700588758505116291983092951E3Q,
1.070171433382888994954602511991940418588E3Q,
1.344842834423493081054489613250688918709E3Q,
4.161144478449381901208660598266288188426E2Q,
2.763670252219855198052378138756906980422E2Q,
5.998153487868943708236273854747564557632E1Q,
2.657695108438628847733050476209037025318E1Q,
3.252140524394421868923289114410336976512E0Q,
/* 1.0E0 */
};
/* erfc(0.875) = C18a + C18b to extra precision. */
static const __float128 C18a = 0.215911865234375Q;
static const __float128 C18b = 1.3073705765341685464282101150637224028267E-5Q;
/* erfc(x + 1.0) = erfc(1.0) + x R(x)
0 <= x < 0.125
Peak relative error 1.6e-35 */
#define NRNr19 8
static const __float128 RNr19[NRNr19 + 1] =
{
-1.139180936454157193495882956565663294826E3Q,
6.134903129086899737514712477207945973616E2Q,
-4.628909024715329562325555164720732868263E2Q,
4.165702387210732352564932347500364010833E1Q,
-2.286979913515229747204101330405771801610E1Q,
1.870695256449872743066783202326943667722E0Q,
-4.177486601273105752879868187237000032364E0Q,
7.533980372789646140112424811291782526263E-1Q,
-8.629945436917752003058064731308767664446E-2Q
};
#define NRDr19 7
static const __float128 RDr19[NRDr19 + 1] =
{
2.744303447981132701432716278363418643778E3Q,
1.266396359526187065222528050591302171471E3Q,
1.466739461422073351497972255511919814273E3Q,
4.868710570759693955597496520298058147162E2Q,
2.993694301559756046478189634131722579643E2Q,
6.868976819510254139741559102693828237440E1Q,
2.801505816247677193480190483913753613630E1Q,
3.604439909194350263552750347742663954481E0Q,
/* 1.0E0 */
};
/* erfc(1.0) = C19a + C19b to extra precision. */
static const __float128 C19a = 0.15728759765625Q;
static const __float128 C19b = 1.1609394035130658779364917390740703933002E-5Q;
/* erfc(x + 1.125) = erfc(1.125) + x R(x)
0 <= x < 0.125
Peak relative error 3.6e-36 */
#define NRNr20 8
static const __float128 RNr20[NRNr20 + 1] =
{
-9.652706916457973956366721379612508047640E2Q,
5.577066396050932776683469951773643880634E2Q,
-4.406335508848496713572223098693575485978E2Q,
5.202893466490242733570232680736966655434E1Q,
-1.931311847665757913322495948705563937159E1Q,
-9.364318268748287664267341457164918090611E-2Q,
-3.306390351286352764891355375882586201069E0Q,
7.573806045289044647727613003096916516475E-1Q,
-9.611744011489092894027478899545635991213E-2Q
};
#define NRDr20 7
static const __float128 RDr20[NRDr20 + 1] =
{
3.032829629520142564106649167182428189014E3Q,
1.659648470721967719961167083684972196891E3Q,
1.703545128657284619402511356932569292535E3Q,
6.393465677731598872500200253155257708763E2Q,
3.489131397281030947405287112726059221934E2Q,
8.848641738570783406484348434387611713070E1Q,
3.132269062552392974833215844236160958502E1Q,
4.430131663290563523933419966185230513168E0Q
/* 1.0E0 */
};
/* erfc(1.125) = C20a + C20b to extra precision. */
static const __float128 C20a = 0.111602783203125Q;
static const __float128 C20b = 8.9850951672359304215530728365232161564636E-6Q;
/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
7/8 <= 1/x < 1
Peak relative error 1.4e-35 */
#define NRNr8 9
static const __float128 RNr8[NRNr8 + 1] =
{
3.587451489255356250759834295199296936784E1Q,
5.406249749087340431871378009874875889602E2Q,
2.931301290625250886238822286506381194157E3Q,
7.359254185241795584113047248898753470923E3Q,
9.201031849810636104112101947312492532314E3Q,
5.749697096193191467751650366613289284777E3Q,
1.710415234419860825710780802678697889231E3Q,
2.150753982543378580859546706243022719599E2Q,
8.740953582272147335100537849981160931197E0Q,
4.876422978828717219629814794707963640913E-2Q
};
#define NRDr8 8
static const __float128 RDr8[NRDr8 + 1] =
{
6.358593134096908350929496535931630140282E1Q,
9.900253816552450073757174323424051765523E2Q,
5.642928777856801020545245437089490805186E3Q,
1.524195375199570868195152698617273739609E4Q,
2.113829644500006749947332935305800887345E4Q,
1.526438562626465706267943737310282977138E4Q,
5.561370922149241457131421914140039411782E3Q,
9.394035530179705051609070428036834496942E2Q,
6.147019596150394577984175188032707343615E1Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
0.75 <= 1/x <= 0.875
Peak relative error 2.0e-36 */
#define NRNr7 9
static const __float128 RNr7[NRNr7 + 1] =
{
1.686222193385987690785945787708644476545E1Q,
1.178224543567604215602418571310612066594E3Q,
1.764550584290149466653899886088166091093E4Q,
1.073758321890334822002849369898232811561E5Q,
3.132840749205943137619839114451290324371E5Q,
4.607864939974100224615527007793867585915E5Q,
3.389781820105852303125270837910972384510E5Q,
1.174042187110565202875011358512564753399E5Q,
1.660013606011167144046604892622504338313E4Q,
6.700393957480661937695573729183733234400E2Q
};
#define NRDr7 9
static const __float128 RDr7[NRDr7 + 1] =
{
-1.709305024718358874701575813642933561169E3Q,
-3.280033887481333199580464617020514788369E4Q,
-2.345284228022521885093072363418750835214E5Q,
-8.086758123097763971926711729242327554917E5Q,
-1.456900414510108718402423999575992450138E6Q,
-1.391654264881255068392389037292702041855E6Q,
-6.842360801869939983674527468509852583855E5Q,
-1.597430214446573566179675395199807533371E5Q,
-1.488876130609876681421645314851760773480E4Q,
-3.511762950935060301403599443436465645703E2Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
5/8 <= 1/x < 3/4
Peak relative error 1.9e-35 */
#define NRNr6 9
static const __float128 RNr6[NRNr6 + 1] =
{
1.642076876176834390623842732352935761108E0Q,
1.207150003611117689000664385596211076662E2Q,
2.119260779316389904742873816462800103939E3Q,
1.562942227734663441801452930916044224174E4Q,
5.656779189549710079988084081145693580479E4Q,
1.052166241021481691922831746350942786299E5Q,
9.949798524786000595621602790068349165758E4Q,
4.491790734080265043407035220188849562856E4Q,
8.377074098301530326270432059434791287601E3Q,
4.506934806567986810091824791963991057083E2Q
};
#define NRDr6 9
static const __float128 RDr6[NRDr6 + 1] =
{
-1.664557643928263091879301304019826629067E2Q,
-3.800035902507656624590531122291160668452E3Q,
-3.277028191591734928360050685359277076056E4Q,
-1.381359471502885446400589109566587443987E5Q,
-3.082204287382581873532528989283748656546E5Q,
-3.691071488256738343008271448234631037095E5Q,
-2.300482443038349815750714219117566715043E5Q,
-6.873955300927636236692803579555752171530E4Q,
-8.262158817978334142081581542749986845399E3Q,
-2.517122254384430859629423488157361983661E2Q
/* 1.00 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
1/2 <= 1/x < 5/8
Peak relative error 4.6e-36 */
#define NRNr5 10
static const __float128 RNr5[NRNr5 + 1] =
{
-3.332258927455285458355550878136506961608E-3Q,
-2.697100758900280402659586595884478660721E-1Q,
-6.083328551139621521416618424949137195536E0Q,
-6.119863528983308012970821226810162441263E1Q,
-3.176535282475593173248810678636522589861E2Q,
-8.933395175080560925809992467187963260693E2Q,
-1.360019508488475978060917477620199499560E3Q,
-1.075075579828188621541398761300910213280E3Q,
-4.017346561586014822824459436695197089916E2Q,
-5.857581368145266249509589726077645791341E1Q,
-2.077715925587834606379119585995758954399E0Q
};
#define NRDr5 9
static const __float128 RDr5[NRDr5 + 1] =
{
3.377879570417399341550710467744693125385E-1Q,
1.021963322742390735430008860602594456187E1Q,
1.200847646592942095192766255154827011939E2Q,
7.118915528142927104078182863387116942836E2Q,
2.318159380062066469386544552429625026238E3Q,
4.238729853534009221025582008928765281620E3Q,
4.279114907284825886266493994833515580782E3Q,
2.257277186663261531053293222591851737504E3Q,
5.570475501285054293371908382916063822957E2Q,
5.142189243856288981145786492585432443560E1Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
3/8 <= 1/x < 1/2
Peak relative error 2.0e-36 */
#define NRNr4 10
static const __float128 RNr4[NRNr4 + 1] =
{
3.258530712024527835089319075288494524465E-3Q,
2.987056016877277929720231688689431056567E-1Q,
8.738729089340199750734409156830371528862E0Q,
1.207211160148647782396337792426311125923E2Q,
8.997558632489032902250523945248208224445E2Q,
3.798025197699757225978410230530640879762E3Q,
9.113203668683080975637043118209210146846E3Q,
1.203285891339933238608683715194034900149E4Q,
8.100647057919140328536743641735339740855E3Q,
2.383888249907144945837976899822927411769E3Q,
2.127493573166454249221983582495245662319E2Q
};
#define NRDr4 10
static const __float128 RDr4[NRDr4 + 1] =
{
-3.303141981514540274165450687270180479586E-1Q,
-1.353768629363605300707949368917687066724E1Q,
-2.206127630303621521950193783894598987033E2Q,
-1.861800338758066696514480386180875607204E3Q,
-8.889048775872605708249140016201753255599E3Q,
-2.465888106627948210478692168261494857089E4Q,
-3.934642211710774494879042116768390014289E4Q,
-3.455077258242252974937480623730228841003E4Q,
-1.524083977439690284820586063729912653196E4Q,
-2.810541887397984804237552337349093953857E3Q,
-1.343929553541159933824901621702567066156E2Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
1/4 <= 1/x < 3/8
Peak relative error 8.4e-37 */
#define NRNr3 11
static const __float128 RNr3[NRNr3 + 1] =
{
-1.952401126551202208698629992497306292987E-6Q,
-2.130881743066372952515162564941682716125E-4Q,
-8.376493958090190943737529486107282224387E-3Q,
-1.650592646560987700661598877522831234791E-1Q,
-1.839290818933317338111364667708678163199E0Q,
-1.216278715570882422410442318517814388470E1Q,
-4.818759344462360427612133632533779091386E1Q,
-1.120994661297476876804405329172164436784E2Q,
-1.452850765662319264191141091859300126931E2Q,
-9.485207851128957108648038238656777241333E1Q,
-2.563663855025796641216191848818620020073E1Q,
-1.787995944187565676837847610706317833247E0Q
};
#define NRDr3 10
static const __float128 RDr3[NRDr3 + 1] =
{
1.979130686770349481460559711878399476903E-4Q,
1.156941716128488266238105813374635099057E-2Q,
2.752657634309886336431266395637285974292E-1Q,
3.482245457248318787349778336603569327521E0Q,
2.569347069372696358578399521203959253162E1Q,
1.142279000180457419740314694631879921561E2Q,
3.056503977190564294341422623108332700840E2Q,
4.780844020923794821656358157128719184422E2Q,
4.105972727212554277496256802312730410518E2Q,
1.724072188063746970865027817017067646246E2Q,
2.815939183464818198705278118326590370435E1Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
1/8 <= 1/x < 1/4
Peak relative error 1.5e-36 */
#define NRNr2 11
static const __float128 RNr2[NRNr2 + 1] =
{
-2.638914383420287212401687401284326363787E-8Q,
-3.479198370260633977258201271399116766619E-6Q,
-1.783985295335697686382487087502222519983E-4Q,
-4.777876933122576014266349277217559356276E-3Q,
-7.450634738987325004070761301045014986520E-2Q,
-7.068318854874733315971973707247467326619E-1Q,
-4.113919921935944795764071670806867038732E0Q,
-1.440447573226906222417767283691888875082E1Q,
-2.883484031530718428417168042141288943905E1Q,
-2.990886974328476387277797361464279931446E1Q,
-1.325283914915104866248279787536128997331E1Q,
-1.572436106228070195510230310658206154374E0Q
};
#define NRDr2 10
static const __float128 RDr2[NRDr2 + 1] =
{
2.675042728136731923554119302571867799673E-6Q,
2.170997868451812708585443282998329996268E-4Q,
7.249969752687540289422684951196241427445E-3Q,
1.302040375859768674620410563307838448508E-1Q,
1.380202483082910888897654537144485285549E0Q,
8.926594113174165352623847870299170069350E0Q,
3.521089584782616472372909095331572607185E1Q,
8.233547427533181375185259050330809105570E1Q,
1.072971579885803033079469639073292840135E2Q,
6.943803113337964469736022094105143158033E1Q,
1.775695341031607738233608307835017282662E1Q
/* 1.0E0 */
};
/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
1/128 <= 1/x < 1/8
Peak relative error 2.2e-36 */
#define NRNr1 9
static const __float128 RNr1[NRNr1 + 1] =
{
-4.250780883202361946697751475473042685782E-8Q,
-5.375777053288612282487696975623206383019E-6Q,
-2.573645949220896816208565944117382460452E-4Q,
-6.199032928113542080263152610799113086319E-3Q,
-8.262721198693404060380104048479916247786E-2Q,
-6.242615227257324746371284637695778043982E-1Q,
-2.609874739199595400225113299437099626386E0Q,
-5.581967563336676737146358534602770006970E0Q,
-5.124398923356022609707490956634280573882E0Q,
-1.290865243944292370661544030414667556649E0Q
};
#define NRDr1 8
static const __float128 RDr1[NRDr1 + 1] =
{
4.308976661749509034845251315983612976224E-6Q,
3.265390126432780184125233455960049294580E-4Q,
9.811328839187040701901866531796570418691E-3Q,
1.511222515036021033410078631914783519649E-1Q,
1.289264341917429958858379585970225092274E0Q,
6.147640356182230769548007536914983522270E0Q,
1.573966871337739784518246317003956180750E1Q,
1.955534123435095067199574045529218238263E1Q,
9.472613121363135472247929109615785855865E0Q
/* 1.0E0 */
};
__float128
erfq (__float128 x)
{
__float128 a, y, z;
int32_t i, ix, sign;
ieee854_float128 u;
u.value = x;
sign = u.words32.w0;
ix = sign & 0x7fffffff;
if (ix >= 0x7fff0000)
{ /* erf(nan)=nan */
i = ((sign & 0xffff0000) >> 31) << 1;
return (__float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */
}
if (ix >= 0x3fff0000) /* |x| >= 1.0 */
{
if (ix >= 0x40030000 && sign > 0)
return one; /* x >= 16, avoid spurious underflow from erfc. */
y = erfcq (x);
return (one - y);
/* return (one - erfcq (x)); */
}
u.words32.w0 = ix;
a = u.value;
z = x * x;
if (ix < 0x3ffec000) /* a < 0.875 */
{
if (ix < 0x3fc60000) /* |x|<2**-57 */
{
if (ix < 0x00080000)
{
/* Avoid spurious underflow. */
__float128 ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
math_check_force_underflow (ret);
return ret;
}
return x + efx * x;
}
y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
}
else
{
a = a - one;
y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2);
}
if (sign & 0x80000000) /* x < 0 */
y = -y;
return( y );
}
__float128
erfcq (__float128 x)
{
__float128 y, z, p, r;
int32_t i, ix, sign;
ieee854_float128 u;
u.value = x;
sign = u.words32.w0;
ix = sign & 0x7fffffff;
u.words32.w0 = ix;
if (ix >= 0x7fff0000)
{ /* erfc(nan)=nan */
/* erfc(+-inf)=0,2 */
return (__float128) (((uint32_t) sign >> 31) << 1) + one / x;
}
if (ix < 0x3ffd0000) /* |x| <1/4 */
{
if (ix < 0x3f8d0000) /* |x|<2**-114 */
return one - x;
return one - erfq (x);
}
if (ix < 0x3fff4000) /* 1.25 */
{
x = u.value;
i = 8.0 * x;
switch (i)
{
case 2:
z = x - 0.25Q;
y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13);
y += C13a;
break;
case 3:
z = x - 0.375Q;
y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14);
y += C14a;
break;
case 4:
z = x - 0.5Q;
y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15);
y += C15a;
break;
case 5:
z = x - 0.625Q;
y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16);
y += C16a;
break;
case 6:
z = x - 0.75Q;
y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17);
y += C17a;
break;
case 7:
z = x - 0.875Q;
y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18);
y += C18a;
break;
case 8:
z = x - 1;
y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
y += C19a;
break;
default: /* i == 9. */
z = x - 1.125Q;
y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
y += C20a;
break;
}
if (sign & 0x80000000)
y = 2 - y;
return y;
}
/* 1.25 < |x| < 107 */
if (ix < 0x4005ac00)
{
/* x < -9 */
if ((ix >= 0x40022000) && (sign & 0x80000000))
return two - tiny;
x = fabsq (x);
z = one / (x * x);
i = 8.0 / x;
switch (i)
{
default:
case 0:
p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1);
break;
case 1:
p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2);
break;
case 2:
p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3);
break;
case 3:
p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4);
break;
case 4:
p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5);
break;
case 5:
p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6);
break;
case 6:
p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7);
break;
case 7:
p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8);
break;
}
u.value = x;
u.words32.w3 = 0;
u.words32.w2 &= 0xfe000000;
z = u.value;
r = expq (-z * z - 0.5625) *
expq ((z - x) * (z + x) + p);
if ((sign & 0x80000000) == 0)
{
__float128 ret = r / x;
if (ret == 0)
errno = ERANGE;
return ret;
}
else
return two - r / x;
}
else
{
if ((sign & 0x80000000) == 0)
{
errno = ERANGE;
return tiny * tiny;
}
else
return two - tiny;
}
}