mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
c0002a675a
gcc/fortran/ChangeLog: * check.cc (gfc_check_minloc_maxloc): Handle BT_UNSIGNED. * trans-intrinsic.cc (gfc_conv_intrinsic_minmaxloc): Likewise. * gfortran.texi: Document MAXLOC and MINLOC for UNSIGNED. libgfortran/ChangeLog: * Makefile.am: Add files for unsigned MINLOC and MAXLOC. * Makefile.in: Regenerated. * gfortran.map: Add files for unsigned MINLOC and MAXLOC. * generated/maxloc0_16_m1.c: New file. * generated/maxloc0_16_m16.c: New file. * generated/maxloc0_16_m2.c: New file. * generated/maxloc0_16_m4.c: New file. * generated/maxloc0_16_m8.c: New file. * generated/maxloc0_4_m1.c: New file. * generated/maxloc0_4_m16.c: New file. * generated/maxloc0_4_m2.c: New file. * generated/maxloc0_4_m4.c: New file. * generated/maxloc0_4_m8.c: New file. * generated/maxloc0_8_m1.c: New file. * generated/maxloc0_8_m16.c: New file. * generated/maxloc0_8_m2.c: New file. * generated/maxloc0_8_m4.c: New file. * generated/maxloc0_8_m8.c: New file. * generated/maxloc1_16_m1.c: New file. * generated/maxloc1_16_m2.c: New file. * generated/maxloc1_16_m4.c: New file. * generated/maxloc1_16_m8.c: New file. * generated/maxloc1_4_m1.c: New file. * generated/maxloc1_4_m16.c: New file. * generated/maxloc1_4_m2.c: New file. * generated/maxloc1_4_m4.c: New file. * generated/maxloc1_4_m8.c: New file. * generated/maxloc1_8_m1.c: New file. * generated/maxloc1_8_m16.c: New file. * generated/maxloc1_8_m2.c: New file. * generated/maxloc1_8_m4.c: New file. * generated/maxloc1_8_m8.c: New file. * generated/minloc0_16_m1.c: New file. * generated/minloc0_16_m16.c: New file. * generated/minloc0_16_m2.c: New file. * generated/minloc0_16_m4.c: New file. * generated/minloc0_16_m8.c: New file. * generated/minloc0_4_m1.c: New file. * generated/minloc0_4_m16.c: New file. * generated/minloc0_4_m2.c: New file. * generated/minloc0_4_m4.c: New file. * generated/minloc0_4_m8.c: New file. * generated/minloc0_8_m1.c: New file. * generated/minloc0_8_m16.c: New file. * generated/minloc0_8_m2.c: New file. * generated/minloc0_8_m4.c: New file. * generated/minloc0_8_m8.c: New file. * generated/minloc1_16_m1.c: New file. * generated/minloc1_16_m16.c: New file. * generated/minloc1_16_m2.c: New file. * generated/minloc1_16_m4.c: New file. * generated/minloc1_16_m8.c: New file. * generated/minloc1_4_m1.c: New file. * generated/minloc1_4_m16.c: New file. * generated/minloc1_4_m2.c: New file. * generated/minloc1_4_m4.c: New file. * generated/minloc1_4_m8.c: New file. * generated/minloc1_8_m1.c: New file. * generated/minloc1_8_m16.c: New file. * generated/minloc1_8_m2.c: New file. * generated/minloc1_8_m4.c: New file. * generated/minloc1_8_m8.c: New file. gcc/testsuite/ChangeLog: * gfortran.dg/unsigned_35.f90: New test.
592 lines
14 KiB
C
592 lines
14 KiB
C
/* Implementation of the MAXLOC intrinsic
|
|
Copyright (C) 2002-2024 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <assert.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_UINTEGER_1) && defined (HAVE_GFC_INTEGER_8)
|
|
|
|
#define HAVE_BACK_ARG 1
|
|
|
|
|
|
extern void maxloc1_8_m1 (gfc_array_i8 * const restrict,
|
|
gfc_array_m1 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 back);
|
|
export_proto(maxloc1_8_m1);
|
|
|
|
void
|
|
maxloc1_8_m1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_m1 * const restrict array,
|
|
const index_type * const restrict pdim, GFC_LOGICAL_4 back)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
const GFC_UINTEGER_1 * restrict base;
|
|
GFC_INTEGER_8 * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type dim;
|
|
int continue_loop;
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
dim = (*pdim) - 1;
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in MAXLOC intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len < 0)
|
|
len = 0;
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype.rank = rank;
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
|
|
if (alloc_size == 0)
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" MAXLOC intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "MAXLOC");
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
base = array->base_addr;
|
|
dest = retarray->base_addr;
|
|
|
|
continue_loop = 1;
|
|
while (continue_loop)
|
|
{
|
|
const GFC_UINTEGER_1 * restrict src;
|
|
GFC_INTEGER_8 result;
|
|
src = base;
|
|
{
|
|
|
|
GFC_UINTEGER_1 maxval;
|
|
#if defined (GFC_UINTEGER_1_INFINITY)
|
|
maxval = -GFC_UINTEGER_1_INFINITY;
|
|
#else
|
|
maxval = -GFC_UINTEGER_1_HUGE;
|
|
#endif
|
|
result = 1;
|
|
if (len <= 0)
|
|
*dest = 0;
|
|
else
|
|
{
|
|
#if ! defined HAVE_BACK_ARG
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
#endif
|
|
|
|
#if defined (GFC_UINTEGER_1_QUIET_NAN)
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
if (*src >= maxval)
|
|
{
|
|
maxval = *src;
|
|
result = (GFC_INTEGER_8)n + 1;
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
n = 0;
|
|
#endif
|
|
for (; n < len; n++, src += delta)
|
|
{
|
|
if (back ? *src >= maxval : *src > maxval)
|
|
{
|
|
maxval = *src;
|
|
result = (GFC_INTEGER_8)n + 1;
|
|
}
|
|
}
|
|
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
continue_loop = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void mmaxloc1_8_m1 (gfc_array_i8 * const restrict,
|
|
gfc_array_m1 * const restrict, const index_type * const restrict,
|
|
gfc_array_l1 * const restrict, GFC_LOGICAL_4 back);
|
|
export_proto(mmaxloc1_8_m1);
|
|
|
|
void
|
|
mmaxloc1_8_m1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_m1 * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
GFC_INTEGER_8 * restrict dest;
|
|
const GFC_UINTEGER_1 * restrict base;
|
|
const GFC_LOGICAL_1 * restrict mbase;
|
|
index_type rank;
|
|
index_type dim;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type mdelta;
|
|
int mask_kind;
|
|
|
|
if (mask == NULL)
|
|
{
|
|
#ifdef HAVE_BACK_ARG
|
|
maxloc1_8_m1 (retarray, array, pdim, back);
|
|
#else
|
|
maxloc1_8_m1 (retarray, array, pdim);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in MAXLOC intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len < 0)
|
|
len = 0;
|
|
|
|
mbase = mask->base_addr;
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype.rank = rank;
|
|
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
|
|
if (alloc_size == 0)
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in MAXLOC intrinsic");
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "MAXLOC");
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
"MASK argument", "MAXLOC");
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
dest = retarray->base_addr;
|
|
base = array->base_addr;
|
|
|
|
while (base)
|
|
{
|
|
const GFC_UINTEGER_1 * restrict src;
|
|
const GFC_LOGICAL_1 * restrict msrc;
|
|
GFC_INTEGER_8 result;
|
|
src = base;
|
|
msrc = mbase;
|
|
{
|
|
|
|
GFC_UINTEGER_1 maxval;
|
|
#if defined (GFC_UINTEGER_1_INFINITY)
|
|
maxval = -GFC_UINTEGER_1_INFINITY;
|
|
#else
|
|
maxval = -GFC_UINTEGER_1_HUGE;
|
|
#endif
|
|
#if defined (GFC_UINTEGER_1_QUIET_NAN)
|
|
GFC_INTEGER_8 result2 = 0;
|
|
#endif
|
|
result = 0;
|
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
|
|
if (*msrc)
|
|
{
|
|
#if defined (GFC_UINTEGER_1_QUIET_NAN)
|
|
if (!result2)
|
|
result2 = (GFC_INTEGER_8)n + 1;
|
|
if (*src >= maxval)
|
|
#endif
|
|
{
|
|
maxval = *src;
|
|
result = (GFC_INTEGER_8)n + 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#if defined (GFC_UINTEGER_1_QUIET_NAN)
|
|
if (unlikely (n >= len))
|
|
result = result2;
|
|
else
|
|
#endif
|
|
if (back)
|
|
for (; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
if (*msrc && unlikely (*src >= maxval))
|
|
{
|
|
maxval = *src;
|
|
result = (GFC_INTEGER_8)n + 1;
|
|
}
|
|
}
|
|
else
|
|
for (; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
if (*msrc && unlikely (*src > maxval))
|
|
{
|
|
maxval = *src;
|
|
result = (GFC_INTEGER_8)n + 1;
|
|
}
|
|
}
|
|
*dest = result;
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void smaxloc1_8_m1 (gfc_array_i8 * const restrict,
|
|
gfc_array_m1 * const restrict, const index_type * const restrict,
|
|
GFC_LOGICAL_4 *, GFC_LOGICAL_4 back);
|
|
export_proto(smaxloc1_8_m1);
|
|
|
|
void
|
|
smaxloc1_8_m1 (gfc_array_i8 * const restrict retarray,
|
|
gfc_array_m1 * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
GFC_INTEGER_8 * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
|
|
if (mask == NULL || *mask)
|
|
{
|
|
#ifdef HAVE_BACK_ARG
|
|
maxloc1_8_m1 (retarray, array, pdim, back);
|
|
#else
|
|
maxloc1_8_m1 (retarray, array, pdim);
|
|
#endif
|
|
return;
|
|
}
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in MAXLOC intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
extent[n] =
|
|
GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
retarray->dtype.rank = rank;
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
|
|
if (alloc_size == 0)
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" MAXLOC intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
for (n=0; n < rank; n++)
|
|
{
|
|
index_type ret_extent;
|
|
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
|
if (extent[n] != ret_extent)
|
|
runtime_error ("Incorrect extent in return value of"
|
|
" MAXLOC intrinsic in dimension %ld:"
|
|
" is %ld, should be %ld", (long int) n + 1,
|
|
(long int) ret_extent, (long int) extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
}
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
while(1)
|
|
{
|
|
*dest = 0;
|
|
count[0]++;
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
return;
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|