mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
1270 lines
34 KiB
C++
1270 lines
34 KiB
C++
/* Store motion via Lazy Code Motion on the reverse CFG.
|
||
Copyright (C) 1997-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "predict.h"
|
||
#include "df.h"
|
||
#include "toplev.h"
|
||
|
||
#include "cfgrtl.h"
|
||
#include "cfganal.h"
|
||
#include "lcm.h"
|
||
#include "cfgcleanup.h"
|
||
#include "expr.h"
|
||
#include "tree-pass.h"
|
||
#include "dbgcnt.h"
|
||
#include "rtl-iter.h"
|
||
#include "print-rtl.h"
|
||
|
||
/* This pass implements downward store motion.
|
||
As of May 1, 2009, the pass is not enabled by default on any target,
|
||
but bootstrap completes on ia64 and x86_64 with the pass enabled. */
|
||
|
||
/* TODO:
|
||
- remove_reachable_equiv_notes is an incomprehensible pile of goo and
|
||
a compile time hog that needs a rewrite (maybe cache st_exprs to
|
||
invalidate REG_EQUAL/REG_EQUIV notes for?).
|
||
- pattern_regs in st_expr should be a regset (on its own obstack).
|
||
- store_motion_mems should be a vec instead of a list.
|
||
- there should be an alloc pool for struct st_expr objects.
|
||
- investigate whether it is helpful to make the address of an st_expr
|
||
a cselib VALUE.
|
||
- when GIMPLE alias information is exported, the effectiveness of this
|
||
pass should be re-evaluated.
|
||
*/
|
||
|
||
/* This is a list of store expressions (MEMs). The structure is used
|
||
as an expression table to track stores which look interesting, and
|
||
might be moveable towards the exit block. */
|
||
|
||
struct st_expr
|
||
{
|
||
/* Pattern of this mem. */
|
||
rtx pattern;
|
||
/* List of registers mentioned by the mem. */
|
||
vec<rtx> pattern_regs;
|
||
/* INSN list of stores that are locally anticipatable. */
|
||
vec<rtx_insn *> antic_stores;
|
||
/* INSN list of stores that are locally available. */
|
||
vec<rtx_insn *> avail_stores;
|
||
/* Next in the list. */
|
||
struct st_expr * next;
|
||
/* Store ID in the dataflow bitmaps. */
|
||
int index;
|
||
/* Hash value for the hash table. */
|
||
unsigned int hash_index;
|
||
/* Register holding the stored expression when a store is moved.
|
||
This field is also used as a cache in find_moveable_store, see
|
||
LAST_AVAIL_CHECK_FAILURE below. */
|
||
rtx reaching_reg;
|
||
};
|
||
|
||
/* Head of the list of load/store memory refs. */
|
||
static struct st_expr * store_motion_mems = NULL;
|
||
|
||
/* These bitmaps will hold the local dataflow properties per basic block. */
|
||
static sbitmap *st_kill, *st_avloc, *st_antloc, *st_transp;
|
||
|
||
/* Nonzero for expressions which should be inserted on a specific edge. */
|
||
static sbitmap *st_insert_map;
|
||
|
||
/* Nonzero for expressions which should be deleted in a specific block. */
|
||
static sbitmap *st_delete_map;
|
||
|
||
/* Global holding the number of store expressions we are dealing with. */
|
||
static int num_stores;
|
||
|
||
/* Contains the edge_list returned by pre_edge_lcm. */
|
||
static struct edge_list *edge_list;
|
||
|
||
/* Hashtable helpers. */
|
||
|
||
struct st_expr_hasher : nofree_ptr_hash <st_expr>
|
||
{
|
||
static inline hashval_t hash (const st_expr *);
|
||
static inline bool equal (const st_expr *, const st_expr *);
|
||
};
|
||
|
||
inline hashval_t
|
||
st_expr_hasher::hash (const st_expr *x)
|
||
{
|
||
int do_not_record_p = 0;
|
||
return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
|
||
}
|
||
|
||
inline bool
|
||
st_expr_hasher::equal (const st_expr *ptr1, const st_expr *ptr2)
|
||
{
|
||
return exp_equiv_p (ptr1->pattern, ptr2->pattern, 0, true);
|
||
}
|
||
|
||
/* Hashtable for the load/store memory refs. */
|
||
static hash_table<st_expr_hasher> *store_motion_mems_table;
|
||
|
||
/* This will search the st_expr list for a matching expression. If it
|
||
doesn't find one, we create one and initialize it. */
|
||
|
||
static struct st_expr *
|
||
st_expr_entry (rtx x)
|
||
{
|
||
int do_not_record_p = 0;
|
||
struct st_expr * ptr;
|
||
unsigned int hash;
|
||
st_expr **slot;
|
||
struct st_expr e;
|
||
|
||
hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
|
||
NULL, /*have_reg_qty=*/false);
|
||
|
||
e.pattern = x;
|
||
slot = store_motion_mems_table->find_slot_with_hash (&e, hash, INSERT);
|
||
if (*slot)
|
||
return *slot;
|
||
|
||
ptr = XNEW (struct st_expr);
|
||
|
||
ptr->next = store_motion_mems;
|
||
ptr->pattern = x;
|
||
ptr->pattern_regs.create (0);
|
||
ptr->antic_stores.create (0);
|
||
ptr->avail_stores.create (0);
|
||
ptr->reaching_reg = NULL_RTX;
|
||
ptr->index = 0;
|
||
ptr->hash_index = hash;
|
||
store_motion_mems = ptr;
|
||
*slot = ptr;
|
||
|
||
return ptr;
|
||
}
|
||
|
||
/* Free up an individual st_expr entry. */
|
||
|
||
static void
|
||
free_st_expr_entry (struct st_expr * ptr)
|
||
{
|
||
ptr->antic_stores.release ();
|
||
ptr->avail_stores.release ();
|
||
ptr->pattern_regs.release ();
|
||
|
||
free (ptr);
|
||
}
|
||
|
||
/* Free up all memory associated with the st_expr list. */
|
||
|
||
static void
|
||
free_store_motion_mems (void)
|
||
{
|
||
delete store_motion_mems_table;
|
||
store_motion_mems_table = NULL;
|
||
|
||
while (store_motion_mems)
|
||
{
|
||
struct st_expr * tmp = store_motion_mems;
|
||
store_motion_mems = store_motion_mems->next;
|
||
free_st_expr_entry (tmp);
|
||
}
|
||
store_motion_mems = NULL;
|
||
}
|
||
|
||
/* Assign each element of the list of mems a monotonically increasing value. */
|
||
|
||
static int
|
||
enumerate_store_motion_mems (void)
|
||
{
|
||
struct st_expr * ptr;
|
||
int n = 0;
|
||
|
||
for (ptr = store_motion_mems; ptr != NULL; ptr = ptr->next)
|
||
ptr->index = n++;
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Return first item in the list. */
|
||
|
||
static inline struct st_expr *
|
||
first_st_expr (void)
|
||
{
|
||
return store_motion_mems;
|
||
}
|
||
|
||
/* Return the next item in the list after the specified one. */
|
||
|
||
static inline struct st_expr *
|
||
next_st_expr (struct st_expr * ptr)
|
||
{
|
||
return ptr->next;
|
||
}
|
||
|
||
/* Dump debugging info about the store_motion_mems list. */
|
||
|
||
static void
|
||
print_store_motion_mems (FILE * file)
|
||
{
|
||
struct st_expr * ptr;
|
||
|
||
fprintf (dump_file, "STORE_MOTION list of MEM exprs considered:\n");
|
||
|
||
for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
|
||
{
|
||
fprintf (file, " Pattern (%3d): ", ptr->index);
|
||
|
||
print_rtl (file, ptr->pattern);
|
||
|
||
fprintf (file, "\n ANTIC stores : ");
|
||
print_rtx_insn_vec (file, ptr->antic_stores);
|
||
|
||
fprintf (file, "\n AVAIL stores : ");
|
||
|
||
print_rtx_insn_vec (file, ptr->avail_stores);
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
/* Return zero if some of the registers in list X are killed
|
||
due to set of registers in bitmap REGS_SET. */
|
||
|
||
static bool
|
||
store_ops_ok (const vec<rtx> &x, int *regs_set)
|
||
{
|
||
for (rtx temp : x)
|
||
if (regs_set[REGNO (temp)])
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns a list of registers mentioned in X.
|
||
FIXME: A regset would be prettier and less expensive. */
|
||
|
||
static void
|
||
extract_mentioned_regs (rtx x, vec<rtx> *mentioned_regs)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
|
||
{
|
||
rtx x = *iter;
|
||
if (REG_P (x))
|
||
mentioned_regs->safe_push (x);
|
||
}
|
||
}
|
||
|
||
/* Check to see if the load X is aliased with STORE_PATTERN.
|
||
AFTER is true if we are checking the case when STORE_PATTERN occurs
|
||
after the X. */
|
||
|
||
static bool
|
||
load_kills_store (const_rtx x, const_rtx store_pattern, int after)
|
||
{
|
||
if (after)
|
||
return anti_dependence (x, store_pattern);
|
||
else
|
||
return true_dependence (store_pattern, GET_MODE (store_pattern), x);
|
||
}
|
||
|
||
/* Go through the entire rtx X, looking for any loads which might alias
|
||
STORE_PATTERN. Return true if found.
|
||
AFTER is true if we are checking the case when STORE_PATTERN occurs
|
||
after the insn X. */
|
||
|
||
static bool
|
||
find_loads (const_rtx x, const_rtx store_pattern, int after)
|
||
{
|
||
const char * fmt;
|
||
int i, j;
|
||
int ret = false;
|
||
|
||
if (!x)
|
||
return false;
|
||
|
||
if (GET_CODE (x) == SET)
|
||
x = SET_SRC (x);
|
||
|
||
if (MEM_P (x))
|
||
{
|
||
if (load_kills_store (x, store_pattern, after))
|
||
return true;
|
||
}
|
||
|
||
/* Recursively process the insn. */
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
ret |= find_loads (XEXP (x, i), store_pattern, after);
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Go through pattern PAT looking for any loads which might kill the
|
||
store in X. Return true if found.
|
||
AFTER is true if we are checking the case when loads kill X occurs
|
||
after the insn for PAT. */
|
||
|
||
static inline bool
|
||
store_killed_in_pat (const_rtx x, const_rtx pat, int after)
|
||
{
|
||
if (GET_CODE (pat) == SET)
|
||
{
|
||
rtx dest = SET_DEST (pat);
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
dest = XEXP (dest, 0);
|
||
|
||
/* Check for memory stores to aliased objects. */
|
||
if (MEM_P (dest)
|
||
&& !exp_equiv_p (dest, x, 0, true))
|
||
{
|
||
if (after)
|
||
{
|
||
if (output_dependence (dest, x))
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if (output_dependence (x, dest))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (find_loads (pat, x, after))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check if INSN kills the store pattern X (is aliased with it).
|
||
AFTER is true if we are checking the case when store X occurs
|
||
after the insn. Return true if it does. */
|
||
|
||
static bool
|
||
store_killed_in_insn (const_rtx x, const vec<rtx> &x_regs,
|
||
const rtx_insn *insn, int after)
|
||
{
|
||
const_rtx note, pat;
|
||
|
||
if (! NONDEBUG_INSN_P (insn))
|
||
return false;
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
/* A normal or pure call might read from pattern,
|
||
but a const call will not. */
|
||
if (!RTL_CONST_CALL_P (insn))
|
||
return true;
|
||
|
||
/* But even a const call reads its parameters. Check whether the
|
||
base of some of registers used in mem is stack pointer. */
|
||
for (rtx temp : x_regs)
|
||
if (may_be_sp_based_p (temp))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == SET)
|
||
{
|
||
if (store_killed_in_pat (x, pat, after))
|
||
return true;
|
||
}
|
||
else if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
|
||
return true;
|
||
}
|
||
else if (find_loads (PATTERN (insn), x, after))
|
||
return true;
|
||
|
||
/* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
|
||
location aliased with X, then this insn kills X. */
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (! note)
|
||
return false;
|
||
note = XEXP (note, 0);
|
||
|
||
/* However, if the note represents a must alias rather than a may
|
||
alias relationship, then it does not kill X. */
|
||
if (exp_equiv_p (note, x, 0, true))
|
||
return false;
|
||
|
||
/* See if there are any aliased loads in the note. */
|
||
return find_loads (note, x, after);
|
||
}
|
||
|
||
/* Returns true if the expression X is loaded or clobbered on or after INSN
|
||
within basic block BB. REGS_SET_AFTER is bitmap of registers set in
|
||
or after the insn. X_REGS is list of registers mentioned in X. If the store
|
||
is killed, return the last insn in that it occurs in FAIL_INSN. */
|
||
|
||
static bool
|
||
store_killed_after (const_rtx x, const vec<rtx> &x_regs,
|
||
const rtx_insn *insn, const_basic_block bb,
|
||
int *regs_set_after, rtx *fail_insn)
|
||
{
|
||
rtx_insn *last = BB_END (bb), *act;
|
||
|
||
if (!store_ops_ok (x_regs, regs_set_after))
|
||
{
|
||
/* We do not know where it will happen. */
|
||
if (fail_insn)
|
||
*fail_insn = NULL_RTX;
|
||
return true;
|
||
}
|
||
|
||
/* Scan from the end, so that fail_insn is determined correctly. */
|
||
for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
|
||
if (store_killed_in_insn (x, x_regs, act, false))
|
||
{
|
||
if (fail_insn)
|
||
*fail_insn = act;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true if the expression X is loaded or clobbered on or before INSN
|
||
within basic block BB. X_REGS is list of registers mentioned in X.
|
||
REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
|
||
static bool
|
||
store_killed_before (const_rtx x, const vec<rtx> &x_regs,
|
||
const rtx_insn *insn, const_basic_block bb,
|
||
int *regs_set_before)
|
||
{
|
||
rtx_insn *first = BB_HEAD (bb);
|
||
|
||
if (!store_ops_ok (x_regs, regs_set_before))
|
||
return true;
|
||
|
||
for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
|
||
if (store_killed_in_insn (x, x_regs, insn, true))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* The last insn in the basic block that compute_store_table is processing,
|
||
where store_killed_after is true for X.
|
||
Since we go through the basic block from BB_END to BB_HEAD, this is
|
||
also the available store at the end of the basic block. Therefore
|
||
this is in effect a cache, to avoid calling store_killed_after for
|
||
equivalent aliasing store expressions.
|
||
This value is only meaningful during the computation of the store
|
||
table. We hi-jack the REACHING_REG field of struct st_expr to save
|
||
a bit of memory. */
|
||
#define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
|
||
|
||
/* Determine whether INSN is MEM store pattern that we will consider moving.
|
||
REGS_SET_BEFORE is bitmap of registers set before (and including) the
|
||
current insn, REGS_SET_AFTER is bitmap of registers set after (and
|
||
including) the insn in this basic block. We must be passing through BB from
|
||
head to end, as we are using this fact to speed things up.
|
||
|
||
The results are stored this way:
|
||
|
||
-- the first anticipatable expression is added into ANTIC_STORES
|
||
-- if the processed expression is not anticipatable, NULL_RTX is added
|
||
there instead, so that we can use it as indicator that no further
|
||
expression of this type may be anticipatable
|
||
-- if the expression is available, it is added as head of AVAIL_STORES;
|
||
consequently, all of them but this head are dead and may be deleted.
|
||
-- if the expression is not available, the insn due to that it fails to be
|
||
available is stored in REACHING_REG (via LAST_AVAIL_CHECK_FAILURE).
|
||
|
||
The things are complicated a bit by fact that there already may be stores
|
||
to the same MEM from other blocks; also caller must take care of the
|
||
necessary cleanup of the temporary markers after end of the basic block.
|
||
*/
|
||
|
||
static void
|
||
find_moveable_store (rtx_insn *insn, int *regs_set_before, int *regs_set_after)
|
||
{
|
||
struct st_expr * ptr;
|
||
rtx dest, set;
|
||
int check_anticipatable, check_available;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return;
|
||
|
||
dest = SET_DEST (set);
|
||
|
||
if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
|
||
|| GET_MODE (dest) == BLKmode)
|
||
return;
|
||
|
||
if (side_effects_p (dest))
|
||
return;
|
||
|
||
/* If we are handling exceptions, we must be careful with memory references
|
||
that may trap. If we are not, the behavior is undefined, so we may just
|
||
continue. */
|
||
if (cfun->can_throw_non_call_exceptions && may_trap_p (dest))
|
||
return;
|
||
|
||
/* Even if the destination cannot trap, the source may. In this case we'd
|
||
need to handle updating the REG_EH_REGION note. */
|
||
if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
|
||
return;
|
||
|
||
/* Make sure that the SET_SRC of this store insns can be assigned to
|
||
a register, or we will fail later on in replace_store_insn, which
|
||
assumes that we can do this. But sometimes the target machine has
|
||
oddities like MEM read-modify-write instruction. See for example
|
||
PR24257. */
|
||
if (!can_assign_to_reg_without_clobbers_p (SET_SRC (set),
|
||
GET_MODE (SET_SRC (set))))
|
||
return;
|
||
|
||
ptr = st_expr_entry (dest);
|
||
if (ptr->pattern_regs.is_empty ())
|
||
extract_mentioned_regs (dest, &ptr->pattern_regs);
|
||
|
||
/* Do not check for anticipatability if we either found one anticipatable
|
||
store already, or tested for one and found out that it was killed. */
|
||
check_anticipatable = 0;
|
||
if (ptr->antic_stores.is_empty ())
|
||
check_anticipatable = 1;
|
||
else
|
||
{
|
||
rtx_insn *tmp = ptr->antic_stores.last ();
|
||
if (tmp != NULL_RTX
|
||
&& BLOCK_FOR_INSN (tmp) != bb)
|
||
check_anticipatable = 1;
|
||
}
|
||
if (check_anticipatable)
|
||
{
|
||
rtx_insn *tmp;
|
||
if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
|
||
tmp = NULL;
|
||
else
|
||
tmp = insn;
|
||
ptr->antic_stores.safe_push (tmp);
|
||
}
|
||
|
||
/* It is not necessary to check whether store is available if we did
|
||
it successfully before; if we failed before, do not bother to check
|
||
until we reach the insn that caused us to fail. */
|
||
check_available = 0;
|
||
if (ptr->avail_stores.is_empty ())
|
||
check_available = 1;
|
||
else
|
||
{
|
||
rtx_insn *tmp = ptr->avail_stores.last ();
|
||
if (BLOCK_FOR_INSN (tmp) != bb)
|
||
check_available = 1;
|
||
}
|
||
if (check_available)
|
||
{
|
||
/* Check that we have already reached the insn at that the check
|
||
failed last time. */
|
||
if (LAST_AVAIL_CHECK_FAILURE (ptr))
|
||
{
|
||
rtx_insn *tmp;
|
||
for (tmp = BB_END (bb);
|
||
tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
|
||
tmp = PREV_INSN (tmp))
|
||
continue;
|
||
if (tmp == insn)
|
||
check_available = 0;
|
||
}
|
||
else
|
||
check_available = store_killed_after (dest, ptr->pattern_regs, insn,
|
||
bb, regs_set_after,
|
||
&LAST_AVAIL_CHECK_FAILURE (ptr));
|
||
}
|
||
if (!check_available)
|
||
ptr->avail_stores.safe_push (insn);
|
||
}
|
||
|
||
/* Find available and anticipatable stores. */
|
||
|
||
static int
|
||
compute_store_table (void)
|
||
{
|
||
int ret;
|
||
basic_block bb;
|
||
rtx_insn *insn;
|
||
rtx_insn *tmp;
|
||
df_ref def;
|
||
int *last_set_in, *already_set;
|
||
struct st_expr * ptr, **prev_next_ptr_ptr;
|
||
unsigned int max_gcse_regno = max_reg_num ();
|
||
|
||
store_motion_mems = NULL;
|
||
store_motion_mems_table = new hash_table<st_expr_hasher> (13);
|
||
last_set_in = XCNEWVEC (int, max_gcse_regno);
|
||
already_set = XNEWVEC (int, max_gcse_regno);
|
||
|
||
/* Find all the stores we care about. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
/* First compute the registers set in this block. */
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
|
||
if (! NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
last_set_in[DF_REF_REGNO (def)] = INSN_UID (insn);
|
||
}
|
||
|
||
/* Now find the stores. */
|
||
memset (already_set, 0, sizeof (int) * max_gcse_regno);
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (! NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
already_set[DF_REF_REGNO (def)] = INSN_UID (insn);
|
||
|
||
/* Now that we've marked regs, look for stores. */
|
||
find_moveable_store (insn, already_set, last_set_in);
|
||
|
||
/* Unmark regs that are no longer set. */
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
if (last_set_in[DF_REF_REGNO (def)] == INSN_UID (insn))
|
||
last_set_in[DF_REF_REGNO (def)] = 0;
|
||
}
|
||
|
||
if (flag_checking)
|
||
{
|
||
/* last_set_in should now be all-zero. */
|
||
for (unsigned regno = 0; regno < max_gcse_regno; regno++)
|
||
gcc_assert (!last_set_in[regno]);
|
||
}
|
||
|
||
/* Clear temporary marks. */
|
||
for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
|
||
{
|
||
LAST_AVAIL_CHECK_FAILURE (ptr) = NULL_RTX;
|
||
if (!ptr->antic_stores.is_empty ()
|
||
&& (tmp = ptr->antic_stores.last ()) == NULL)
|
||
ptr->antic_stores.pop ();
|
||
}
|
||
}
|
||
|
||
/* Remove the stores that are not available anywhere, as there will
|
||
be no opportunity to optimize them. */
|
||
for (ptr = store_motion_mems, prev_next_ptr_ptr = &store_motion_mems;
|
||
ptr != NULL;
|
||
ptr = *prev_next_ptr_ptr)
|
||
{
|
||
if (ptr->avail_stores.is_empty ())
|
||
{
|
||
*prev_next_ptr_ptr = ptr->next;
|
||
store_motion_mems_table->remove_elt_with_hash (ptr, ptr->hash_index);
|
||
free_st_expr_entry (ptr);
|
||
}
|
||
else
|
||
prev_next_ptr_ptr = &ptr->next;
|
||
}
|
||
|
||
ret = enumerate_store_motion_mems ();
|
||
|
||
if (dump_file)
|
||
print_store_motion_mems (dump_file);
|
||
|
||
free (last_set_in);
|
||
free (already_set);
|
||
return ret;
|
||
}
|
||
|
||
/* In all code following after this, REACHING_REG has its original
|
||
meaning again. Avoid confusion, and undef the accessor macro for
|
||
the temporary marks usage in compute_store_table. */
|
||
#undef LAST_AVAIL_CHECK_FAILURE
|
||
|
||
/* Insert an instruction at the beginning of a basic block, and update
|
||
the BB_HEAD if needed. */
|
||
|
||
static void
|
||
insert_insn_start_basic_block (rtx_insn *insn, basic_block bb)
|
||
{
|
||
/* Insert at start of successor block. */
|
||
rtx_insn *prev = PREV_INSN (BB_HEAD (bb));
|
||
rtx_insn *before = BB_HEAD (bb);
|
||
while (before != 0)
|
||
{
|
||
if (! LABEL_P (before)
|
||
&& !NOTE_INSN_BASIC_BLOCK_P (before))
|
||
break;
|
||
prev = before;
|
||
if (prev == BB_END (bb))
|
||
break;
|
||
before = NEXT_INSN (before);
|
||
}
|
||
|
||
insn = emit_insn_after_noloc (insn, prev, bb);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
|
||
bb->index);
|
||
print_inline_rtx (dump_file, insn, 6);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
|
||
/* This routine will insert a store on an edge. EXPR is the st_expr entry for
|
||
the memory reference, and E is the edge to insert it on. Returns nonzero
|
||
if an edge insertion was performed. */
|
||
|
||
static int
|
||
insert_store (struct st_expr * expr, edge e)
|
||
{
|
||
rtx reg;
|
||
rtx_insn *insn;
|
||
basic_block bb;
|
||
edge tmp;
|
||
edge_iterator ei;
|
||
|
||
/* We did all the deleted before this insert, so if we didn't delete a
|
||
store, then we haven't set the reaching reg yet either. */
|
||
if (expr->reaching_reg == NULL_RTX)
|
||
return 0;
|
||
|
||
if (e->flags & EDGE_FAKE)
|
||
return 0;
|
||
|
||
reg = expr->reaching_reg;
|
||
insn = gen_move_insn (copy_rtx (expr->pattern), reg);
|
||
|
||
/* If we are inserting this expression on ALL predecessor edges of a BB,
|
||
insert it at the start of the BB, and reset the insert bits on the other
|
||
edges so we don't try to insert it on the other edges. */
|
||
bb = e->dest;
|
||
FOR_EACH_EDGE (tmp, ei, e->dest->preds)
|
||
if (!(tmp->flags & EDGE_FAKE))
|
||
{
|
||
int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
|
||
|
||
gcc_assert (index != EDGE_INDEX_NO_EDGE);
|
||
if (! bitmap_bit_p (st_insert_map[index], expr->index))
|
||
break;
|
||
}
|
||
|
||
/* If tmp is NULL, we found an insertion on every edge, blank the
|
||
insertion vector for these edges, and insert at the start of the BB. */
|
||
if (!tmp && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
FOR_EACH_EDGE (tmp, ei, e->dest->preds)
|
||
{
|
||
int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
|
||
bitmap_clear_bit (st_insert_map[index], expr->index);
|
||
}
|
||
insert_insn_start_basic_block (insn, bb);
|
||
return 0;
|
||
}
|
||
|
||
/* We can't put stores in the front of blocks pointed to by abnormal
|
||
edges since that may put a store where one didn't used to be. */
|
||
gcc_assert (!(e->flags & EDGE_ABNORMAL));
|
||
|
||
insert_insn_on_edge (insn, e);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
|
||
e->src->index, e->dest->index);
|
||
print_inline_rtx (dump_file, insn, 6);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
|
||
memory location in SMEXPR set in basic block BB.
|
||
|
||
This could be rather expensive. */
|
||
|
||
static void
|
||
remove_reachable_equiv_notes (basic_block bb, struct st_expr *smexpr)
|
||
{
|
||
edge_iterator *stack, ei;
|
||
int sp;
|
||
edge act;
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
rtx note;
|
||
rtx_insn *insn;
|
||
rtx mem = smexpr->pattern;
|
||
|
||
stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun));
|
||
sp = 0;
|
||
ei = ei_start (bb->succs);
|
||
|
||
bitmap_clear (visited);
|
||
|
||
act = (EDGE_COUNT (ei_container (ei))
|
||
? EDGE_I (ei_container (ei), 0)
|
||
: NULL);
|
||
for (;;)
|
||
{
|
||
if (!act)
|
||
{
|
||
if (!sp)
|
||
{
|
||
free (stack);
|
||
return;
|
||
}
|
||
act = ei_edge (stack[--sp]);
|
||
}
|
||
bb = act->dest;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bitmap_bit_p (visited, bb->index))
|
||
{
|
||
if (!ei_end_p (ei))
|
||
ei_next (&ei);
|
||
act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
|
||
continue;
|
||
}
|
||
bitmap_set_bit (visited, bb->index);
|
||
|
||
rtx_insn *last;
|
||
if (bitmap_bit_p (st_antloc[bb->index], smexpr->index))
|
||
{
|
||
unsigned int i;
|
||
FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, last)
|
||
if (BLOCK_FOR_INSN (last) == bb)
|
||
break;
|
||
}
|
||
else
|
||
last = NEXT_INSN (BB_END (bb));
|
||
|
||
for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
|
||
continue;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"STORE_MOTION drop REG_EQUAL note at insn %d:\n",
|
||
INSN_UID (insn));
|
||
remove_note (insn, note);
|
||
}
|
||
|
||
if (!ei_end_p (ei))
|
||
ei_next (&ei);
|
||
act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
|
||
|
||
if (EDGE_COUNT (bb->succs) > 0)
|
||
{
|
||
if (act)
|
||
stack[sp++] = ei;
|
||
ei = ei_start (bb->succs);
|
||
act = (EDGE_COUNT (ei_container (ei))
|
||
? EDGE_I (ei_container (ei), 0)
|
||
: NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This routine will replace a store with a SET to a specified register. */
|
||
|
||
static void
|
||
replace_store_insn (rtx reg, rtx_insn *del, basic_block bb,
|
||
struct st_expr *smexpr)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx mem, note, set;
|
||
|
||
insn = prepare_copy_insn (reg, SET_SRC (single_set (del)));
|
||
|
||
unsigned int i;
|
||
rtx_insn *temp;
|
||
FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, temp)
|
||
if (temp == del)
|
||
{
|
||
smexpr->antic_stores[i] = insn;
|
||
break;
|
||
}
|
||
|
||
/* Move the notes from the deleted insn to its replacement. */
|
||
REG_NOTES (insn) = REG_NOTES (del);
|
||
|
||
/* Emit the insn AFTER all the notes are transferred.
|
||
This is cheaper since we avoid df rescanning for the note change. */
|
||
insn = emit_insn_after (insn, del);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"STORE_MOTION delete insn in BB %d:\n ", bb->index);
|
||
print_inline_rtx (dump_file, del, 6);
|
||
fprintf (dump_file, "\nSTORE_MOTION replaced with insn:\n ");
|
||
print_inline_rtx (dump_file, insn, 6);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
delete_insn (del);
|
||
|
||
/* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
|
||
they are no longer accurate provided that they are reached by this
|
||
definition, so drop them. */
|
||
mem = smexpr->pattern;
|
||
for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
set = single_set (insn);
|
||
if (!set)
|
||
continue;
|
||
if (exp_equiv_p (SET_DEST (set), mem, 0, true))
|
||
return;
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
|
||
continue;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
|
||
INSN_UID (insn));
|
||
remove_note (insn, note);
|
||
}
|
||
remove_reachable_equiv_notes (bb, smexpr);
|
||
}
|
||
|
||
|
||
/* Delete a store, but copy the value that would have been stored into
|
||
the reaching_reg for later storing. */
|
||
|
||
static void
|
||
delete_store (struct st_expr * expr, basic_block bb)
|
||
{
|
||
rtx reg;
|
||
|
||
if (expr->reaching_reg == NULL_RTX)
|
||
expr->reaching_reg = gen_reg_rtx_and_attrs (expr->pattern);
|
||
|
||
reg = expr->reaching_reg;
|
||
|
||
unsigned int len = expr->avail_stores.length ();
|
||
for (unsigned int i = len - 1; i < len; i--)
|
||
{
|
||
rtx_insn *del = expr->avail_stores[i];
|
||
if (BLOCK_FOR_INSN (del) == bb)
|
||
{
|
||
/* We know there is only one since we deleted redundant
|
||
ones during the available computation. */
|
||
replace_store_insn (reg, del, bb, expr);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fill in available, anticipatable, transparent and kill vectors in
|
||
STORE_DATA, based on lists of available and anticipatable stores. */
|
||
static void
|
||
build_store_vectors (void)
|
||
{
|
||
basic_block bb;
|
||
int *regs_set_in_block;
|
||
rtx_insn *insn;
|
||
struct st_expr * ptr;
|
||
unsigned int max_gcse_regno = max_reg_num ();
|
||
|
||
/* Build the gen_vector. This is any store in the table which is not killed
|
||
by aliasing later in its block. */
|
||
st_avloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
|
||
num_stores);
|
||
bitmap_vector_clear (st_avloc, last_basic_block_for_fn (cfun));
|
||
|
||
st_antloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
|
||
num_stores);
|
||
bitmap_vector_clear (st_antloc, last_basic_block_for_fn (cfun));
|
||
|
||
for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
|
||
{
|
||
unsigned int len = ptr->avail_stores.length ();
|
||
for (unsigned int i = len - 1; i < len; i--)
|
||
{
|
||
insn = ptr->avail_stores[i];
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
|
||
/* If we've already seen an available expression in this block,
|
||
we can delete this one (It occurs earlier in the block). We'll
|
||
copy the SRC expression to an unused register in case there
|
||
are any side effects. */
|
||
if (bitmap_bit_p (st_avloc[bb->index], ptr->index))
|
||
{
|
||
rtx r = gen_reg_rtx_and_attrs (ptr->pattern);
|
||
if (dump_file)
|
||
fprintf (dump_file, "Removing redundant store:\n");
|
||
replace_store_insn (r, insn, bb, ptr);
|
||
continue;
|
||
}
|
||
bitmap_set_bit (st_avloc[bb->index], ptr->index);
|
||
}
|
||
|
||
unsigned int i;
|
||
FOR_EACH_VEC_ELT_REVERSE (ptr->antic_stores, i, insn)
|
||
{
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
bitmap_set_bit (st_antloc[bb->index], ptr->index);
|
||
}
|
||
}
|
||
|
||
st_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
|
||
bitmap_vector_clear (st_kill, last_basic_block_for_fn (cfun));
|
||
|
||
st_transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
|
||
bitmap_vector_clear (st_transp, last_basic_block_for_fn (cfun));
|
||
regs_set_in_block = XNEWVEC (int, max_gcse_regno);
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
memset (regs_set_in_block, 0, sizeof (int) * max_gcse_regno);
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
df_ref def;
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
{
|
||
unsigned int ref_regno = DF_REF_REGNO (def);
|
||
if (ref_regno < max_gcse_regno)
|
||
regs_set_in_block[DF_REF_REGNO (def)] = 1;
|
||
}
|
||
}
|
||
|
||
for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
|
||
{
|
||
if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
|
||
bb, regs_set_in_block, NULL))
|
||
{
|
||
/* It should not be necessary to consider the expression
|
||
killed if it is both anticipatable and available. */
|
||
if (!bitmap_bit_p (st_antloc[bb->index], ptr->index)
|
||
|| !bitmap_bit_p (st_avloc[bb->index], ptr->index))
|
||
bitmap_set_bit (st_kill[bb->index], ptr->index);
|
||
}
|
||
else
|
||
bitmap_set_bit (st_transp[bb->index], ptr->index);
|
||
}
|
||
}
|
||
|
||
free (regs_set_in_block);
|
||
|
||
if (dump_file)
|
||
{
|
||
dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_kill", "", st_kill,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_transp", "", st_transp,
|
||
last_basic_block_for_fn (cfun));
|
||
dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
|
||
last_basic_block_for_fn (cfun));
|
||
}
|
||
}
|
||
|
||
/* Free memory used by store motion. */
|
||
|
||
static void
|
||
free_store_memory (void)
|
||
{
|
||
free_store_motion_mems ();
|
||
|
||
if (st_avloc)
|
||
sbitmap_vector_free (st_avloc);
|
||
if (st_kill)
|
||
sbitmap_vector_free (st_kill);
|
||
if (st_transp)
|
||
sbitmap_vector_free (st_transp);
|
||
if (st_antloc)
|
||
sbitmap_vector_free (st_antloc);
|
||
if (st_insert_map)
|
||
sbitmap_vector_free (st_insert_map);
|
||
if (st_delete_map)
|
||
sbitmap_vector_free (st_delete_map);
|
||
|
||
st_avloc = st_kill = st_transp = st_antloc = NULL;
|
||
st_insert_map = st_delete_map = NULL;
|
||
}
|
||
|
||
/* Perform store motion. Much like gcse, except we move expressions the
|
||
other way by looking at the flowgraph in reverse.
|
||
Return non-zero if transformations are performed by the pass. */
|
||
|
||
static int
|
||
one_store_motion_pass (void)
|
||
{
|
||
basic_block bb;
|
||
int x;
|
||
struct st_expr * ptr;
|
||
int did_edge_inserts = 0;
|
||
int n_stores_deleted = 0;
|
||
int n_stores_created = 0;
|
||
|
||
init_alias_analysis ();
|
||
|
||
/* Find all the available and anticipatable stores. */
|
||
num_stores = compute_store_table ();
|
||
if (num_stores == 0)
|
||
{
|
||
delete store_motion_mems_table;
|
||
store_motion_mems_table = NULL;
|
||
end_alias_analysis ();
|
||
return 0;
|
||
}
|
||
|
||
/* Now compute kill & transp vectors. */
|
||
build_store_vectors ();
|
||
connect_infinite_loops_to_exit ();
|
||
|
||
edge_list = pre_edge_rev_lcm (num_stores, st_transp, st_avloc,
|
||
st_antloc, st_kill, &st_insert_map,
|
||
&st_delete_map);
|
||
|
||
/* Now we want to insert the new stores which are going to be needed. */
|
||
for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
|
||
{
|
||
/* If any of the edges we have above are abnormal, we can't move this
|
||
store. */
|
||
for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
|
||
if (bitmap_bit_p (st_insert_map[x], ptr->index)
|
||
&& (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
|
||
break;
|
||
|
||
if (x >= 0)
|
||
{
|
||
if (dump_file != NULL)
|
||
fprintf (dump_file,
|
||
"Can't replace store %d: abnormal edge from %d to %d\n",
|
||
ptr->index, INDEX_EDGE (edge_list, x)->src->index,
|
||
INDEX_EDGE (edge_list, x)->dest->index);
|
||
continue;
|
||
}
|
||
|
||
/* Now we want to insert the new stores which are going to be needed. */
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (bitmap_bit_p (st_delete_map[bb->index], ptr->index))
|
||
{
|
||
delete_store (ptr, bb);
|
||
n_stores_deleted++;
|
||
}
|
||
|
||
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
||
if (bitmap_bit_p (st_insert_map[x], ptr->index))
|
||
{
|
||
did_edge_inserts |= insert_store (ptr, INDEX_EDGE (edge_list, x));
|
||
n_stores_created++;
|
||
}
|
||
}
|
||
|
||
if (did_edge_inserts)
|
||
commit_edge_insertions ();
|
||
|
||
free_store_memory ();
|
||
free_edge_list (edge_list);
|
||
remove_fake_exit_edges ();
|
||
end_alias_analysis ();
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "STORE_MOTION of %s, %d basic blocks, ",
|
||
current_function_name (), n_basic_blocks_for_fn (cfun));
|
||
fprintf (dump_file, "%d insns deleted, %d insns created\n",
|
||
n_stores_deleted, n_stores_created);
|
||
}
|
||
|
||
return (n_stores_deleted > 0 || n_stores_created > 0);
|
||
}
|
||
|
||
|
||
static unsigned int
|
||
execute_rtl_store_motion (void)
|
||
{
|
||
delete_unreachable_blocks ();
|
||
df_analyze ();
|
||
flag_rerun_cse_after_global_opts |= one_store_motion_pass ();
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_rtl_store_motion =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"store_motion", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_LSM, /* tv_id */
|
||
PROP_cfglayout, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_rtl_store_motion : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_rtl_store_motion (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_rtl_store_motion, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
bool gate (function *) final override;
|
||
unsigned int execute (function *) final override
|
||
{
|
||
return execute_rtl_store_motion ();
|
||
}
|
||
|
||
}; // class pass_rtl_store_motion
|
||
|
||
bool
|
||
pass_rtl_store_motion::gate (function *fun)
|
||
{
|
||
return optimize > 0 && flag_gcse_sm
|
||
&& !fun->calls_setjmp
|
||
&& optimize_function_for_speed_p (fun)
|
||
&& dbg_cnt (store_motion);
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_rtl_store_motion (gcc::context *ctxt)
|
||
{
|
||
return new pass_rtl_store_motion (ctxt);
|
||
}
|