mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
7211155732
This is a wrong-code generation on the SPARC for a function containing a call to __builtin_unreachable caused by the delay slot scheduling pass, and more specifically the find_end_label function which has these lines: /* Otherwise, see if there is a label at the end of the function. If there is, it must be that RETURN insns aren't needed, so that is our return label and we don't have to do anything else. */ The comment was correct 20 years ago but no longer is nowadays in the presence of RTL epilogues and calls to __builtin_unreachable, so the patch just removes the associated two lines of code: else if (LABEL_P (insn)) *plabel = as_a <rtx_code_label *> (insn); and otherwise contains just adjustments to the commentary. gcc/ PR rtl-optimization/117327 * reorg.cc (find_end_label): Do not return a dangling label at the end of the function and adjust commentary. gcc/testsuite/ * gcc.c-torture/execute/20241029-1.c: New test.
3937 lines
127 KiB
C++
3937 lines
127 KiB
C++
/* Perform instruction reorganizations for delay slot filling.
|
||
Copyright (C) 1992-2024 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
|
||
Hacked by Michael Tiemann (tiemann@cygnus.com).
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* Instruction reorganization pass.
|
||
|
||
This pass runs after register allocation and final jump
|
||
optimization. It should be the last pass to run before peephole.
|
||
It serves primarily to fill delay slots of insns, typically branch
|
||
and call insns. Other insns typically involve more complicated
|
||
interactions of data dependencies and resource constraints, and
|
||
are better handled by scheduling before register allocation (by the
|
||
function `schedule_insns').
|
||
|
||
The Branch Penalty is the number of extra cycles that are needed to
|
||
execute a branch insn. On an ideal machine, branches take a single
|
||
cycle, and the Branch Penalty is 0. Several RISC machines approach
|
||
branch delays differently:
|
||
|
||
The MIPS has a single branch delay slot. Most insns
|
||
(except other branches) can be used to fill this slot. When the
|
||
slot is filled, two insns execute in two cycles, reducing the
|
||
branch penalty to zero.
|
||
|
||
The SPARC always has a branch delay slot, but its effects can be
|
||
annulled when the branch is not taken. This means that failing to
|
||
find other sources of insns, we can hoist an insn from the branch
|
||
target that would only be safe to execute knowing that the branch
|
||
is taken.
|
||
|
||
The HP-PA always has a branch delay slot. For unconditional branches
|
||
its effects can be annulled when the branch is taken. The effects
|
||
of the delay slot in a conditional branch can be nullified for forward
|
||
taken branches, or for untaken backward branches. This means
|
||
we can hoist insns from the fall-through path for forward branches or
|
||
steal insns from the target of backward branches.
|
||
|
||
The TMS320C3x and C4x have three branch delay slots. When the three
|
||
slots are filled, the branch penalty is zero. Most insns can fill the
|
||
delay slots except jump insns.
|
||
|
||
Three techniques for filling delay slots have been implemented so far:
|
||
|
||
(1) `fill_simple_delay_slots' is the simplest, most efficient way
|
||
to fill delay slots. This pass first looks for insns which come
|
||
from before the branch and which are safe to execute after the
|
||
branch. Then it searches after the insn requiring delay slots or,
|
||
in the case of a branch, for insns that are after the point at
|
||
which the branch merges into the fallthrough code, if such a point
|
||
exists. When such insns are found, the branch penalty decreases
|
||
and no code expansion takes place.
|
||
|
||
(2) `fill_eager_delay_slots' is more complicated: it is used for
|
||
scheduling conditional jumps, or for scheduling jumps which cannot
|
||
be filled using (1). A machine need not have annulled jumps to use
|
||
this strategy, but it helps (by keeping more options open).
|
||
`fill_eager_delay_slots' tries to guess the direction the branch
|
||
will go; if it guesses right 100% of the time, it can reduce the
|
||
branch penalty as much as `fill_simple_delay_slots' does. If it
|
||
guesses wrong 100% of the time, it might as well schedule nops. When
|
||
`fill_eager_delay_slots' takes insns from the fall-through path of
|
||
the jump, usually there is no code expansion; when it takes insns
|
||
from the branch target, there is code expansion if it is not the
|
||
only way to reach that target.
|
||
|
||
(3) `relax_delay_slots' uses a set of rules to simplify code that
|
||
has been reorganized by (1) and (2). It finds cases where
|
||
conditional test can be eliminated, jumps can be threaded, extra
|
||
insns can be eliminated, etc. It is the job of (1) and (2) to do a
|
||
good job of scheduling locally; `relax_delay_slots' takes care of
|
||
making the various individual schedules work well together. It is
|
||
especially tuned to handle the control flow interactions of branch
|
||
insns. It does nothing for insns with delay slots that do not
|
||
branch. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "predict.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "expmed.h"
|
||
#include "insn-config.h"
|
||
#include "emit-rtl.h"
|
||
#include "recog.h"
|
||
#include "insn-attr.h"
|
||
#include "resource.h"
|
||
#include "tree-pass.h"
|
||
|
||
|
||
/* First, some functions that were used before GCC got a control flow graph.
|
||
These functions are now only used here in reorg.cc, and have therefore
|
||
been moved here to avoid inadvertent misuse elsewhere in the compiler. */
|
||
|
||
/* Return the last label to mark the same position as LABEL. Return LABEL
|
||
itself if it is null or any return rtx. */
|
||
|
||
static rtx
|
||
skip_consecutive_labels (rtx label_or_return)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
if (label_or_return && ANY_RETURN_P (label_or_return))
|
||
return label_or_return;
|
||
|
||
rtx_insn *label = as_a <rtx_insn *> (label_or_return);
|
||
|
||
/* __builtin_unreachable can create a CODE_LABEL followed by a BARRIER.
|
||
|
||
Since reaching the CODE_LABEL is undefined behavior, we can return
|
||
any code label and we're OK at run time.
|
||
|
||
However, if we return a CODE_LABEL which leads to a shrink-wrapped
|
||
epilogue, but the path does not have a prologue, then we will trip
|
||
a sanity check in the dwarf2 cfi code which wants to verify that
|
||
the CFIs are all the same on the traces leading to the epilogue.
|
||
|
||
So we explicitly disallow looking through BARRIERS here. */
|
||
for (insn = label;
|
||
insn != 0 && !INSN_P (insn) && !BARRIER_P (insn);
|
||
insn = NEXT_INSN (insn))
|
||
if (LABEL_P (insn))
|
||
label = insn;
|
||
|
||
return label;
|
||
}
|
||
|
||
/* Insns which have delay slots that have not yet been filled. */
|
||
|
||
static struct obstack unfilled_slots_obstack;
|
||
static rtx *unfilled_firstobj;
|
||
|
||
/* Define macros to refer to the first and last slot containing unfilled
|
||
insns. These are used because the list may move and its address
|
||
should be recomputed at each use. */
|
||
|
||
#define unfilled_slots_base \
|
||
((rtx_insn **) obstack_base (&unfilled_slots_obstack))
|
||
|
||
#define unfilled_slots_next \
|
||
((rtx_insn **) obstack_next_free (&unfilled_slots_obstack))
|
||
|
||
/* Points to the label before the end of the function, or before a
|
||
return insn. */
|
||
static rtx_code_label *function_return_label;
|
||
/* Likewise for a simple_return. */
|
||
static rtx_code_label *function_simple_return_label;
|
||
|
||
/* Mapping between INSN_UID's and position in the code since INSN_UID's do
|
||
not always monotonically increase. */
|
||
static int *uid_to_ruid;
|
||
|
||
/* Highest valid index in `uid_to_ruid'. */
|
||
static int max_uid;
|
||
|
||
static bool stop_search_p (rtx_insn *, bool);
|
||
static bool resource_conflicts_p (struct resources *, struct resources *);
|
||
static bool insn_references_resource_p (rtx, struct resources *, bool);
|
||
static bool insn_sets_resource_p (rtx, struct resources *, bool);
|
||
static rtx_code_label *find_end_label (rtx);
|
||
static rtx_insn *emit_delay_sequence (rtx_insn *, const vec<rtx_insn *> &,
|
||
int);
|
||
static void add_to_delay_list (rtx_insn *, vec<rtx_insn *> *);
|
||
static rtx_insn *delete_from_delay_slot (rtx_insn *);
|
||
static void delete_scheduled_jump (rtx_insn *);
|
||
static void note_delay_statistics (int, int);
|
||
static int get_jump_flags (const rtx_insn *, rtx);
|
||
static int mostly_true_jump (rtx);
|
||
static rtx get_branch_condition (const rtx_insn *, rtx);
|
||
static bool condition_dominates_p (rtx, const rtx_insn *);
|
||
static bool redirect_with_delay_slots_safe_p (rtx_insn *, rtx, rtx);
|
||
static bool redirect_with_delay_list_safe_p (rtx_insn *, rtx,
|
||
const vec<rtx_insn *> &);
|
||
static bool check_annul_list_true_false (bool, const vec<rtx_insn *> &);
|
||
static void steal_delay_list_from_target (rtx_insn *, rtx, rtx_sequence *,
|
||
vec<rtx_insn *> *,
|
||
struct resources *,
|
||
struct resources *,
|
||
struct resources *,
|
||
int, int *, bool *,
|
||
rtx *);
|
||
static void steal_delay_list_from_fallthrough (rtx_insn *, rtx, rtx_sequence *,
|
||
vec<rtx_insn *> *,
|
||
struct resources *,
|
||
struct resources *,
|
||
struct resources *,
|
||
int, int *, bool *);
|
||
static void try_merge_delay_insns (rtx_insn *, rtx_insn *);
|
||
static rtx_insn *redundant_insn (rtx, rtx_insn *, const vec<rtx_insn *> &);
|
||
static bool own_thread_p (rtx, rtx, bool);
|
||
static void update_block (rtx_insn *, rtx_insn *);
|
||
static bool reorg_redirect_jump (rtx_jump_insn *, rtx);
|
||
static void update_reg_dead_notes (rtx_insn *, rtx_insn *);
|
||
static void fix_reg_dead_note (rtx_insn *, rtx);
|
||
static void update_reg_unused_notes (rtx_insn *, rtx);
|
||
static void fill_simple_delay_slots (bool);
|
||
static void fill_slots_from_thread (rtx_jump_insn *, rtx, rtx, rtx,
|
||
bool, bool, bool, int,
|
||
int *, vec<rtx_insn *> *);
|
||
static void fill_eager_delay_slots (void);
|
||
static void relax_delay_slots (rtx_insn *);
|
||
static void make_return_insns (rtx_insn *);
|
||
|
||
/* A wrapper around next_active_insn which takes care to return ret_rtx
|
||
unchanged. */
|
||
|
||
static rtx
|
||
first_active_target_insn (rtx insn)
|
||
{
|
||
if (ANY_RETURN_P (insn))
|
||
return insn;
|
||
return next_active_insn (as_a <rtx_insn *> (insn));
|
||
}
|
||
|
||
/* Return true iff INSN is a simplejump, or any kind of return insn. */
|
||
|
||
static bool
|
||
simplejump_or_return_p (rtx insn)
|
||
{
|
||
return (JUMP_P (insn)
|
||
&& (simplejump_p (as_a <rtx_insn *> (insn))
|
||
|| ANY_RETURN_P (PATTERN (insn))));
|
||
}
|
||
|
||
/* Return TRUE if this insn should stop the search for insn to fill delay
|
||
slots. LABELS_P indicates that labels should terminate the search.
|
||
In all cases, jumps terminate the search. */
|
||
|
||
static bool
|
||
stop_search_p (rtx_insn *insn, bool labels_p)
|
||
{
|
||
if (insn == 0)
|
||
return true;
|
||
|
||
/* If the insn can throw an exception that is caught within the function,
|
||
it may effectively perform a jump from the viewpoint of the function.
|
||
Therefore act like for a jump. */
|
||
if (can_throw_internal (insn))
|
||
return true;
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case NOTE:
|
||
case CALL_INSN:
|
||
case DEBUG_INSN:
|
||
return false;
|
||
|
||
case CODE_LABEL:
|
||
return labels_p;
|
||
|
||
case JUMP_INSN:
|
||
case BARRIER:
|
||
return true;
|
||
|
||
case INSN:
|
||
/* OK unless it contains a delay slot or is an `asm' insn of some type.
|
||
We don't know anything about these. */
|
||
return (GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|
||
|| asm_noperands (PATTERN (insn)) >= 0);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if any resources are marked in both RES1 and RES2 or if either
|
||
resource set contains a volatile memory reference. Otherwise, return FALSE. */
|
||
|
||
static bool
|
||
resource_conflicts_p (struct resources *res1, struct resources *res2)
|
||
{
|
||
if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
|
||
|| res1->volatil || res2->volatil)
|
||
return true;
|
||
|
||
return hard_reg_set_intersect_p (res1->regs, res2->regs);
|
||
}
|
||
|
||
/* Return TRUE if any resource marked in RES, a `struct resources', is
|
||
referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
|
||
routine is using those resources.
|
||
|
||
We compute this by computing all the resources referenced by INSN and
|
||
seeing if this conflicts with RES. It might be faster to directly check
|
||
ourselves, and this is the way it used to work, but it means duplicating
|
||
a large block of complex code. */
|
||
|
||
static bool
|
||
insn_references_resource_p (rtx insn, struct resources *res,
|
||
bool include_delayed_effects)
|
||
{
|
||
struct resources insn_res;
|
||
|
||
CLEAR_RESOURCE (&insn_res);
|
||
mark_referenced_resources (insn, &insn_res, include_delayed_effects);
|
||
return resource_conflicts_p (&insn_res, res);
|
||
}
|
||
|
||
/* Return TRUE if INSN modifies resources that are marked in RES.
|
||
INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
|
||
included. */
|
||
|
||
static bool
|
||
insn_sets_resource_p (rtx insn, struct resources *res,
|
||
bool include_delayed_effects)
|
||
{
|
||
struct resources insn_sets;
|
||
|
||
CLEAR_RESOURCE (&insn_sets);
|
||
mark_set_resources (insn, &insn_sets, 0,
|
||
(include_delayed_effects
|
||
? MARK_SRC_DEST_CALL
|
||
: MARK_SRC_DEST));
|
||
return resource_conflicts_p (&insn_sets, res);
|
||
}
|
||
|
||
/* Find a label before a RETURN. If there is none, try to make one; if this
|
||
fails, return 0. KIND is either ret_rtx or simple_return_rtx, indicating
|
||
which type of RETURN we're looking for.
|
||
|
||
The property of the label is that it is placed just before a bare RETURN
|
||
insn, so that another bare RETURN can be turned into a jump to the label
|
||
unconditionally. In particular, the label cannot be placed before a
|
||
RETURN insn with a filled delay slot.
|
||
|
||
??? There may be a problem with the current implementation. Suppose
|
||
we start with a bare RETURN insn and call find_end_label. It may set
|
||
function_return_label just before the RETURN. Suppose the machinery
|
||
is able to fill the delay slot of the RETURN insn afterwards. Then
|
||
function_return_label is no longer valid according to the property
|
||
described above and find_end_label will still return it unmodified.
|
||
Note that this is probably mitigated by the following observation:
|
||
once function_return_label is made, it is very likely the target of
|
||
a jump, so filling the delay slot of the RETURN will be much more
|
||
difficult. */
|
||
|
||
static rtx_code_label *
|
||
find_end_label (rtx kind)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_code_label **plabel;
|
||
|
||
if (kind == ret_rtx)
|
||
plabel = &function_return_label;
|
||
else
|
||
{
|
||
gcc_assert (kind == simple_return_rtx);
|
||
plabel = &function_simple_return_label;
|
||
}
|
||
|
||
/* If we found one previously, return it. */
|
||
if (*plabel)
|
||
return *plabel;
|
||
|
||
/* Otherwise, scan the insns backward from the end of the function. */
|
||
insn = get_last_insn ();
|
||
while (NOTE_P (insn)
|
||
|| (NONJUMP_INSN_P (insn)
|
||
&& (GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)))
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* First, see if there is a RETURN at the end of the function. If so,
|
||
put the label before it. */
|
||
if (BARRIER_P (insn)
|
||
&& JUMP_P (PREV_INSN (insn))
|
||
&& PATTERN (PREV_INSN (insn)) == kind)
|
||
{
|
||
rtx_insn *temp = PREV_INSN (PREV_INSN (insn));
|
||
rtx_code_label *label = gen_label_rtx ();
|
||
LABEL_NUSES (label) = 0;
|
||
|
||
/* Put the label before any USE insns that may precede the
|
||
RETURN insn. */
|
||
while (GET_CODE (temp) == USE)
|
||
temp = PREV_INSN (temp);
|
||
|
||
emit_label_after (label, temp);
|
||
*plabel = label;
|
||
}
|
||
|
||
/* If the basic block reordering pass has moved the return insn to some
|
||
other place, try to locate it again and put the label there. */
|
||
else
|
||
{
|
||
rtx_code_label *label = gen_label_rtx ();
|
||
LABEL_NUSES (label) = 0;
|
||
while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
|
||
insn = PREV_INSN (insn);
|
||
if (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* Put the label before any USE insns that may precede the
|
||
RETURN insn. */
|
||
while (GET_CODE (insn) == USE)
|
||
insn = PREV_INSN (insn);
|
||
|
||
emit_label_after (label, insn);
|
||
}
|
||
else
|
||
{
|
||
if (targetm.have_epilogue () && ! targetm.have_return ())
|
||
/* The RETURN insn has its delay slot filled so we cannot
|
||
emit the label just before it. Since we already have
|
||
an epilogue and cannot emit a new RETURN, we cannot
|
||
emit the label at all. */
|
||
return NULL;
|
||
|
||
/* Otherwise, make a new label and emit a RETURN and BARRIER,
|
||
if needed. */
|
||
emit_label (label);
|
||
if (targetm.have_return ())
|
||
{
|
||
/* The return we make may have delay slots too. */
|
||
rtx_insn *pat = targetm.gen_return ();
|
||
rtx_insn *insn = emit_jump_insn (pat);
|
||
set_return_jump_label (insn);
|
||
emit_barrier ();
|
||
if (num_delay_slots (insn) > 0)
|
||
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
||
}
|
||
}
|
||
*plabel = label;
|
||
}
|
||
|
||
/* Show one additional use for this label so it won't go away until
|
||
we are done. */
|
||
++LABEL_NUSES (*plabel);
|
||
|
||
return *plabel;
|
||
}
|
||
|
||
/* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
|
||
the pattern of INSN with the SEQUENCE.
|
||
|
||
Returns the insn containing the SEQUENCE that replaces INSN. */
|
||
|
||
static rtx_insn *
|
||
emit_delay_sequence (rtx_insn *insn, const vec<rtx_insn *> &list, int length)
|
||
{
|
||
/* Allocate the rtvec to hold the insns and the SEQUENCE. */
|
||
rtvec seqv = rtvec_alloc (length + 1);
|
||
rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
|
||
rtx_insn *seq_insn = make_insn_raw (seq);
|
||
|
||
/* If DELAY_INSN has a location, use it for SEQ_INSN. If DELAY_INSN does
|
||
not have a location, but one of the delayed insns does, we pick up a
|
||
location from there later. */
|
||
INSN_LOCATION (seq_insn) = INSN_LOCATION (insn);
|
||
|
||
/* Unlink INSN from the insn chain, so that we can put it into
|
||
the SEQUENCE. Remember where we want to emit SEQUENCE in AFTER. */
|
||
rtx_insn *after = PREV_INSN (insn);
|
||
remove_insn (insn);
|
||
SET_NEXT_INSN (insn) = SET_PREV_INSN (insn) = NULL;
|
||
|
||
/* Build our SEQUENCE and rebuild the insn chain. */
|
||
start_sequence ();
|
||
XVECEXP (seq, 0, 0) = emit_insn (insn);
|
||
|
||
unsigned int delay_insns = list.length ();
|
||
gcc_assert (delay_insns == (unsigned int) length);
|
||
for (unsigned int i = 0; i < delay_insns; i++)
|
||
{
|
||
rtx_insn *tem = list[i];
|
||
rtx note, next;
|
||
|
||
/* Show that this copy of the insn isn't deleted. */
|
||
tem->set_undeleted ();
|
||
|
||
/* Unlink insn from its original place, and re-emit it into
|
||
the sequence. */
|
||
SET_NEXT_INSN (tem) = SET_PREV_INSN (tem) = NULL;
|
||
XVECEXP (seq, 0, i + 1) = emit_insn (tem);
|
||
|
||
/* SPARC assembler, for instance, emit warning when debug info is output
|
||
into the delay slot. */
|
||
if (INSN_LOCATION (tem) && !INSN_LOCATION (seq_insn))
|
||
INSN_LOCATION (seq_insn) = INSN_LOCATION (tem);
|
||
INSN_LOCATION (tem) = 0;
|
||
|
||
for (note = REG_NOTES (tem); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_DEAD:
|
||
/* Remove any REG_DEAD notes because we can't rely on them now
|
||
that the insn has been moved. */
|
||
remove_note (tem, note);
|
||
break;
|
||
|
||
case REG_LABEL_OPERAND:
|
||
case REG_LABEL_TARGET:
|
||
/* Keep the label reference count up to date. */
|
||
if (LABEL_P (XEXP (note, 0)))
|
||
LABEL_NUSES (XEXP (note, 0)) ++;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
end_sequence ();
|
||
|
||
/* Splice our SEQUENCE into the insn stream where INSN used to be. */
|
||
add_insn_after (seq_insn, after, NULL);
|
||
|
||
return seq_insn;
|
||
}
|
||
|
||
/* Add INSN to DELAY_LIST and return the head of the new list. The list must
|
||
be in the order in which the insns are to be executed. */
|
||
|
||
static void
|
||
add_to_delay_list (rtx_insn *insn, vec<rtx_insn *> *delay_list)
|
||
{
|
||
/* If INSN has its block number recorded, clear it since we may
|
||
be moving the insn to a new block. */
|
||
clear_hashed_info_for_insn (insn);
|
||
|
||
delay_list->safe_push (insn);
|
||
}
|
||
|
||
/* Delete INSN from the delay slot of the insn that it is in, which may
|
||
produce an insn with no delay slots. Return the new insn. */
|
||
|
||
static rtx_insn *
|
||
delete_from_delay_slot (rtx_insn *insn)
|
||
{
|
||
rtx_insn *trial, *seq_insn, *prev;
|
||
rtx_sequence *seq;
|
||
bool had_barrier = false;
|
||
int i;
|
||
|
||
/* We first must find the insn containing the SEQUENCE with INSN in its
|
||
delay slot. Do this by finding an insn, TRIAL, where
|
||
PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
|
||
|
||
for (trial = insn;
|
||
PREV_INSN (NEXT_INSN (trial)) == trial;
|
||
trial = NEXT_INSN (trial))
|
||
;
|
||
|
||
seq_insn = PREV_INSN (NEXT_INSN (trial));
|
||
seq = as_a <rtx_sequence *> (PATTERN (seq_insn));
|
||
|
||
if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
|
||
had_barrier = true;
|
||
|
||
/* Create a delay list consisting of all the insns other than the one
|
||
we are deleting (unless we were the only one). */
|
||
auto_vec<rtx_insn *, 5> delay_list;
|
||
if (seq->len () > 2)
|
||
for (i = 1; i < seq->len (); i++)
|
||
if (seq->insn (i) != insn)
|
||
add_to_delay_list (seq->insn (i), &delay_list);
|
||
|
||
/* Delete the old SEQUENCE, re-emit the insn that used to have the delay
|
||
list, and rebuild the delay list if non-empty. */
|
||
prev = PREV_INSN (seq_insn);
|
||
trial = seq->insn (0);
|
||
delete_related_insns (seq_insn);
|
||
add_insn_after (trial, prev, NULL);
|
||
|
||
/* If there was a barrier after the old SEQUENCE, remit it. */
|
||
if (had_barrier)
|
||
emit_barrier_after (trial);
|
||
|
||
/* If there are any delay insns, remit them. Otherwise clear the
|
||
annul flag. */
|
||
if (!delay_list.is_empty ())
|
||
trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
|
||
else if (JUMP_P (trial))
|
||
INSN_ANNULLED_BRANCH_P (trial) = 0;
|
||
|
||
INSN_FROM_TARGET_P (insn) = 0;
|
||
|
||
/* Show we need to fill this insn again. */
|
||
obstack_ptr_grow (&unfilled_slots_obstack, trial);
|
||
|
||
return trial;
|
||
}
|
||
|
||
/* Delete INSN, a JUMP_INSN. */
|
||
|
||
static void
|
||
delete_scheduled_jump (rtx_insn *insn)
|
||
{
|
||
delete_related_insns (insn);
|
||
}
|
||
|
||
/* Counters for delay-slot filling. */
|
||
|
||
#define NUM_REORG_FUNCTIONS 2
|
||
#define MAX_DELAY_HISTOGRAM 3
|
||
#define MAX_REORG_PASSES 2
|
||
|
||
static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
|
||
|
||
static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
|
||
|
||
static int reorg_pass_number;
|
||
|
||
static void
|
||
note_delay_statistics (int slots_filled, int index)
|
||
{
|
||
num_insns_needing_delays[index][reorg_pass_number]++;
|
||
if (slots_filled > MAX_DELAY_HISTOGRAM)
|
||
slots_filled = MAX_DELAY_HISTOGRAM;
|
||
num_filled_delays[index][slots_filled][reorg_pass_number]++;
|
||
}
|
||
|
||
/* Optimize the following cases:
|
||
|
||
1. When a conditional branch skips over only one instruction,
|
||
use an annulling branch and put that insn in the delay slot.
|
||
Use either a branch that annuls when the condition if true or
|
||
invert the test with a branch that annuls when the condition is
|
||
false. This saves insns, since otherwise we must copy an insn
|
||
from the L1 target.
|
||
|
||
(orig) (skip) (otherwise)
|
||
Bcc.n L1 Bcc',a L1 Bcc,a L1'
|
||
insn insn insn2
|
||
L1: L1: L1:
|
||
insn2 insn2 insn2
|
||
insn3 insn3 L1':
|
||
insn3
|
||
|
||
2. When a conditional branch skips over only one instruction,
|
||
and after that, it unconditionally branches somewhere else,
|
||
perform the similar optimization. This saves executing the
|
||
second branch in the case where the inverted condition is true.
|
||
|
||
Bcc.n L1 Bcc',a L2
|
||
insn insn
|
||
L1: L1:
|
||
Bra L2 Bra L2
|
||
|
||
INSN is a JUMP_INSN.
|
||
|
||
This should be expanded to skip over N insns, where N is the number
|
||
of delay slots required. */
|
||
|
||
static void
|
||
optimize_skip (rtx_jump_insn *insn, vec<rtx_insn *> *delay_list)
|
||
{
|
||
rtx_insn *trial = next_nonnote_insn (insn);
|
||
rtx_insn *next_trial = next_active_insn (trial);
|
||
int flags;
|
||
|
||
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
||
|
||
if (trial == 0
|
||
|| !NONJUMP_INSN_P (trial)
|
||
|| GET_CODE (PATTERN (trial)) == SEQUENCE
|
||
|| recog_memoized (trial) < 0
|
||
|| (! eligible_for_annul_false (insn, 0, trial, flags)
|
||
&& ! eligible_for_annul_true (insn, 0, trial, flags))
|
||
|| RTX_FRAME_RELATED_P (trial)
|
||
|| can_throw_internal (trial))
|
||
return;
|
||
|
||
/* There are two cases where we are just executing one insn (we assume
|
||
here that a branch requires only one insn; this should be generalized
|
||
at some point): Where the branch goes around a single insn or where
|
||
we have one insn followed by a branch to the same label we branch to.
|
||
In both of these cases, inverting the jump and annulling the delay
|
||
slot give the same effect in fewer insns. */
|
||
if (next_trial == next_active_insn (JUMP_LABEL_AS_INSN (insn))
|
||
|| (next_trial != 0
|
||
&& simplejump_or_return_p (next_trial)
|
||
&& JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
|
||
{
|
||
if (eligible_for_annul_false (insn, 0, trial, flags))
|
||
{
|
||
if (invert_jump (insn, JUMP_LABEL (insn), 1))
|
||
INSN_FROM_TARGET_P (trial) = 1;
|
||
else if (! eligible_for_annul_true (insn, 0, trial, flags))
|
||
return;
|
||
}
|
||
|
||
add_to_delay_list (trial, delay_list);
|
||
next_trial = next_active_insn (trial);
|
||
update_block (trial, trial);
|
||
delete_related_insns (trial);
|
||
|
||
/* Also, if we are targeting an unconditional
|
||
branch, thread our jump to the target of that branch. Don't
|
||
change this into a RETURN here, because it may not accept what
|
||
we have in the delay slot. We'll fix this up later. */
|
||
if (next_trial && simplejump_or_return_p (next_trial))
|
||
{
|
||
rtx target_label = JUMP_LABEL (next_trial);
|
||
if (ANY_RETURN_P (target_label))
|
||
target_label = find_end_label (target_label);
|
||
|
||
if (target_label)
|
||
{
|
||
/* Recompute the flags based on TARGET_LABEL since threading
|
||
the jump to TARGET_LABEL may change the direction of the
|
||
jump (which may change the circumstances in which the
|
||
delay slot is nullified). */
|
||
flags = get_jump_flags (insn, target_label);
|
||
if (eligible_for_annul_true (insn, 0, trial, flags))
|
||
reorg_redirect_jump (insn, target_label);
|
||
}
|
||
}
|
||
|
||
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
||
}
|
||
}
|
||
|
||
/* Encode and return branch direction and prediction information for
|
||
INSN assuming it will jump to LABEL.
|
||
|
||
Non conditional branches return no direction information and
|
||
are predicted as very likely taken. */
|
||
|
||
static int
|
||
get_jump_flags (const rtx_insn *insn, rtx label)
|
||
{
|
||
int flags;
|
||
|
||
/* get_jump_flags can be passed any insn with delay slots, these may
|
||
be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
|
||
direction information, and only if they are conditional jumps.
|
||
|
||
If LABEL is a return, then there is no way to determine the branch
|
||
direction. */
|
||
if (JUMP_P (insn)
|
||
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& !ANY_RETURN_P (label)
|
||
&& INSN_UID (insn) <= max_uid
|
||
&& INSN_UID (label) <= max_uid)
|
||
flags
|
||
= (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
|
||
? ATTR_FLAG_forward : ATTR_FLAG_backward;
|
||
/* No valid direction information. */
|
||
else
|
||
flags = 0;
|
||
|
||
return flags;
|
||
}
|
||
|
||
/* Return truth value of the statement that this branch
|
||
is mostly taken. If we think that the branch is extremely likely
|
||
to be taken, we return 2. If the branch is slightly more likely to be
|
||
taken, return 1. If the branch is slightly less likely to be taken,
|
||
return 0 and if the branch is highly unlikely to be taken, return -1. */
|
||
|
||
static int
|
||
mostly_true_jump (rtx jump_insn)
|
||
{
|
||
/* If branch probabilities are available, then use that number since it
|
||
always gives a correct answer. */
|
||
rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);
|
||
if (note)
|
||
{
|
||
int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
|
||
.to_reg_br_prob_base ();
|
||
|
||
if (prob >= REG_BR_PROB_BASE * 9 / 10)
|
||
return 2;
|
||
else if (prob >= REG_BR_PROB_BASE / 2)
|
||
return 1;
|
||
else if (prob >= REG_BR_PROB_BASE / 10)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* If there is no note, assume branches are not taken.
|
||
This should be rare. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the condition under which INSN will branch to TARGET. If TARGET
|
||
is zero, return the condition under which INSN will return. If INSN is
|
||
an unconditional branch, return const_true_rtx. If INSN isn't a simple
|
||
type of jump, or it doesn't go to TARGET, return 0. */
|
||
|
||
static rtx
|
||
get_branch_condition (const rtx_insn *insn, rtx target)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
rtx src;
|
||
|
||
if (condjump_in_parallel_p (insn))
|
||
pat = XVECEXP (pat, 0, 0);
|
||
|
||
if (ANY_RETURN_P (pat) && pat == target)
|
||
return const_true_rtx;
|
||
|
||
if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
|
||
return 0;
|
||
|
||
src = SET_SRC (pat);
|
||
if (GET_CODE (src) == LABEL_REF && label_ref_label (src) == target)
|
||
return const_true_rtx;
|
||
|
||
else if (GET_CODE (src) == IF_THEN_ELSE
|
||
&& XEXP (src, 2) == pc_rtx
|
||
&& ((GET_CODE (XEXP (src, 1)) == LABEL_REF
|
||
&& label_ref_label (XEXP (src, 1)) == target)
|
||
|| (ANY_RETURN_P (XEXP (src, 1)) && XEXP (src, 1) == target)))
|
||
return XEXP (src, 0);
|
||
|
||
else if (GET_CODE (src) == IF_THEN_ELSE
|
||
&& XEXP (src, 1) == pc_rtx
|
||
&& ((GET_CODE (XEXP (src, 2)) == LABEL_REF
|
||
&& label_ref_label (XEXP (src, 2)) == target)
|
||
|| (ANY_RETURN_P (XEXP (src, 2)) && XEXP (src, 2) == target)))
|
||
{
|
||
enum rtx_code rev;
|
||
rev = reversed_comparison_code (XEXP (src, 0), insn);
|
||
if (rev != UNKNOWN)
|
||
return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
|
||
XEXP (XEXP (src, 0), 0),
|
||
XEXP (XEXP (src, 0), 1));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if CONDITION is more strict than the condition of
|
||
INSN, i.e., if INSN will always branch if CONDITION is true. */
|
||
|
||
static bool
|
||
condition_dominates_p (rtx condition, const rtx_insn *insn)
|
||
{
|
||
rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
|
||
enum rtx_code code = GET_CODE (condition);
|
||
enum rtx_code other_code;
|
||
|
||
if (rtx_equal_p (condition, other_condition)
|
||
|| other_condition == const_true_rtx)
|
||
return true;
|
||
|
||
else if (condition == const_true_rtx || other_condition == 0)
|
||
return false;
|
||
|
||
other_code = GET_CODE (other_condition);
|
||
if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
|
||
|| ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
|
||
|| ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
|
||
return false;
|
||
|
||
return comparison_dominates_p (code, other_code);
|
||
}
|
||
|
||
/* Return true if redirecting JUMP to NEWLABEL does not invalidate
|
||
any insns already in the delay slot of JUMP. */
|
||
|
||
static bool
|
||
redirect_with_delay_slots_safe_p (rtx_insn *jump, rtx newlabel, rtx seq)
|
||
{
|
||
int flags, i;
|
||
rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (seq));
|
||
|
||
/* Make sure all the delay slots of this jump would still
|
||
be valid after threading the jump. If they are still
|
||
valid, then return nonzero. */
|
||
|
||
flags = get_jump_flags (jump, newlabel);
|
||
for (i = 1; i < pat->len (); i++)
|
||
if (! (
|
||
#if ANNUL_IFFALSE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump)
|
||
&& INSN_FROM_TARGET_P (pat->insn (i)))
|
||
? eligible_for_annul_false (jump, i - 1, pat->insn (i), flags) :
|
||
#endif
|
||
#if ANNUL_IFTRUE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump)
|
||
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
||
? eligible_for_annul_true (jump, i - 1, pat->insn (i), flags) :
|
||
#endif
|
||
eligible_for_delay (jump, i - 1, pat->insn (i), flags)))
|
||
break;
|
||
|
||
return (i == pat->len ());
|
||
}
|
||
|
||
/* Return true if redirecting JUMP to NEWLABEL does not invalidate
|
||
any insns we wish to place in the delay slot of JUMP. */
|
||
|
||
static bool
|
||
redirect_with_delay_list_safe_p (rtx_insn *jump, rtx newlabel,
|
||
const vec<rtx_insn *> &delay_list)
|
||
{
|
||
/* Make sure all the insns in DELAY_LIST would still be
|
||
valid after threading the jump. If they are still
|
||
valid, then return true. */
|
||
|
||
int flags = get_jump_flags (jump, newlabel);
|
||
unsigned int delay_insns = delay_list.length ();
|
||
unsigned int i = 0;
|
||
for (; i < delay_insns; i++)
|
||
if (! (
|
||
#if ANNUL_IFFALSE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump)
|
||
&& INSN_FROM_TARGET_P (delay_list[i]))
|
||
? eligible_for_annul_false (jump, i, delay_list[i], flags) :
|
||
#endif
|
||
#if ANNUL_IFTRUE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump)
|
||
&& ! INSN_FROM_TARGET_P (delay_list[i]))
|
||
? eligible_for_annul_true (jump, i, delay_list[i], flags) :
|
||
#endif
|
||
eligible_for_delay (jump, i, delay_list[i], flags)))
|
||
break;
|
||
|
||
return i == delay_insns;
|
||
}
|
||
|
||
/* DELAY_LIST is a list of insns that have already been placed into delay
|
||
slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
|
||
If not, return false; otherwise return true. */
|
||
|
||
static bool
|
||
check_annul_list_true_false (bool annul_true_p,
|
||
const vec<rtx_insn *> &delay_list)
|
||
{
|
||
rtx_insn *trial;
|
||
unsigned int i;
|
||
FOR_EACH_VEC_ELT (delay_list, i, trial)
|
||
if ((annul_true_p && INSN_FROM_TARGET_P (trial))
|
||
|| (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
|
||
the condition tested by INSN is CONDITION and the resources shown in
|
||
OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
|
||
from SEQ's delay list, in addition to whatever insns it may execute
|
||
(in DELAY_LIST). SETS and NEEDED are denote resources already set and
|
||
needed while searching for delay slot insns. Return the concatenated
|
||
delay list if possible, otherwise, return 0.
|
||
|
||
SLOTS_TO_FILL is the total number of slots required by INSN, and
|
||
PSLOTS_FILLED points to the number filled so far (also the number of
|
||
insns in DELAY_LIST). It is updated with the number that have been
|
||
filled from the SEQUENCE, if any.
|
||
|
||
PANNUL_P points to a nonzero value if we already know that we need
|
||
to annul INSN. If this routine determines that annulling is needed,
|
||
it may set that value to true.
|
||
|
||
PNEW_THREAD points to a location that is to receive the place at which
|
||
execution should continue. */
|
||
|
||
static void
|
||
steal_delay_list_from_target (rtx_insn *insn, rtx condition, rtx_sequence *seq,
|
||
vec<rtx_insn *> *delay_list,
|
||
struct resources *sets,
|
||
struct resources *needed,
|
||
struct resources *other_needed,
|
||
int slots_to_fill, int *pslots_filled,
|
||
bool *pannul_p, rtx *pnew_thread)
|
||
{
|
||
int slots_remaining = slots_to_fill - *pslots_filled;
|
||
int total_slots_filled = *pslots_filled;
|
||
auto_vec<rtx_insn *, 5> new_delay_list;
|
||
bool must_annul = *pannul_p;
|
||
bool used_annul = false;
|
||
int i;
|
||
struct resources cc_set;
|
||
rtx_insn **redundant;
|
||
|
||
/* We can't do anything if there are more delay slots in SEQ than we
|
||
can handle, or if we don't know that it will be a taken branch.
|
||
We know that it will be a taken branch if it is either an unconditional
|
||
branch or a conditional branch with a stricter branch condition.
|
||
|
||
Also, exit if the branch has more than one set, since then it is computing
|
||
other results that can't be ignored, e.g. the HPPA mov&branch instruction.
|
||
??? It may be possible to move other sets into INSN in addition to
|
||
moving the instructions in the delay slots.
|
||
|
||
We cannot steal the delay list if one of the instructions in the
|
||
current delay_list modifies the condition codes and the jump in the
|
||
sequence is a conditional jump. We cannot do this because we cannot
|
||
change the direction of the jump because the condition codes
|
||
will effect the direction of the jump in the sequence. */
|
||
|
||
CLEAR_RESOURCE (&cc_set);
|
||
|
||
rtx_insn *trial;
|
||
FOR_EACH_VEC_ELT (*delay_list, i, trial)
|
||
{
|
||
mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
|
||
if (insn_references_resource_p (seq->insn (0), &cc_set, false))
|
||
return;
|
||
}
|
||
|
||
if (XVECLEN (seq, 0) - 1 > slots_remaining
|
||
|| ! condition_dominates_p (condition, seq->insn (0))
|
||
|| ! single_set (seq->insn (0)))
|
||
return;
|
||
|
||
/* On some targets, branches with delay slots can have a limited
|
||
displacement. Give the back end a chance to tell us we can't do
|
||
this. */
|
||
if (! targetm.can_follow_jump (insn, seq->insn (0)))
|
||
return;
|
||
|
||
redundant = XALLOCAVEC (rtx_insn *, XVECLEN (seq, 0));
|
||
for (i = 1; i < seq->len (); i++)
|
||
{
|
||
rtx_insn *trial = seq->insn (i);
|
||
int flags;
|
||
|
||
if (insn_references_resource_p (trial, sets, false)
|
||
|| insn_sets_resource_p (trial, needed, false)
|
||
|| insn_sets_resource_p (trial, sets, false)
|
||
/* If TRIAL is from the fallthrough code of an annulled branch insn
|
||
in SEQ, we cannot use it. */
|
||
|| (INSN_ANNULLED_BRANCH_P (seq->insn (0))
|
||
&& ! INSN_FROM_TARGET_P (trial)))
|
||
return;
|
||
|
||
/* If this insn was already done (usually in a previous delay slot),
|
||
pretend we put it in our delay slot. */
|
||
redundant[i] = redundant_insn (trial, insn, new_delay_list);
|
||
if (redundant[i])
|
||
continue;
|
||
|
||
/* We will end up re-vectoring this branch, so compute flags
|
||
based on jumping to the new label. */
|
||
flags = get_jump_flags (insn, JUMP_LABEL (seq->insn (0)));
|
||
|
||
if (! must_annul
|
||
&& ((condition == const_true_rtx
|
||
|| (! insn_sets_resource_p (trial, other_needed, false)
|
||
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
||
? eligible_for_delay (insn, total_slots_filled, trial, flags)
|
||
: (must_annul || (delay_list->is_empty () && new_delay_list.is_empty ()))
|
||
&& (must_annul = true,
|
||
check_annul_list_true_false (false, *delay_list)
|
||
&& check_annul_list_true_false (false, new_delay_list)
|
||
&& eligible_for_annul_false (insn, total_slots_filled,
|
||
trial, flags)))
|
||
{
|
||
if (must_annul)
|
||
{
|
||
/* Frame related instructions cannot go into annulled delay
|
||
slots, it messes up the dwarf info. */
|
||
if (RTX_FRAME_RELATED_P (trial))
|
||
return;
|
||
used_annul = true;
|
||
}
|
||
rtx_insn *temp = copy_delay_slot_insn (trial);
|
||
INSN_FROM_TARGET_P (temp) = 1;
|
||
add_to_delay_list (temp, &new_delay_list);
|
||
total_slots_filled++;
|
||
|
||
if (--slots_remaining == 0)
|
||
break;
|
||
}
|
||
else
|
||
return;
|
||
}
|
||
|
||
/* Record the effect of the instructions that were redundant and which
|
||
we therefore decided not to copy. */
|
||
for (i = 1; i < seq->len (); i++)
|
||
if (redundant[i])
|
||
{
|
||
fix_reg_dead_note (redundant[i], insn);
|
||
update_block (seq->insn (i), insn);
|
||
}
|
||
|
||
/* Show the place to which we will be branching. */
|
||
*pnew_thread = first_active_target_insn (JUMP_LABEL (seq->insn (0)));
|
||
|
||
/* Add any new insns to the delay list and update the count of the
|
||
number of slots filled. */
|
||
*pslots_filled = total_slots_filled;
|
||
if (used_annul)
|
||
*pannul_p = true;
|
||
|
||
rtx_insn *temp;
|
||
FOR_EACH_VEC_ELT (new_delay_list, i, temp)
|
||
add_to_delay_list (temp, delay_list);
|
||
}
|
||
|
||
/* Similar to steal_delay_list_from_target except that SEQ is on the
|
||
fallthrough path of INSN. Here we only do something if the delay insn
|
||
of SEQ is an unconditional branch. In that case we steal its delay slot
|
||
for INSN since unconditional branches are much easier to fill. */
|
||
|
||
static void
|
||
steal_delay_list_from_fallthrough (rtx_insn *insn, rtx condition,
|
||
rtx_sequence *seq,
|
||
vec<rtx_insn *> *delay_list,
|
||
struct resources *sets,
|
||
struct resources *needed,
|
||
struct resources *other_needed,
|
||
int slots_to_fill, int *pslots_filled,
|
||
bool *pannul_p)
|
||
{
|
||
int i;
|
||
int flags;
|
||
bool must_annul = *pannul_p;
|
||
bool used_annul = false;
|
||
|
||
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
||
|
||
/* We can't do anything if SEQ's delay insn isn't an
|
||
unconditional branch. */
|
||
|
||
if (! simplejump_or_return_p (seq->insn (0)))
|
||
return;
|
||
|
||
for (i = 1; i < seq->len (); i++)
|
||
{
|
||
rtx_insn *trial = seq->insn (i);
|
||
rtx_insn *prior_insn;
|
||
|
||
if (insn_references_resource_p (trial, sets, false)
|
||
|| insn_sets_resource_p (trial, needed, false)
|
||
|| insn_sets_resource_p (trial, sets, false))
|
||
break;
|
||
|
||
/* If this insn was already done, we don't need it. */
|
||
if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
|
||
{
|
||
fix_reg_dead_note (prior_insn, insn);
|
||
update_block (trial, insn);
|
||
delete_from_delay_slot (trial);
|
||
continue;
|
||
}
|
||
|
||
if (! must_annul
|
||
&& ((condition == const_true_rtx
|
||
|| (! insn_sets_resource_p (trial, other_needed, false)
|
||
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
||
? eligible_for_delay (insn, *pslots_filled, trial, flags)
|
||
: (must_annul || delay_list->is_empty ()) && (must_annul = true,
|
||
check_annul_list_true_false (true, *delay_list)
|
||
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
||
{
|
||
if (must_annul)
|
||
used_annul = true;
|
||
delete_from_delay_slot (trial);
|
||
add_to_delay_list (trial, delay_list);
|
||
|
||
if (++(*pslots_filled) == slots_to_fill)
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (used_annul)
|
||
*pannul_p = true;
|
||
}
|
||
|
||
/* Try merging insns starting at THREAD which match exactly the insns in
|
||
INSN's delay list.
|
||
|
||
If all insns were matched and the insn was previously annulling, the
|
||
annul bit will be cleared.
|
||
|
||
For each insn that is merged, if the branch is or will be non-annulling,
|
||
we delete the merged insn. */
|
||
|
||
static void
|
||
try_merge_delay_insns (rtx_insn *insn, rtx_insn *thread)
|
||
{
|
||
rtx_insn *trial, *next_trial;
|
||
rtx_insn *delay_insn = as_a <rtx_insn *> (XVECEXP (PATTERN (insn), 0, 0));
|
||
bool annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
|
||
int slot_number = 1;
|
||
int num_slots = XVECLEN (PATTERN (insn), 0);
|
||
rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
||
struct resources set, needed, modified;
|
||
auto_vec<std::pair<rtx_insn *, bool>, 10> merged_insns;
|
||
int flags;
|
||
|
||
flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
|
||
|
||
CLEAR_RESOURCE (&needed);
|
||
CLEAR_RESOURCE (&set);
|
||
|
||
/* If this is not an annulling branch, take into account anything needed in
|
||
INSN's delay slot. This prevents two increments from being incorrectly
|
||
folded into one. If we are annulling, this would be the correct
|
||
thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
|
||
will essentially disable this optimization. This method is somewhat of
|
||
a kludge, but I don't see a better way.) */
|
||
if (! annul_p)
|
||
for (int i = 1; i < num_slots; i++)
|
||
if (XVECEXP (PATTERN (insn), 0, i))
|
||
mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
|
||
true);
|
||
|
||
for (trial = thread; !stop_search_p (trial, true); trial = next_trial)
|
||
{
|
||
rtx pat = PATTERN (trial);
|
||
rtx oldtrial = trial;
|
||
|
||
next_trial = next_nonnote_insn (trial);
|
||
|
||
/* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
|
||
if (NONJUMP_INSN_P (trial)
|
||
&& (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
|
||
continue;
|
||
|
||
if (GET_CODE (next_to_match) == GET_CODE (trial)
|
||
&& ! insn_references_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial, &needed, true)
|
||
&& (trial = try_split (pat, trial, 0)) != 0
|
||
/* Update next_trial, in case try_split succeeded. */
|
||
&& (next_trial = next_nonnote_insn (trial))
|
||
/* Likewise THREAD. */
|
||
&& (thread = oldtrial == thread ? trial : thread)
|
||
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
|
||
/* Have to test this condition if annul condition is different
|
||
from (and less restrictive than) non-annulling one. */
|
||
&& eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
|
||
{
|
||
|
||
if (! annul_p)
|
||
{
|
||
update_block (trial, thread);
|
||
if (trial == thread)
|
||
thread = next_active_insn (thread);
|
||
|
||
delete_related_insns (trial);
|
||
INSN_FROM_TARGET_P (next_to_match) = 0;
|
||
}
|
||
else
|
||
merged_insns.safe_push (std::pair<rtx_insn *, bool> (trial, false));
|
||
|
||
if (++slot_number == num_slots)
|
||
break;
|
||
|
||
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
||
}
|
||
|
||
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (trial, &needed, true);
|
||
}
|
||
|
||
/* See if we stopped on a filled insn. If we did, try to see if its
|
||
delay slots match. */
|
||
if (slot_number != num_slots
|
||
&& trial && NONJUMP_INSN_P (trial)
|
||
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
||
&& !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
|
||
&& INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
|
||
{
|
||
rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (trial));
|
||
rtx filled_insn = XVECEXP (pat, 0, 0);
|
||
|
||
/* Account for resources set/needed by the filled insn. */
|
||
mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (filled_insn, &needed, true);
|
||
|
||
for (int i = 1; i < pat->len (); i++)
|
||
{
|
||
rtx_insn *dtrial = pat->insn (i);
|
||
|
||
CLEAR_RESOURCE (&modified);
|
||
/* Account for resources set by the insn following NEXT_TO_MATCH
|
||
inside INSN's delay list. */
|
||
for (int j = 1; slot_number + j < num_slots; j++)
|
||
mark_set_resources (XVECEXP (PATTERN (insn), 0, slot_number + j),
|
||
&modified, 0, MARK_SRC_DEST_CALL);
|
||
/* Account for resources set by the insn before DTRIAL and inside
|
||
TRIAL's delay list. */
|
||
for (int j = 1; j < i; j++)
|
||
mark_set_resources (XVECEXP (pat, 0, j),
|
||
&modified, 0, MARK_SRC_DEST_CALL);
|
||
if (! insn_references_resource_p (dtrial, &set, true)
|
||
&& ! insn_sets_resource_p (dtrial, &set, true)
|
||
&& ! insn_sets_resource_p (dtrial, &needed, true)
|
||
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
|
||
/* Check that DTRIAL and NEXT_TO_MATCH does not reference a
|
||
resource modified between them (only dtrial is checked because
|
||
next_to_match and dtrial shall to be equal in order to hit
|
||
this line) */
|
||
&& ! insn_references_resource_p (dtrial, &modified, true)
|
||
&& eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
|
||
{
|
||
if (! annul_p)
|
||
{
|
||
rtx_insn *new_rtx;
|
||
|
||
update_block (dtrial, thread);
|
||
new_rtx = delete_from_delay_slot (dtrial);
|
||
if (thread->deleted ())
|
||
thread = new_rtx;
|
||
INSN_FROM_TARGET_P (next_to_match) = 0;
|
||
}
|
||
else
|
||
merged_insns.safe_push (std::pair<rtx_insn *, bool> (dtrial,
|
||
true));
|
||
|
||
if (++slot_number == num_slots)
|
||
break;
|
||
|
||
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
||
}
|
||
else
|
||
{
|
||
/* Keep track of the set/referenced resources for the delay
|
||
slots of any trial insns we encounter. */
|
||
mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (dtrial, &needed, true);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If all insns in the delay slot have been matched and we were previously
|
||
annulling the branch, we need not any more. In that case delete all the
|
||
merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
|
||
the delay list so that we know that it isn't only being used at the
|
||
target. */
|
||
if (slot_number == num_slots && annul_p)
|
||
{
|
||
unsigned int len = merged_insns.length ();
|
||
for (unsigned int i = len - 1; i < len; i--)
|
||
if (merged_insns[i].second)
|
||
{
|
||
update_block (merged_insns[i].first, thread);
|
||
rtx_insn *new_rtx = delete_from_delay_slot (merged_insns[i].first);
|
||
if (thread->deleted ())
|
||
thread = new_rtx;
|
||
}
|
||
else
|
||
{
|
||
update_block (merged_insns[i].first, thread);
|
||
delete_related_insns (merged_insns[i].first);
|
||
}
|
||
|
||
INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
|
||
|
||
for (int i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
|
||
}
|
||
}
|
||
|
||
/* See if INSN is redundant with an insn in front of TARGET. Often this
|
||
is called when INSN is a candidate for a delay slot of TARGET.
|
||
DELAY_LIST are insns that will be placed in delay slots of TARGET in front
|
||
of INSN. Often INSN will be redundant with an insn in a delay slot of
|
||
some previous insn. This happens when we have a series of branches to the
|
||
same label; in that case the first insn at the target might want to go
|
||
into each of the delay slots.
|
||
|
||
If we are not careful, this routine can take up a significant fraction
|
||
of the total compilation time (4%), but only wins rarely. Hence we
|
||
speed this routine up by making two passes. The first pass goes back
|
||
until it hits a label and sees if it finds an insn with an identical
|
||
pattern. Only in this (relatively rare) event does it check for
|
||
data conflicts.
|
||
|
||
We do not split insns we encounter. This could cause us not to find a
|
||
redundant insn, but the cost of splitting seems greater than the possible
|
||
gain in rare cases. */
|
||
|
||
static rtx_insn *
|
||
redundant_insn (rtx insn, rtx_insn *target, const vec<rtx_insn *> &delay_list)
|
||
{
|
||
rtx target_main = target;
|
||
rtx ipat = PATTERN (insn);
|
||
rtx_insn *trial;
|
||
rtx pat;
|
||
struct resources needed, set;
|
||
int i;
|
||
unsigned insns_to_search;
|
||
|
||
/* If INSN has any REG_UNUSED notes, it can't match anything since we
|
||
are allowed to not actually assign to such a register. */
|
||
if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
|
||
return 0;
|
||
|
||
/* Scan backwards looking for a match. */
|
||
for (trial = PREV_INSN (target),
|
||
insns_to_search = param_max_delay_slot_insn_search;
|
||
trial && insns_to_search > 0;
|
||
trial = PREV_INSN (trial))
|
||
{
|
||
/* (use (insn))s can come immediately after a barrier if the
|
||
label that used to precede them has been deleted as dead.
|
||
See delete_related_insns. */
|
||
if (LABEL_P (trial) || BARRIER_P (trial))
|
||
return 0;
|
||
|
||
if (!INSN_P (trial))
|
||
continue;
|
||
--insns_to_search;
|
||
|
||
pat = PATTERN (trial);
|
||
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
continue;
|
||
|
||
if (GET_CODE (trial) == DEBUG_INSN)
|
||
continue;
|
||
|
||
if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
|
||
{
|
||
/* Stop for a CALL and its delay slots because it is difficult to
|
||
track its resource needs correctly. */
|
||
if (CALL_P (seq->element (0)))
|
||
return 0;
|
||
|
||
/* Stop for an INSN or JUMP_INSN with delayed effects and its delay
|
||
slots because it is difficult to track its resource needs
|
||
correctly. */
|
||
|
||
if (INSN_SETS_ARE_DELAYED (seq->insn (0)))
|
||
return 0;
|
||
|
||
if (INSN_REFERENCES_ARE_DELAYED (seq->insn (0)))
|
||
return 0;
|
||
|
||
/* See if any of the insns in the delay slot match, updating
|
||
resource requirements as we go. */
|
||
for (i = seq->len () - 1; i > 0; i--)
|
||
if (GET_CODE (seq->element (i)) == GET_CODE (insn)
|
||
&& rtx_equal_p (PATTERN (seq->element (i)), ipat)
|
||
&& ! find_reg_note (seq->element (i), REG_UNUSED, NULL_RTX))
|
||
break;
|
||
|
||
/* If found a match, exit this loop early. */
|
||
if (i > 0)
|
||
break;
|
||
}
|
||
|
||
else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
|
||
&& ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
|
||
break;
|
||
}
|
||
|
||
/* If we didn't find an insn that matches, return 0. */
|
||
if (trial == 0)
|
||
return 0;
|
||
|
||
/* See what resources this insn sets and needs. If they overlap, it
|
||
can't be redundant. */
|
||
|
||
CLEAR_RESOURCE (&needed);
|
||
CLEAR_RESOURCE (&set);
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (insn, &needed, true);
|
||
|
||
/* If TARGET is a SEQUENCE, get the main insn. */
|
||
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
||
target_main = XVECEXP (PATTERN (target), 0, 0);
|
||
|
||
if (resource_conflicts_p (&needed, &set)
|
||
/* The insn requiring the delay may not set anything needed or set by
|
||
INSN. */
|
||
|| insn_sets_resource_p (target_main, &needed, true)
|
||
|| insn_sets_resource_p (target_main, &set, true))
|
||
return 0;
|
||
|
||
/* Insns we pass may not set either NEEDED or SET, so merge them for
|
||
simpler tests. */
|
||
needed.memory |= set.memory;
|
||
needed.regs |= set.regs;
|
||
|
||
/* This insn isn't redundant if it conflicts with an insn that either is
|
||
or will be in a delay slot of TARGET. */
|
||
|
||
unsigned int j;
|
||
rtx_insn *temp;
|
||
FOR_EACH_VEC_ELT (delay_list, j, temp)
|
||
if (insn_sets_resource_p (temp, &needed, true))
|
||
return 0;
|
||
|
||
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
||
for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
|
||
if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
|
||
true))
|
||
return 0;
|
||
|
||
/* Scan backwards until we reach a label or an insn that uses something
|
||
INSN sets or sets something insn uses or sets. */
|
||
|
||
for (trial = PREV_INSN (target),
|
||
insns_to_search = param_max_delay_slot_insn_search;
|
||
trial && !LABEL_P (trial) && insns_to_search > 0;
|
||
trial = PREV_INSN (trial))
|
||
{
|
||
if (!INSN_P (trial))
|
||
continue;
|
||
--insns_to_search;
|
||
|
||
pat = PATTERN (trial);
|
||
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
continue;
|
||
|
||
if (GET_CODE (trial) == DEBUG_INSN)
|
||
continue;
|
||
|
||
if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
|
||
{
|
||
bool annul_p = false;
|
||
rtx_insn *control = seq->insn (0);
|
||
|
||
/* If this is a CALL_INSN and its delay slots, it is hard to track
|
||
the resource needs properly, so give up. */
|
||
if (CALL_P (control))
|
||
return 0;
|
||
|
||
/* If this is an INSN or JUMP_INSN with delayed effects, it
|
||
is hard to track the resource needs properly, so give up. */
|
||
|
||
if (INSN_SETS_ARE_DELAYED (control))
|
||
return 0;
|
||
|
||
if (INSN_REFERENCES_ARE_DELAYED (control))
|
||
return 0;
|
||
|
||
if (JUMP_P (control))
|
||
annul_p = INSN_ANNULLED_BRANCH_P (control);
|
||
|
||
/* See if any of the insns in the delay slot match, updating
|
||
resource requirements as we go. */
|
||
for (i = seq->len () - 1; i > 0; i--)
|
||
{
|
||
rtx_insn *candidate = seq->insn (i);
|
||
|
||
/* If an insn will be annulled if the branch is false, it isn't
|
||
considered as a possible duplicate insn. */
|
||
if (rtx_equal_p (PATTERN (candidate), ipat)
|
||
&& ! (annul_p && INSN_FROM_TARGET_P (candidate)))
|
||
{
|
||
/* Show that this insn will be used in the sequel. */
|
||
INSN_FROM_TARGET_P (candidate) = 0;
|
||
return candidate;
|
||
}
|
||
|
||
/* Unless this is an annulled insn from the target of a branch,
|
||
we must stop if it sets anything needed or set by INSN. */
|
||
if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
|
||
&& insn_sets_resource_p (candidate, &needed, true))
|
||
return 0;
|
||
}
|
||
|
||
/* If the insn requiring the delay slot conflicts with INSN, we
|
||
must stop. */
|
||
if (insn_sets_resource_p (control, &needed, true))
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* See if TRIAL is the same as INSN. */
|
||
pat = PATTERN (trial);
|
||
if (rtx_equal_p (pat, ipat))
|
||
return trial;
|
||
|
||
/* Can't go any further if TRIAL conflicts with INSN. */
|
||
if (insn_sets_resource_p (trial, &needed, true))
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if THREAD can only be executed in one way. If LABEL is nonzero,
|
||
it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
|
||
is true, we are allowed to fall into this thread; otherwise, we are not.
|
||
|
||
If LABEL is used more than one or we pass a label other than LABEL before
|
||
finding an active insn, we do not own this thread. */
|
||
|
||
static bool
|
||
own_thread_p (rtx thread, rtx label, bool allow_fallthrough)
|
||
{
|
||
rtx_insn *active_insn;
|
||
rtx_insn *insn;
|
||
|
||
/* We don't own the function end. */
|
||
if (thread == 0 || ANY_RETURN_P (thread))
|
||
return false;
|
||
|
||
/* We have a non-NULL insn. */
|
||
rtx_insn *thread_insn = as_a <rtx_insn *> (thread);
|
||
|
||
/* Get the first active insn, or THREAD_INSN, if it is an active insn. */
|
||
active_insn = next_active_insn (PREV_INSN (thread_insn));
|
||
|
||
for (insn = thread_insn; insn != active_insn; insn = NEXT_INSN (insn))
|
||
if (LABEL_P (insn)
|
||
&& (insn != label || LABEL_NUSES (insn) != 1))
|
||
return false;
|
||
|
||
if (allow_fallthrough)
|
||
return true;
|
||
|
||
/* Ensure that we reach a BARRIER before any insn or label. */
|
||
for (insn = prev_nonnote_insn (thread_insn);
|
||
insn == 0 || !BARRIER_P (insn);
|
||
insn = prev_nonnote_insn (insn))
|
||
if (insn == 0
|
||
|| LABEL_P (insn)
|
||
|| (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Called when INSN is being moved from a location near the target of a jump.
|
||
We leave a marker of the form (use (INSN)) immediately in front of WHERE
|
||
for mark_target_live_regs. These markers will be deleted at the end.
|
||
|
||
We used to try to update the live status of registers if WHERE is at
|
||
the start of a basic block, but that can't work since we may remove a
|
||
BARRIER in relax_delay_slots. */
|
||
|
||
static void
|
||
update_block (rtx_insn *insn, rtx_insn *where)
|
||
{
|
||
emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
|
||
|
||
/* INSN might be making a value live in a block where it didn't use to
|
||
be. So recompute liveness information for this block. */
|
||
incr_ticks_for_insn (insn);
|
||
}
|
||
|
||
/* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
|
||
the basic block containing the jump. */
|
||
|
||
static bool
|
||
reorg_redirect_jump (rtx_jump_insn *jump, rtx nlabel)
|
||
{
|
||
incr_ticks_for_insn (jump);
|
||
return redirect_jump (jump, nlabel, 1);
|
||
}
|
||
|
||
/* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
|
||
We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
|
||
that reference values used in INSN. If we find one, then we move the
|
||
REG_DEAD note to INSN.
|
||
|
||
This is needed to handle the case where a later insn (after INSN) has a
|
||
REG_DEAD note for a register used by INSN, and this later insn subsequently
|
||
gets moved before a CODE_LABEL because it is a redundant insn. In this
|
||
case, mark_target_live_regs may be confused into thinking the register
|
||
is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
|
||
|
||
static void
|
||
update_reg_dead_notes (rtx_insn *insn, rtx_insn *delayed_insn)
|
||
{
|
||
rtx link, next;
|
||
rtx_insn *p;
|
||
|
||
for (p = next_nonnote_insn (insn); p != delayed_insn;
|
||
p = next_nonnote_insn (p))
|
||
for (link = REG_NOTES (p); link; link = next)
|
||
{
|
||
next = XEXP (link, 1);
|
||
|
||
if (REG_NOTE_KIND (link) != REG_DEAD
|
||
|| !REG_P (XEXP (link, 0)))
|
||
continue;
|
||
|
||
if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
|
||
{
|
||
/* Move the REG_DEAD note from P to INSN. */
|
||
remove_note (p, link);
|
||
XEXP (link, 1) = REG_NOTES (insn);
|
||
REG_NOTES (insn) = link;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Called when an insn redundant with start_insn is deleted. If there
|
||
is a REG_DEAD note for the target of start_insn between start_insn
|
||
and stop_insn, then the REG_DEAD note needs to be deleted since the
|
||
value no longer dies there.
|
||
|
||
If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
|
||
confused into thinking the register is dead. */
|
||
|
||
static void
|
||
fix_reg_dead_note (rtx_insn *start_insn, rtx stop_insn)
|
||
{
|
||
rtx link, next;
|
||
rtx_insn *p;
|
||
|
||
for (p = next_nonnote_insn (start_insn); p != stop_insn;
|
||
p = next_nonnote_insn (p))
|
||
for (link = REG_NOTES (p); link; link = next)
|
||
{
|
||
next = XEXP (link, 1);
|
||
|
||
if (REG_NOTE_KIND (link) != REG_DEAD
|
||
|| !REG_P (XEXP (link, 0)))
|
||
continue;
|
||
|
||
if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
|
||
{
|
||
remove_note (p, link);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete any REG_UNUSED notes that exist on INSN but not on OTHER_INSN.
|
||
|
||
This handles the case of udivmodXi4 instructions which optimize their
|
||
output depending on whether any REG_UNUSED notes are present. We must
|
||
make sure that INSN calculates as many results as OTHER_INSN does. */
|
||
|
||
static void
|
||
update_reg_unused_notes (rtx_insn *insn, rtx other_insn)
|
||
{
|
||
rtx link, next;
|
||
|
||
for (link = REG_NOTES (insn); link; link = next)
|
||
{
|
||
next = XEXP (link, 1);
|
||
|
||
if (REG_NOTE_KIND (link) != REG_UNUSED
|
||
|| !REG_P (XEXP (link, 0)))
|
||
continue;
|
||
|
||
if (!find_regno_note (other_insn, REG_UNUSED, REGNO (XEXP (link, 0))))
|
||
remove_note (insn, link);
|
||
}
|
||
}
|
||
|
||
static vec <rtx> sibling_labels;
|
||
|
||
/* Return the label before INSN, or put a new label there. If SIBLING is
|
||
non-zero, it is another label associated with the new label (if any),
|
||
typically the former target of the jump that will be redirected to
|
||
the new label. */
|
||
|
||
static rtx_insn *
|
||
get_label_before (rtx_insn *insn, rtx sibling)
|
||
{
|
||
rtx_insn *label;
|
||
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
label = prev_nonnote_insn (insn);
|
||
|
||
if (label == 0 || !LABEL_P (label))
|
||
{
|
||
rtx_insn *prev = PREV_INSN (insn);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_label_after (label, prev);
|
||
LABEL_NUSES (label) = 0;
|
||
if (sibling)
|
||
{
|
||
sibling_labels.safe_push (label);
|
||
sibling_labels.safe_push (sibling);
|
||
}
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Scan a function looking for insns that need a delay slot and find insns to
|
||
put into the delay slot.
|
||
|
||
NON_JUMPS_P is true if we are to only try to fill non-jump insns (such
|
||
as calls). We do these first since we don't want jump insns (that are
|
||
easier to fill) to get the only insns that could be used for non-jump insns.
|
||
When it is zero, only try to fill JUMP_INSNs.
|
||
|
||
When slots are filled in this manner, the insns (including the
|
||
delay_insn) are put together in a SEQUENCE rtx. In this fashion,
|
||
it is possible to tell whether a delay slot has really been filled
|
||
or not. `final' knows how to deal with this, by communicating
|
||
through FINAL_SEQUENCE. */
|
||
|
||
static void
|
||
fill_simple_delay_slots (bool non_jumps_p)
|
||
{
|
||
rtx_insn *insn, *trial, *next_trial;
|
||
rtx pat;
|
||
int i;
|
||
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
||
struct resources needed, set;
|
||
int slots_to_fill, slots_filled;
|
||
auto_vec<rtx_insn *, 5> delay_list;
|
||
|
||
for (i = 0; i < num_unfilled_slots; i++)
|
||
{
|
||
int flags;
|
||
/* Get the next insn to fill. If it has already had any slots assigned,
|
||
we can't do anything with it. Maybe we'll improve this later. */
|
||
|
||
insn = unfilled_slots_base[i];
|
||
if (insn == 0
|
||
|| insn->deleted ()
|
||
|| (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
|| (JUMP_P (insn) && non_jumps_p)
|
||
|| (!JUMP_P (insn) && ! non_jumps_p))
|
||
continue;
|
||
|
||
/* It may have been that this insn used to need delay slots, but
|
||
now doesn't; ignore in that case. This can happen, for example,
|
||
on the HP PA RISC, where the number of delay slots depends on
|
||
what insns are nearby. */
|
||
slots_to_fill = num_delay_slots (insn);
|
||
|
||
/* Some machine description have defined instructions to have
|
||
delay slots only in certain circumstances which may depend on
|
||
nearby insns (which change due to reorg's actions).
|
||
|
||
For example, the PA port normally has delay slots for unconditional
|
||
jumps.
|
||
|
||
However, the PA port claims such jumps do not have a delay slot
|
||
if they are immediate successors of certain CALL_INSNs. This
|
||
allows the port to favor filling the delay slot of the call with
|
||
the unconditional jump. */
|
||
if (slots_to_fill == 0)
|
||
continue;
|
||
|
||
/* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
|
||
says how many. After initialization, first try optimizing
|
||
|
||
call _foo call _foo
|
||
nop add %o7,.-L1,%o7
|
||
b,a L1
|
||
nop
|
||
|
||
If this case applies, the delay slot of the call is filled with
|
||
the unconditional jump. This is done first to avoid having the
|
||
delay slot of the call filled in the backward scan. Also, since
|
||
the unconditional jump is likely to also have a delay slot, that
|
||
insn must exist when it is subsequently scanned.
|
||
|
||
This is tried on each insn with delay slots as some machines
|
||
have insns which perform calls, but are not represented as
|
||
CALL_INSNs. */
|
||
|
||
slots_filled = 0;
|
||
delay_list.truncate (0);
|
||
|
||
if (JUMP_P (insn))
|
||
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
||
else
|
||
flags = get_jump_flags (insn, NULL_RTX);
|
||
|
||
if ((trial = next_active_insn (insn))
|
||
&& JUMP_P (trial)
|
||
&& simplejump_p (trial)
|
||
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
||
&& no_labels_between_p (insn, trial)
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
rtx_insn **tmp;
|
||
slots_filled++;
|
||
add_to_delay_list (trial, &delay_list);
|
||
|
||
/* TRIAL may have had its delay slot filled, then unfilled. When
|
||
the delay slot is unfilled, TRIAL is placed back on the unfilled
|
||
slots obstack. Unfortunately, it is placed on the end of the
|
||
obstack, not in its original location. Therefore, we must search
|
||
from entry i + 1 to the end of the unfilled slots obstack to
|
||
try and find TRIAL. */
|
||
tmp = &unfilled_slots_base[i + 1];
|
||
while (*tmp != trial && tmp != unfilled_slots_next)
|
||
tmp++;
|
||
|
||
/* Remove the unconditional jump from consideration for delay slot
|
||
filling and unthread it. */
|
||
if (*tmp == trial)
|
||
*tmp = 0;
|
||
{
|
||
rtx_insn *next = NEXT_INSN (trial);
|
||
rtx_insn *prev = PREV_INSN (trial);
|
||
if (prev)
|
||
SET_NEXT_INSN (prev) = next;
|
||
if (next)
|
||
SET_PREV_INSN (next) = prev;
|
||
}
|
||
}
|
||
|
||
/* Now, scan backwards from the insn to search for a potential
|
||
delay-slot candidate. Stop searching when a label or jump is hit.
|
||
|
||
For each candidate, if it is to go into the delay slot (moved
|
||
forward in execution sequence), it must not need or set any resources
|
||
that were set by later insns and must not set any resources that
|
||
are needed for those insns.
|
||
|
||
The delay slot insn itself sets resources unless it is a call
|
||
(in which case the called routine, not the insn itself, is doing
|
||
the setting). */
|
||
|
||
if (slots_filled < slots_to_fill)
|
||
{
|
||
/* If the flags register is dead after the insn, then we want to be
|
||
able to accept a candidate that clobbers it. For this purpose,
|
||
we need to filter the flags register during life analysis, so
|
||
that it doesn't create RAW and WAW dependencies, while still
|
||
creating the necessary WAR dependencies. */
|
||
bool filter_flags
|
||
= (slots_to_fill == 1
|
||
&& targetm.flags_regnum != INVALID_REGNUM
|
||
&& find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
|
||
struct resources fset;
|
||
CLEAR_RESOURCE (&needed);
|
||
CLEAR_RESOURCE (&set);
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
|
||
if (filter_flags)
|
||
{
|
||
CLEAR_RESOURCE (&fset);
|
||
mark_set_resources (insn, &fset, 0, MARK_SRC_DEST);
|
||
}
|
||
mark_referenced_resources (insn, &needed, false);
|
||
|
||
for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, true);
|
||
trial = next_trial)
|
||
{
|
||
next_trial = prev_nonnote_insn (trial);
|
||
|
||
/* This must be an INSN or CALL_INSN. */
|
||
pat = PATTERN (trial);
|
||
|
||
/* Stand-alone USE and CLOBBER are just for flow. */
|
||
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
continue;
|
||
|
||
/* And DEBUG_INSNs never go into delay slots. */
|
||
if (GET_CODE (trial) == DEBUG_INSN)
|
||
continue;
|
||
|
||
/* Check for resource conflict first, to avoid unnecessary
|
||
splitting. */
|
||
if (! insn_references_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial,
|
||
filter_flags ? &fset : &set,
|
||
true)
|
||
&& ! insn_sets_resource_p (trial, &needed, true)
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
trial = try_split (pat, trial, 1);
|
||
next_trial = prev_nonnote_insn (trial);
|
||
if (eligible_for_delay (insn, slots_filled, trial, flags))
|
||
{
|
||
/* In this case, we are searching backward, so if we
|
||
find insns to put on the delay list, we want
|
||
to put them at the head, rather than the
|
||
tail, of the list. */
|
||
|
||
update_reg_dead_notes (trial, insn);
|
||
delay_list.safe_insert (0, trial);
|
||
update_block (trial, trial);
|
||
delete_related_insns (trial);
|
||
if (slots_to_fill == ++slots_filled)
|
||
break;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
||
if (filter_flags)
|
||
{
|
||
mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
|
||
/* If the flags register is set, then it doesn't create RAW
|
||
dependencies any longer and it also doesn't create WAW
|
||
dependencies since it's dead after the original insn. */
|
||
if (TEST_HARD_REG_BIT (fset.regs, targetm.flags_regnum))
|
||
{
|
||
CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
|
||
CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
|
||
}
|
||
}
|
||
mark_referenced_resources (trial, &needed, true);
|
||
}
|
||
}
|
||
|
||
/* If all needed slots haven't been filled, we come here. */
|
||
|
||
/* Try to optimize case of jumping around a single insn. */
|
||
if ((ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
|
||
&& slots_filled != slots_to_fill
|
||
&& delay_list.is_empty ()
|
||
&& JUMP_P (insn)
|
||
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& !ANY_RETURN_P (JUMP_LABEL (insn)))
|
||
{
|
||
optimize_skip (as_a <rtx_jump_insn *> (insn), &delay_list);
|
||
if (!delay_list.is_empty ())
|
||
slots_filled += 1;
|
||
}
|
||
|
||
/* Try to get insns from beyond the insn needing the delay slot.
|
||
These insns can neither set or reference resources set in insns being
|
||
skipped, cannot set resources in the insn being skipped, and, if this
|
||
is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
|
||
call might not return).
|
||
|
||
There used to be code which continued past the target label if
|
||
we saw all uses of the target label. This code did not work,
|
||
because it failed to account for some instructions which were
|
||
both annulled and marked as from the target. This can happen as a
|
||
result of optimize_skip. Since this code was redundant with
|
||
fill_eager_delay_slots anyways, it was just deleted. */
|
||
|
||
if (slots_filled != slots_to_fill
|
||
/* If this instruction could throw an exception which is
|
||
caught in the same function, then it's not safe to fill
|
||
the delay slot with an instruction from beyond this
|
||
point. For example, consider:
|
||
|
||
int i = 2;
|
||
|
||
try {
|
||
f();
|
||
i = 3;
|
||
} catch (...) {}
|
||
|
||
return i;
|
||
|
||
Even though `i' is a local variable, we must be sure not
|
||
to put `i = 3' in the delay slot if `f' might throw an
|
||
exception.
|
||
|
||
Presumably, we should also check to see if we could get
|
||
back to this function via `setjmp'. */
|
||
&& ! can_throw_internal (insn)
|
||
&& !JUMP_P (insn))
|
||
{
|
||
bool maybe_never = false;
|
||
rtx pat, trial_delay;
|
||
|
||
CLEAR_RESOURCE (&needed);
|
||
CLEAR_RESOURCE (&set);
|
||
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (insn, &needed, true);
|
||
|
||
if (CALL_P (insn))
|
||
maybe_never = true;
|
||
|
||
for (trial = next_nonnote_insn (insn); !stop_search_p (trial, true);
|
||
trial = next_trial)
|
||
{
|
||
next_trial = next_nonnote_insn (trial);
|
||
|
||
/* This must be an INSN or CALL_INSN. */
|
||
pat = PATTERN (trial);
|
||
|
||
/* Stand-alone USE and CLOBBER are just for flow. */
|
||
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
continue;
|
||
|
||
/* And DEBUG_INSNs do not go in delay slots. */
|
||
if (GET_CODE (trial) == DEBUG_INSN)
|
||
continue;
|
||
|
||
/* If this already has filled delay slots, get the insn needing
|
||
the delay slots. */
|
||
if (GET_CODE (pat) == SEQUENCE)
|
||
trial_delay = XVECEXP (pat, 0, 0);
|
||
else
|
||
trial_delay = trial;
|
||
|
||
/* Stop our search when seeing a jump. */
|
||
if (JUMP_P (trial_delay))
|
||
break;
|
||
|
||
/* See if we have a resource problem before we try to split. */
|
||
if (GET_CODE (pat) != SEQUENCE
|
||
&& ! insn_references_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial, &needed, true)
|
||
&& ! (maybe_never && may_trap_or_fault_p (pat))
|
||
&& (trial = try_split (pat, trial, 0))
|
||
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
next_trial = next_nonnote_insn (trial);
|
||
add_to_delay_list (trial, &delay_list);
|
||
|
||
delete_related_insns (trial);
|
||
if (slots_to_fill == ++slots_filled)
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (trial, &needed, true);
|
||
|
||
/* Ensure we don't put insns between the setting of cc and the
|
||
comparison by moving a setting of cc into an earlier delay
|
||
slot since these insns could clobber the condition code. */
|
||
set.cc = 1;
|
||
|
||
/* If this is a call, we might not get here. */
|
||
if (CALL_P (trial_delay))
|
||
maybe_never = true;
|
||
}
|
||
|
||
/* If there are slots left to fill and our search was stopped by an
|
||
unconditional branch, try the insn at the branch target. We can
|
||
redirect the branch if it works.
|
||
|
||
Don't do this if the insn at the branch target is a branch. */
|
||
if (slots_to_fill != slots_filled
|
||
&& trial
|
||
&& jump_to_label_p (trial)
|
||
&& simplejump_p (trial)
|
||
&& (next_trial = next_active_insn (JUMP_LABEL_AS_INSN (trial))) != 0
|
||
&& ! (NONJUMP_INSN_P (next_trial)
|
||
&& GET_CODE (PATTERN (next_trial)) == SEQUENCE)
|
||
&& !JUMP_P (next_trial)
|
||
&& ! insn_references_resource_p (next_trial, &set, true)
|
||
&& ! insn_sets_resource_p (next_trial, &set, true)
|
||
&& ! insn_sets_resource_p (next_trial, &needed, true)
|
||
&& ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
|
||
&& (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
|
||
&& eligible_for_delay (insn, slots_filled, next_trial, flags)
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
/* See comment in relax_delay_slots about necessity of using
|
||
next_real_nondebug_insn here. */
|
||
rtx_insn *new_label = next_real_nondebug_insn (next_trial);
|
||
|
||
if (new_label != 0)
|
||
new_label = get_label_before (new_label, JUMP_LABEL (trial));
|
||
else
|
||
new_label = find_end_label (simple_return_rtx);
|
||
|
||
if (new_label)
|
||
{
|
||
add_to_delay_list (copy_delay_slot_insn (next_trial),
|
||
&delay_list);
|
||
slots_filled++;
|
||
reorg_redirect_jump (as_a <rtx_jump_insn *> (trial),
|
||
new_label);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this is an unconditional jump, then try to get insns from the
|
||
target of the jump. */
|
||
rtx_jump_insn *jump_insn;
|
||
if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
|
||
&& simplejump_p (jump_insn)
|
||
&& slots_filled != slots_to_fill)
|
||
fill_slots_from_thread (jump_insn, const_true_rtx,
|
||
next_active_insn (JUMP_LABEL_AS_INSN (insn)),
|
||
NULL, 1, 1, own_thread_p (JUMP_LABEL (insn),
|
||
JUMP_LABEL (insn), false),
|
||
slots_to_fill, &slots_filled, &delay_list);
|
||
|
||
if (!delay_list.is_empty ())
|
||
unfilled_slots_base[i]
|
||
= emit_delay_sequence (insn, delay_list, slots_filled);
|
||
|
||
if (slots_to_fill == slots_filled)
|
||
unfilled_slots_base[i] = 0;
|
||
|
||
note_delay_statistics (slots_filled, 0);
|
||
}
|
||
}
|
||
|
||
/* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
|
||
return the ultimate label reached by any such chain of jumps.
|
||
Return a suitable return rtx if the chain ultimately leads to a
|
||
return instruction.
|
||
If LABEL is not followed by a jump, return LABEL.
|
||
If the chain loops or we can't find end, return LABEL,
|
||
since that tells caller to avoid changing the insn.
|
||
If the returned label is obtained by following a crossing jump,
|
||
set *CROSSING to true, otherwise set it to false. */
|
||
|
||
static rtx
|
||
follow_jumps (rtx label, rtx_insn *jump, bool *crossing)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_insn *next;
|
||
int depth;
|
||
|
||
*crossing = false;
|
||
if (ANY_RETURN_P (label))
|
||
return label;
|
||
|
||
rtx_insn *value = as_a <rtx_insn *> (label);
|
||
|
||
for (depth = 0;
|
||
(depth < 10
|
||
&& (insn = next_active_insn (value)) != 0
|
||
&& JUMP_P (insn)
|
||
&& JUMP_LABEL (insn) != NULL_RTX
|
||
&& ((any_uncondjump_p (insn) && onlyjump_p (insn))
|
||
|| ANY_RETURN_P (PATTERN (insn)))
|
||
&& (next = NEXT_INSN (insn))
|
||
&& BARRIER_P (next));
|
||
depth++)
|
||
{
|
||
rtx this_label_or_return = JUMP_LABEL (insn);
|
||
|
||
/* If we have found a cycle, make the insn jump to itself. */
|
||
if (this_label_or_return == label)
|
||
return label;
|
||
|
||
/* Cannot follow returns and cannot look through tablejumps. */
|
||
if (ANY_RETURN_P (this_label_or_return))
|
||
return this_label_or_return;
|
||
|
||
rtx_insn *this_label = as_a <rtx_insn *> (this_label_or_return);
|
||
if (NEXT_INSN (this_label)
|
||
&& JUMP_TABLE_DATA_P (NEXT_INSN (this_label)))
|
||
break;
|
||
|
||
if (!targetm.can_follow_jump (jump, insn))
|
||
break;
|
||
if (!*crossing)
|
||
*crossing = CROSSING_JUMP_P (jump);
|
||
value = this_label;
|
||
}
|
||
if (depth == 10)
|
||
return label;
|
||
return value;
|
||
}
|
||
|
||
/* Try to find insns to place in delay slots.
|
||
|
||
INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
|
||
or is an unconditional branch if CONDITION is const_true_rtx.
|
||
*PSLOTS_FILLED is updated with the number of slots that we have filled.
|
||
|
||
THREAD is a flow-of-control, either the insns to be executed if the
|
||
branch is true or if the branch is false, THREAD_IF_TRUE says which.
|
||
|
||
OPPOSITE_THREAD is the thread in the opposite direction. It is used
|
||
to see if any potential delay slot insns set things needed there.
|
||
|
||
LIKELY is true if it is extremely likely that the branch will be
|
||
taken and THREAD_IF_TRUE is set. This is used for the branch at the
|
||
end of a loop back up to the top.
|
||
|
||
OWN_THREAD is true if we are the only user of the thread, i.e. it is
|
||
the target of the jump when we are the only jump going there.
|
||
|
||
If OWN_THREAD is false, it must be the "true" thread of a jump. In that
|
||
case, we can only take insns from the head of the thread for our delay
|
||
slot. We then adjust the jump to point after the insns we have taken. */
|
||
|
||
static void
|
||
fill_slots_from_thread (rtx_jump_insn *insn, rtx condition,
|
||
rtx thread_or_return, rtx opposite_thread, bool likely,
|
||
bool thread_if_true, bool own_thread, int slots_to_fill,
|
||
int *pslots_filled, vec<rtx_insn *> *delay_list)
|
||
{
|
||
rtx new_thread;
|
||
struct resources opposite_needed, set, needed;
|
||
rtx_insn *trial;
|
||
bool lose = false;
|
||
bool must_annul = false;
|
||
int flags;
|
||
|
||
/* Validate our arguments. */
|
||
gcc_assert (condition != const_true_rtx || thread_if_true);
|
||
gcc_assert (own_thread || thread_if_true);
|
||
|
||
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
||
|
||
/* If our thread is the end of subroutine, we can't get any delay
|
||
insns from that. */
|
||
if (thread_or_return == NULL_RTX || ANY_RETURN_P (thread_or_return))
|
||
return;
|
||
|
||
rtx_insn *thread = as_a <rtx_insn *> (thread_or_return);
|
||
|
||
/* If this is an unconditional branch, nothing is needed at the
|
||
opposite thread. Otherwise, compute what is needed there. */
|
||
if (condition == const_true_rtx)
|
||
CLEAR_RESOURCE (&opposite_needed);
|
||
else
|
||
mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
|
||
|
||
/* If the insn at THREAD can be split, do it here to avoid having to
|
||
update THREAD and NEW_THREAD if it is done in the loop below. Also
|
||
initialize NEW_THREAD. */
|
||
|
||
new_thread = thread = try_split (PATTERN (thread), thread, 0);
|
||
|
||
/* Scan insns at THREAD. We are looking for an insn that can be removed
|
||
from THREAD (it neither sets nor references resources that were set
|
||
ahead of it and it doesn't set anything needs by the insns ahead of
|
||
it) and that either can be placed in an annulling insn or aren't
|
||
needed at OPPOSITE_THREAD. */
|
||
|
||
CLEAR_RESOURCE (&needed);
|
||
CLEAR_RESOURCE (&set);
|
||
|
||
/* Handle the flags register specially, to be able to accept a
|
||
candidate that clobbers it. See also fill_simple_delay_slots. */
|
||
bool filter_flags
|
||
= (slots_to_fill == 1
|
||
&& targetm.flags_regnum != INVALID_REGNUM
|
||
&& find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
|
||
struct resources fset;
|
||
struct resources flags_res;
|
||
if (filter_flags)
|
||
{
|
||
CLEAR_RESOURCE (&fset);
|
||
CLEAR_RESOURCE (&flags_res);
|
||
SET_HARD_REG_BIT (flags_res.regs, targetm.flags_regnum);
|
||
}
|
||
|
||
/* If we do not own this thread, we must stop as soon as we find
|
||
something that we can't put in a delay slot, since all we can do
|
||
is branch into THREAD at a later point. Therefore, labels stop
|
||
the search if this is not the `true' thread. */
|
||
|
||
for (trial = thread;
|
||
! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
|
||
trial = next_nonnote_insn (trial))
|
||
{
|
||
rtx pat, old_trial;
|
||
|
||
/* If we have passed a label, we no longer own this thread. */
|
||
if (LABEL_P (trial))
|
||
{
|
||
own_thread = 0;
|
||
continue;
|
||
}
|
||
|
||
pat = PATTERN (trial);
|
||
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
continue;
|
||
|
||
if (GET_CODE (trial) == DEBUG_INSN)
|
||
continue;
|
||
|
||
/* If TRIAL conflicts with the insns ahead of it, we lose. */
|
||
if (! insn_references_resource_p (trial, &set, true)
|
||
&& ! insn_sets_resource_p (trial, filter_flags ? &fset : &set, true)
|
||
&& ! insn_sets_resource_p (trial, &needed, true)
|
||
/* If we're handling sets to the flags register specially, we
|
||
only allow an insn into a delay-slot, if it either:
|
||
- doesn't set the flags register,
|
||
- the "set" of the flags register isn't used (clobbered),
|
||
- insns between the delay-slot insn and the trial-insn
|
||
as accounted in "set", have not affected the flags register. */
|
||
&& (! filter_flags
|
||
|| ! insn_sets_resource_p (trial, &flags_res, true)
|
||
|| find_regno_note (trial, REG_UNUSED, targetm.flags_regnum)
|
||
|| ! TEST_HARD_REG_BIT (set.regs, targetm.flags_regnum))
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
rtx_insn *prior_insn;
|
||
|
||
/* If TRIAL is redundant with some insn before INSN, we don't
|
||
actually need to add it to the delay list; we can merely pretend
|
||
we did. */
|
||
if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
|
||
{
|
||
fix_reg_dead_note (prior_insn, insn);
|
||
if (own_thread)
|
||
{
|
||
update_block (trial, thread);
|
||
if (trial == thread)
|
||
{
|
||
thread = next_active_insn (thread);
|
||
if (new_thread == trial)
|
||
new_thread = thread;
|
||
}
|
||
|
||
delete_related_insns (trial);
|
||
}
|
||
else
|
||
{
|
||
update_reg_unused_notes (prior_insn, trial);
|
||
new_thread = next_active_insn (trial);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* There are two ways we can win: If TRIAL doesn't set anything
|
||
needed at the opposite thread and can't trap, or if it can
|
||
go into an annulled delay slot. But we want neither to copy
|
||
nor to speculate frame-related insns. */
|
||
if (!must_annul
|
||
&& ((condition == const_true_rtx
|
||
&& (own_thread || !RTX_FRAME_RELATED_P (trial)))
|
||
|| (! insn_sets_resource_p (trial, &opposite_needed, true)
|
||
&& ! may_trap_or_fault_p (pat)
|
||
&& ! RTX_FRAME_RELATED_P (trial))))
|
||
{
|
||
old_trial = trial;
|
||
trial = try_split (pat, trial, 0);
|
||
if (new_thread == old_trial)
|
||
new_thread = trial;
|
||
if (thread == old_trial)
|
||
thread = trial;
|
||
pat = PATTERN (trial);
|
||
if (eligible_for_delay (insn, *pslots_filled, trial, flags))
|
||
goto winner;
|
||
}
|
||
else if (!RTX_FRAME_RELATED_P (trial)
|
||
&& ((ANNUL_IFTRUE_SLOTS && ! thread_if_true)
|
||
|| (ANNUL_IFFALSE_SLOTS && thread_if_true)))
|
||
{
|
||
old_trial = trial;
|
||
trial = try_split (pat, trial, 0);
|
||
if (new_thread == old_trial)
|
||
new_thread = trial;
|
||
if (thread == old_trial)
|
||
thread = trial;
|
||
pat = PATTERN (trial);
|
||
if ((must_annul || delay_list->is_empty ()) && (thread_if_true
|
||
? check_annul_list_true_false (false, *delay_list)
|
||
&& eligible_for_annul_false (insn, *pslots_filled, trial, flags)
|
||
: check_annul_list_true_false (true, *delay_list)
|
||
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
||
{
|
||
rtx_insn *temp;
|
||
|
||
must_annul = true;
|
||
winner:
|
||
|
||
/* If we own this thread, delete the insn. If this is the
|
||
destination of a branch, show that a basic block status
|
||
may have been updated. In any case, mark the new
|
||
starting point of this thread. */
|
||
if (own_thread)
|
||
{
|
||
rtx note;
|
||
|
||
update_block (trial, thread);
|
||
if (trial == thread)
|
||
{
|
||
thread = next_active_insn (thread);
|
||
if (new_thread == trial)
|
||
new_thread = thread;
|
||
}
|
||
|
||
/* We are moving this insn, not deleting it. We must
|
||
temporarily increment the use count on any referenced
|
||
label lest it be deleted by delete_related_insns. */
|
||
for (note = REG_NOTES (trial);
|
||
note != NULL_RTX;
|
||
note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
||
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
||
{
|
||
/* REG_LABEL_OPERAND could be
|
||
NOTE_INSN_DELETED_LABEL too. */
|
||
if (LABEL_P (XEXP (note, 0)))
|
||
LABEL_NUSES (XEXP (note, 0))++;
|
||
else
|
||
gcc_assert (REG_NOTE_KIND (note)
|
||
== REG_LABEL_OPERAND);
|
||
}
|
||
if (jump_to_label_p (trial))
|
||
LABEL_NUSES (JUMP_LABEL (trial))++;
|
||
|
||
delete_related_insns (trial);
|
||
|
||
for (note = REG_NOTES (trial);
|
||
note != NULL_RTX;
|
||
note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
||
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
||
{
|
||
/* REG_LABEL_OPERAND could be
|
||
NOTE_INSN_DELETED_LABEL too. */
|
||
if (LABEL_P (XEXP (note, 0)))
|
||
LABEL_NUSES (XEXP (note, 0))--;
|
||
else
|
||
gcc_assert (REG_NOTE_KIND (note)
|
||
== REG_LABEL_OPERAND);
|
||
}
|
||
if (jump_to_label_p (trial))
|
||
LABEL_NUSES (JUMP_LABEL (trial))--;
|
||
}
|
||
else
|
||
new_thread = next_active_insn (trial);
|
||
|
||
temp = own_thread ? trial : copy_delay_slot_insn (trial);
|
||
if (thread_if_true)
|
||
INSN_FROM_TARGET_P (temp) = 1;
|
||
|
||
add_to_delay_list (temp, delay_list);
|
||
|
||
if (slots_to_fill == ++(*pslots_filled))
|
||
{
|
||
/* Even though we have filled all the slots, we
|
||
may be branching to a location that has a
|
||
redundant insn. Skip any if so. */
|
||
while (new_thread && ! own_thread
|
||
&& ! insn_sets_resource_p (new_thread, &set, true)
|
||
&& ! insn_sets_resource_p (new_thread, &needed,
|
||
true)
|
||
&& ! insn_references_resource_p (new_thread,
|
||
&set, true)
|
||
&& (prior_insn
|
||
= redundant_insn (new_thread, insn,
|
||
*delay_list)))
|
||
{
|
||
/* We know we do not own the thread, so no need
|
||
to call update_block and delete_insn. */
|
||
fix_reg_dead_note (prior_insn, insn);
|
||
update_reg_unused_notes (prior_insn, new_thread);
|
||
new_thread
|
||
= next_active_insn (as_a<rtx_insn *> (new_thread));
|
||
}
|
||
break;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This insn can't go into a delay slot. */
|
||
lose = true;
|
||
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
||
mark_referenced_resources (trial, &needed, true);
|
||
if (filter_flags)
|
||
{
|
||
mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
|
||
|
||
/* Groups of flags-register setters with users should not
|
||
affect opportunities to move flags-register-setting insns
|
||
(clobbers) into the delay-slot. */
|
||
CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
|
||
CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
|
||
}
|
||
|
||
/* Ensure we don't put insns between the setting of cc and the comparison
|
||
by moving a setting of cc into an earlier delay slot since these insns
|
||
could clobber the condition code. */
|
||
set.cc = 1;
|
||
|
||
/* If this insn is a register-register copy and the next insn has
|
||
a use of our destination, change it to use our source. That way,
|
||
it will become a candidate for our delay slot the next time
|
||
through this loop. This case occurs commonly in loops that
|
||
scan a list.
|
||
|
||
We could check for more complex cases than those tested below,
|
||
but it doesn't seem worth it. It might also be a good idea to try
|
||
to swap the two insns. That might do better.
|
||
|
||
We can't do this if the next insn modifies our destination, because
|
||
that would make the replacement into the insn invalid. We also can't
|
||
do this if it modifies our source, because it might be an earlyclobber
|
||
operand. This latter test also prevents updating the contents of
|
||
a PRE_INC. We also can't do this if there's overlap of source and
|
||
destination. Overlap may happen for larger-than-register-size modes. */
|
||
|
||
if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
|
||
&& REG_P (SET_SRC (pat))
|
||
&& REG_P (SET_DEST (pat))
|
||
&& !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
|
||
{
|
||
rtx_insn *next = next_nonnote_insn (trial);
|
||
|
||
if (next && NONJUMP_INSN_P (next)
|
||
&& GET_CODE (PATTERN (next)) != USE
|
||
&& ! reg_set_p (SET_DEST (pat), next)
|
||
&& ! reg_set_p (SET_SRC (pat), next)
|
||
&& reg_referenced_p (SET_DEST (pat), PATTERN (next))
|
||
&& ! modified_in_p (SET_DEST (pat), next))
|
||
validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
|
||
}
|
||
}
|
||
|
||
/* If we stopped on a branch insn that has delay slots, see if we can
|
||
steal some of the insns in those slots. */
|
||
if (trial && NONJUMP_INSN_P (trial)
|
||
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
||
&& JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
|
||
{
|
||
rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (trial));
|
||
/* If this is the `true' thread, we will want to follow the jump,
|
||
so we can only do this if we have taken everything up to here. */
|
||
if (thread_if_true && trial == new_thread)
|
||
{
|
||
steal_delay_list_from_target (insn, condition, sequence,
|
||
delay_list, &set, &needed,
|
||
&opposite_needed, slots_to_fill,
|
||
pslots_filled, &must_annul,
|
||
&new_thread);
|
||
/* If we owned the thread and are told that it branched
|
||
elsewhere, make sure we own the thread at the new location. */
|
||
if (own_thread && trial != new_thread)
|
||
own_thread = own_thread_p (new_thread, new_thread, false);
|
||
}
|
||
else if (! thread_if_true)
|
||
steal_delay_list_from_fallthrough (insn, condition, sequence,
|
||
delay_list, &set, &needed,
|
||
&opposite_needed, slots_to_fill,
|
||
pslots_filled, &must_annul);
|
||
}
|
||
|
||
/* If we haven't found anything for this delay slot and it is very
|
||
likely that the branch will be taken, see if the insn at our target
|
||
increments or decrements a register with an increment that does not
|
||
depend on the destination register. If so, try to place the opposite
|
||
arithmetic insn after the jump insn and put the arithmetic insn in the
|
||
delay slot. If we can't do this, return. */
|
||
if (delay_list->is_empty () && likely
|
||
&& new_thread
|
||
&& !ANY_RETURN_P (new_thread)
|
||
&& NONJUMP_INSN_P (new_thread)
|
||
&& !RTX_FRAME_RELATED_P (new_thread)
|
||
&& GET_CODE (PATTERN (new_thread)) != ASM_INPUT
|
||
&& asm_noperands (PATTERN (new_thread)) < 0)
|
||
{
|
||
rtx dest;
|
||
rtx src;
|
||
|
||
/* We know "new_thread" is an insn due to NONJUMP_INSN_P (new_thread)
|
||
above. */
|
||
trial = as_a <rtx_insn *> (new_thread);
|
||
rtx pat = PATTERN (trial);
|
||
|
||
if (!NONJUMP_INSN_P (trial)
|
||
|| GET_CODE (pat) != SET
|
||
|| ! eligible_for_delay (insn, 0, trial, flags)
|
||
|| can_throw_internal (trial))
|
||
return;
|
||
|
||
dest = SET_DEST (pat), src = SET_SRC (pat);
|
||
if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
|
||
&& rtx_equal_p (XEXP (src, 0), dest)
|
||
&& (!FLOAT_MODE_P (GET_MODE (src))
|
||
|| flag_unsafe_math_optimizations)
|
||
&& ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
|
||
&& ! side_effects_p (pat))
|
||
{
|
||
rtx other = XEXP (src, 1);
|
||
rtx new_arith;
|
||
rtx_insn *ninsn;
|
||
|
||
/* If this is a constant adjustment, use the same code with
|
||
the negated constant. Otherwise, reverse the sense of the
|
||
arithmetic. */
|
||
if (CONST_INT_P (other))
|
||
new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
|
||
negate_rtx (GET_MODE (src), other));
|
||
else
|
||
new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
|
||
GET_MODE (src), dest, other);
|
||
|
||
ninsn = emit_insn_after (gen_rtx_SET (dest, new_arith), insn);
|
||
|
||
if (recog_memoized (ninsn) < 0
|
||
|| (extract_insn (ninsn),
|
||
!constrain_operands (1, get_preferred_alternatives (ninsn))))
|
||
{
|
||
delete_related_insns (ninsn);
|
||
return;
|
||
}
|
||
|
||
if (own_thread)
|
||
{
|
||
update_block (trial, thread);
|
||
if (trial == thread)
|
||
{
|
||
thread = next_active_insn (thread);
|
||
if (new_thread == trial)
|
||
new_thread = thread;
|
||
}
|
||
delete_related_insns (trial);
|
||
}
|
||
else
|
||
new_thread = next_active_insn (trial);
|
||
|
||
ninsn = own_thread ? trial : copy_delay_slot_insn (trial);
|
||
if (thread_if_true)
|
||
INSN_FROM_TARGET_P (ninsn) = 1;
|
||
|
||
add_to_delay_list (ninsn, delay_list);
|
||
(*pslots_filled)++;
|
||
}
|
||
}
|
||
|
||
if (!delay_list->is_empty () && must_annul)
|
||
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
||
|
||
/* If we are to branch into the middle of this thread, find an appropriate
|
||
label or make a new one if none, and redirect INSN to it. If we hit the
|
||
end of the function, use the end-of-function label. */
|
||
if (new_thread != thread)
|
||
{
|
||
rtx label;
|
||
bool crossing = false;
|
||
|
||
gcc_assert (thread_if_true);
|
||
|
||
if (new_thread
|
||
&& simplejump_or_return_p (new_thread)
|
||
&& redirect_with_delay_list_safe_p (insn,
|
||
JUMP_LABEL (new_thread),
|
||
*delay_list))
|
||
new_thread = follow_jumps (JUMP_LABEL (new_thread), insn, &crossing);
|
||
|
||
if (!new_thread)
|
||
label = find_end_label (simple_return_rtx);
|
||
else if (ANY_RETURN_P (new_thread))
|
||
label = find_end_label (new_thread);
|
||
else if (LABEL_P (new_thread))
|
||
label = new_thread;
|
||
else
|
||
label = get_label_before (as_a <rtx_insn *> (new_thread),
|
||
JUMP_LABEL (insn));
|
||
|
||
if (label)
|
||
{
|
||
reorg_redirect_jump (insn, label);
|
||
if (crossing)
|
||
CROSSING_JUMP_P (insn) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make another attempt to find insns to place in delay slots.
|
||
|
||
We previously looked for insns located in front of the delay insn
|
||
and, for non-jump delay insns, located behind the delay insn.
|
||
|
||
Here only try to schedule jump insns and try to move insns from either
|
||
the target or the following insns into the delay slot. If annulling is
|
||
supported, we will be likely to do this. Otherwise, we can do this only
|
||
if safe. */
|
||
|
||
static void
|
||
fill_eager_delay_slots (void)
|
||
{
|
||
rtx_insn *insn;
|
||
int i;
|
||
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
||
|
||
for (i = 0; i < num_unfilled_slots; i++)
|
||
{
|
||
rtx condition;
|
||
rtx target_label, insn_at_target;
|
||
rtx_insn *fallthrough_insn;
|
||
auto_vec<rtx_insn *, 5> delay_list;
|
||
rtx_jump_insn *jump_insn;
|
||
bool own_target;
|
||
bool own_fallthrough;
|
||
int prediction, slots_to_fill, slots_filled;
|
||
|
||
insn = unfilled_slots_base[i];
|
||
if (insn == 0
|
||
|| insn->deleted ()
|
||
|| ! (jump_insn = dyn_cast <rtx_jump_insn *> (insn))
|
||
|| ! (condjump_p (jump_insn) || condjump_in_parallel_p (jump_insn)))
|
||
continue;
|
||
|
||
slots_to_fill = num_delay_slots (jump_insn);
|
||
/* Some machine description have defined instructions to have
|
||
delay slots only in certain circumstances which may depend on
|
||
nearby insns (which change due to reorg's actions).
|
||
|
||
For example, the PA port normally has delay slots for unconditional
|
||
jumps.
|
||
|
||
However, the PA port claims such jumps do not have a delay slot
|
||
if they are immediate successors of certain CALL_INSNs. This
|
||
allows the port to favor filling the delay slot of the call with
|
||
the unconditional jump. */
|
||
if (slots_to_fill == 0)
|
||
continue;
|
||
|
||
slots_filled = 0;
|
||
target_label = JUMP_LABEL (jump_insn);
|
||
condition = get_branch_condition (jump_insn, target_label);
|
||
|
||
if (condition == 0)
|
||
continue;
|
||
|
||
/* Get the next active fallthrough and target insns and see if we own
|
||
them. Then see whether the branch is likely true. We don't need
|
||
to do a lot of this for unconditional branches. */
|
||
|
||
insn_at_target = first_active_target_insn (target_label);
|
||
own_target = own_thread_p (target_label, target_label, false);
|
||
|
||
if (condition == const_true_rtx)
|
||
{
|
||
own_fallthrough = false;
|
||
fallthrough_insn = 0;
|
||
prediction = 2;
|
||
}
|
||
else
|
||
{
|
||
fallthrough_insn = next_active_insn (jump_insn);
|
||
own_fallthrough = own_thread_p (NEXT_INSN (jump_insn),
|
||
NULL_RTX, true);
|
||
prediction = mostly_true_jump (jump_insn);
|
||
}
|
||
|
||
/* If this insn is expected to branch, first try to get insns from our
|
||
target, then our fallthrough insns. If it is not expected to branch,
|
||
try the other order. */
|
||
|
||
if (prediction > 0)
|
||
{
|
||
fill_slots_from_thread (jump_insn, condition, insn_at_target,
|
||
fallthrough_insn, prediction == 2, true,
|
||
own_target, slots_to_fill,
|
||
&slots_filled, &delay_list);
|
||
|
||
if (delay_list.is_empty () && own_fallthrough)
|
||
{
|
||
/* Even though we didn't find anything for delay slots,
|
||
we might have found a redundant insn which we deleted
|
||
from the thread that was filled. So we have to recompute
|
||
the next insn at the target. */
|
||
target_label = JUMP_LABEL (jump_insn);
|
||
insn_at_target = first_active_target_insn (target_label);
|
||
|
||
fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
|
||
insn_at_target, false, false,
|
||
own_fallthrough, slots_to_fill,
|
||
&slots_filled, &delay_list);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (own_fallthrough)
|
||
fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
|
||
insn_at_target, false, false,
|
||
own_fallthrough, slots_to_fill,
|
||
&slots_filled, &delay_list);
|
||
|
||
if (delay_list.is_empty ())
|
||
fill_slots_from_thread (jump_insn, condition, insn_at_target,
|
||
next_active_insn (insn), false, true,
|
||
own_target, slots_to_fill,
|
||
&slots_filled, &delay_list);
|
||
}
|
||
|
||
if (!delay_list.is_empty ())
|
||
unfilled_slots_base[i]
|
||
= emit_delay_sequence (jump_insn, delay_list, slots_filled);
|
||
|
||
if (slots_to_fill == slots_filled)
|
||
unfilled_slots_base[i] = 0;
|
||
|
||
note_delay_statistics (slots_filled, 1);
|
||
}
|
||
}
|
||
|
||
static void delete_computation (rtx_insn *insn);
|
||
|
||
/* Recursively delete prior insns that compute the value (used only by INSN
|
||
which the caller is deleting) stored in the register mentioned by NOTE
|
||
which is a REG_DEAD note associated with INSN. */
|
||
|
||
static void
|
||
delete_prior_computation (rtx note, rtx_insn *insn)
|
||
{
|
||
rtx_insn *our_prev;
|
||
rtx reg = XEXP (note, 0);
|
||
|
||
for (our_prev = prev_nonnote_insn (insn);
|
||
our_prev && (NONJUMP_INSN_P (our_prev)
|
||
|| CALL_P (our_prev));
|
||
our_prev = prev_nonnote_insn (our_prev))
|
||
{
|
||
rtx pat = PATTERN (our_prev);
|
||
|
||
/* If we reach a CALL which is not calling a const function
|
||
or the callee pops the arguments, then give up. */
|
||
if (CALL_P (our_prev)
|
||
&& (! RTL_CONST_CALL_P (our_prev)
|
||
|| GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
|
||
break;
|
||
|
||
/* If we reach a SEQUENCE, it is too complex to try to
|
||
do anything with it, so give up. We can be run during
|
||
and after reorg, so SEQUENCE rtl can legitimately show
|
||
up here. */
|
||
if (GET_CODE (pat) == SEQUENCE)
|
||
break;
|
||
|
||
if (GET_CODE (pat) == USE
|
||
&& NONJUMP_INSN_P (XEXP (pat, 0)))
|
||
/* reorg creates USEs that look like this. We leave them
|
||
alone because reorg needs them for its own purposes. */
|
||
break;
|
||
|
||
if (reg_set_p (reg, pat))
|
||
{
|
||
if (side_effects_p (pat) && !CALL_P (our_prev))
|
||
break;
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
/* If we find a SET of something else, we can't
|
||
delete the insn. */
|
||
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx part = XVECEXP (pat, 0, i);
|
||
|
||
if (GET_CODE (part) == SET
|
||
&& SET_DEST (part) != reg)
|
||
break;
|
||
}
|
||
|
||
if (i == XVECLEN (pat, 0))
|
||
delete_computation (our_prev);
|
||
}
|
||
else if (GET_CODE (pat) == SET
|
||
&& REG_P (SET_DEST (pat)))
|
||
{
|
||
int dest_regno = REGNO (SET_DEST (pat));
|
||
int dest_endregno = END_REGNO (SET_DEST (pat));
|
||
int regno = REGNO (reg);
|
||
int endregno = END_REGNO (reg);
|
||
|
||
if (dest_regno >= regno
|
||
&& dest_endregno <= endregno)
|
||
delete_computation (our_prev);
|
||
|
||
/* We may have a multi-word hard register and some, but not
|
||
all, of the words of the register are needed in subsequent
|
||
insns. Write REG_UNUSED notes for those parts that were not
|
||
needed. */
|
||
else if (dest_regno <= regno
|
||
&& dest_endregno >= endregno)
|
||
{
|
||
int i;
|
||
|
||
add_reg_note (our_prev, REG_UNUSED, reg);
|
||
|
||
for (i = dest_regno; i < dest_endregno; i++)
|
||
if (! find_regno_note (our_prev, REG_UNUSED, i))
|
||
break;
|
||
|
||
if (i == dest_endregno)
|
||
delete_computation (our_prev);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* If PAT references the register that dies here, it is an
|
||
additional use. Hence any prior SET isn't dead. However, this
|
||
insn becomes the new place for the REG_DEAD note. */
|
||
if (reg_overlap_mentioned_p (reg, pat))
|
||
{
|
||
XEXP (note, 1) = REG_NOTES (our_prev);
|
||
REG_NOTES (our_prev) = note;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete INSN and recursively delete insns that compute values used only
|
||
by INSN. This uses the REG_DEAD notes computed during flow analysis.
|
||
|
||
Look at all our REG_DEAD notes. If a previous insn does nothing other
|
||
than set a register that dies in this insn, we can delete that insn
|
||
as well. */
|
||
|
||
static void
|
||
delete_computation (rtx_insn *insn)
|
||
{
|
||
rtx note, next;
|
||
|
||
for (note = REG_NOTES (insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
|
||
if (REG_NOTE_KIND (note) != REG_DEAD
|
||
/* Verify that the REG_NOTE is legitimate. */
|
||
|| !REG_P (XEXP (note, 0)))
|
||
continue;
|
||
|
||
delete_prior_computation (note, insn);
|
||
}
|
||
|
||
delete_related_insns (insn);
|
||
}
|
||
|
||
/* If all INSN does is set the pc, delete it,
|
||
and delete the insn that set the condition codes for it
|
||
if that's what the previous thing was. */
|
||
|
||
static void
|
||
delete_jump (rtx_insn *insn)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (set && GET_CODE (SET_DEST (set)) == PC)
|
||
delete_computation (insn);
|
||
}
|
||
|
||
static rtx_insn *
|
||
label_before_next_insn (rtx_insn *x, rtx scan_limit)
|
||
{
|
||
rtx_insn *insn = next_active_insn (x);
|
||
while (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn == scan_limit || insn == NULL_RTX)
|
||
return NULL;
|
||
if (LABEL_P (insn))
|
||
break;
|
||
}
|
||
return insn;
|
||
}
|
||
|
||
/* Return TRUE if there is a NOTE_INSN_SWITCH_TEXT_SECTIONS note in between
|
||
BEG and END. */
|
||
|
||
static bool
|
||
switch_text_sections_between_p (const rtx_insn *beg, const rtx_insn *end)
|
||
{
|
||
const rtx_insn *p;
|
||
for (p = beg; p != end; p = NEXT_INSN (p))
|
||
if (NOTE_P (p) && NOTE_KIND (p) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Once we have tried two ways to fill a delay slot, make a pass over the
|
||
code to try to improve the results and to do such things as more jump
|
||
threading. */
|
||
|
||
static void
|
||
relax_delay_slots (rtx_insn *first)
|
||
{
|
||
rtx_insn *insn, *next;
|
||
rtx_sequence *pat;
|
||
rtx_insn *delay_insn;
|
||
rtx target_label;
|
||
|
||
/* Look at every JUMP_INSN and see if we can improve it. */
|
||
for (insn = first; insn; insn = next)
|
||
{
|
||
rtx_insn *other, *prior_insn;
|
||
bool crossing;
|
||
|
||
next = next_active_insn (insn);
|
||
|
||
/* If this is a jump insn, see if it now jumps to a jump, jumps to
|
||
the next insn, or jumps to a label that is not the last of a
|
||
group of consecutive labels. */
|
||
if (is_a <rtx_jump_insn *> (insn)
|
||
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
|
||
{
|
||
rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (insn);
|
||
target_label
|
||
= skip_consecutive_labels (follow_jumps (target_label, jump_insn,
|
||
&crossing));
|
||
if (ANY_RETURN_P (target_label))
|
||
target_label = find_end_label (target_label);
|
||
|
||
if (target_label
|
||
&& next_active_insn (as_a<rtx_insn *> (target_label)) == next
|
||
&& ! condjump_in_parallel_p (jump_insn)
|
||
&& ! (next && switch_text_sections_between_p (jump_insn, next)))
|
||
{
|
||
rtx_insn *direct_label = as_a<rtx_insn *> (JUMP_LABEL (insn));
|
||
rtx_insn *prev = prev_nonnote_insn (direct_label);
|
||
|
||
/* If the insn jumps over a BARRIER and is the only way to reach
|
||
its target, then we need to delete the BARRIER before the jump
|
||
because, otherwise, the target may end up being considered as
|
||
unreachable and thus also deleted. */
|
||
if (BARRIER_P (prev) && LABEL_NUSES (direct_label) == 1)
|
||
{
|
||
delete_related_insns (prev);
|
||
|
||
/* We have just removed a BARRIER, which means that the block
|
||
number of the next insns has effectively been changed (see
|
||
find_basic_block in resource.cc), so clear it. */
|
||
clear_hashed_info_until_next_barrier (direct_label);
|
||
}
|
||
|
||
delete_jump (jump_insn);
|
||
continue;
|
||
}
|
||
|
||
if (target_label && target_label != JUMP_LABEL (jump_insn))
|
||
{
|
||
reorg_redirect_jump (jump_insn, target_label);
|
||
if (crossing)
|
||
CROSSING_JUMP_P (jump_insn) = 1;
|
||
}
|
||
|
||
/* See if this jump conditionally branches around an unconditional
|
||
jump. If so, invert this jump and point it to the target of the
|
||
second jump. Check if it's possible on the target. */
|
||
if (next && simplejump_or_return_p (next)
|
||
&& any_condjump_p (jump_insn)
|
||
&& target_label
|
||
&& (next_active_insn (as_a<rtx_insn *> (target_label))
|
||
== next_active_insn (next))
|
||
&& no_labels_between_p (jump_insn, next)
|
||
&& targetm.can_follow_jump (jump_insn, next))
|
||
{
|
||
rtx label = JUMP_LABEL (next);
|
||
|
||
/* Be careful how we do this to avoid deleting code or
|
||
labels that are momentarily dead. See similar optimization
|
||
in jump.cc.
|
||
|
||
We also need to ensure we properly handle the case when
|
||
invert_jump fails. */
|
||
|
||
++LABEL_NUSES (target_label);
|
||
if (!ANY_RETURN_P (label))
|
||
++LABEL_NUSES (label);
|
||
|
||
if (invert_jump (jump_insn, label, 1))
|
||
{
|
||
rtx_insn *from = delete_related_insns (next);
|
||
|
||
/* We have just removed a BARRIER, which means that the block
|
||
number of the next insns has effectively been changed (see
|
||
find_basic_block in resource.cc), so clear it. */
|
||
if (from)
|
||
clear_hashed_info_until_next_barrier (from);
|
||
|
||
next = jump_insn;
|
||
}
|
||
|
||
if (!ANY_RETURN_P (label))
|
||
--LABEL_NUSES (label);
|
||
|
||
if (--LABEL_NUSES (target_label) == 0)
|
||
delete_related_insns (target_label);
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If this is an unconditional jump and the previous insn is a
|
||
conditional jump, try reversing the condition of the previous
|
||
insn and swapping our targets. The next pass might be able to
|
||
fill the slots.
|
||
|
||
Don't do this if we expect the conditional branch to be true, because
|
||
we would then be making the more common case longer. */
|
||
|
||
if (simplejump_or_return_p (insn)
|
||
&& (other = prev_active_insn (insn)) != 0
|
||
&& any_condjump_p (other)
|
||
&& no_labels_between_p (other, insn)
|
||
&& mostly_true_jump (other) < 0)
|
||
{
|
||
rtx other_target = JUMP_LABEL (other);
|
||
target_label = JUMP_LABEL (insn);
|
||
|
||
if (invert_jump (as_a <rtx_jump_insn *> (other), target_label, 0))
|
||
reorg_redirect_jump (as_a <rtx_jump_insn *> (insn), other_target);
|
||
}
|
||
|
||
/* Now look only at cases where we have a filled delay slot. */
|
||
if (!NONJUMP_INSN_P (insn) || GET_CODE (PATTERN (insn)) != SEQUENCE)
|
||
continue;
|
||
|
||
pat = as_a <rtx_sequence *> (PATTERN (insn));
|
||
delay_insn = pat->insn (0);
|
||
|
||
/* See if the first insn in the delay slot is redundant with some
|
||
previous insn. Remove it from the delay slot if so; then set up
|
||
to reprocess this insn. */
|
||
if ((prior_insn = redundant_insn (pat->insn (1), delay_insn, vNULL)))
|
||
{
|
||
fix_reg_dead_note (prior_insn, insn);
|
||
update_block (pat->insn (1), insn);
|
||
delete_from_delay_slot (pat->insn (1));
|
||
next = prev_active_insn (next);
|
||
continue;
|
||
}
|
||
|
||
/* See if we have a RETURN insn with a filled delay slot followed
|
||
by a RETURN insn with an unfilled a delay slot. If so, we can delete
|
||
the first RETURN (but not its delay insn). This gives the same
|
||
effect in fewer instructions.
|
||
|
||
Only do so if optimizing for size since this results in slower, but
|
||
smaller code. */
|
||
if (optimize_function_for_size_p (cfun)
|
||
&& ANY_RETURN_P (PATTERN (delay_insn))
|
||
&& next
|
||
&& JUMP_P (next)
|
||
&& PATTERN (next) == PATTERN (delay_insn))
|
||
{
|
||
rtx_insn *after;
|
||
int i;
|
||
|
||
/* Delete the RETURN and just execute the delay list insns.
|
||
|
||
We do this by deleting the INSN containing the SEQUENCE, then
|
||
re-emitting the insns separately, and then deleting the RETURN.
|
||
This allows the count of the jump target to be properly
|
||
decremented.
|
||
|
||
Note that we need to change the INSN_UID of the re-emitted insns
|
||
since it is used to hash the insns for mark_target_live_regs and
|
||
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
||
|
||
Clear the from target bit, since these insns are no longer
|
||
in delay slots. */
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
||
|
||
rtx_insn *prev = PREV_INSN (insn);
|
||
delete_related_insns (insn);
|
||
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
||
add_insn_after (delay_insn, prev, NULL);
|
||
after = delay_insn;
|
||
for (i = 1; i < pat->len (); i++)
|
||
after = emit_copy_of_insn_after (pat->insn (i), after);
|
||
delete_scheduled_jump (delay_insn);
|
||
continue;
|
||
}
|
||
|
||
/* Now look only at the cases where we have a filled JUMP_INSN. */
|
||
rtx_jump_insn *delay_jump_insn =
|
||
dyn_cast <rtx_jump_insn *> (delay_insn);
|
||
if (! delay_jump_insn || !(condjump_p (delay_jump_insn)
|
||
|| condjump_in_parallel_p (delay_jump_insn)))
|
||
continue;
|
||
|
||
target_label = JUMP_LABEL (delay_jump_insn);
|
||
if (target_label && ANY_RETURN_P (target_label))
|
||
continue;
|
||
|
||
/* If this jump goes to another unconditional jump, thread it, but
|
||
don't convert a jump into a RETURN here. */
|
||
rtx trial = skip_consecutive_labels (follow_jumps (target_label,
|
||
delay_jump_insn,
|
||
&crossing));
|
||
if (ANY_RETURN_P (trial))
|
||
trial = find_end_label (trial);
|
||
|
||
if (trial && trial != target_label
|
||
&& redirect_with_delay_slots_safe_p (delay_jump_insn, trial, insn))
|
||
{
|
||
reorg_redirect_jump (delay_jump_insn, trial);
|
||
target_label = trial;
|
||
if (crossing)
|
||
CROSSING_JUMP_P (delay_jump_insn) = 1;
|
||
}
|
||
|
||
/* If the first insn at TARGET_LABEL is redundant with a previous
|
||
insn, redirect the jump to the following insn and process again.
|
||
We use next_real_nondebug_insn instead of next_active_insn so we
|
||
don't skip USE-markers, or we'll end up with incorrect
|
||
liveness info. */
|
||
trial = next_real_nondebug_insn (target_label);
|
||
if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
|
||
&& redundant_insn (trial, insn, vNULL)
|
||
&& ! can_throw_internal (trial))
|
||
{
|
||
/* Figure out where to emit the special USE insn so we don't
|
||
later incorrectly compute register live/death info. */
|
||
rtx_insn *tmp = next_active_insn (as_a<rtx_insn *> (trial));
|
||
if (tmp == 0)
|
||
tmp = find_end_label (simple_return_rtx);
|
||
|
||
if (tmp)
|
||
{
|
||
/* Insert the special USE insn and update dataflow info.
|
||
We know "trial" is an insn here as it is the output of
|
||
next_real_nondebug_insn () above. */
|
||
update_block (as_a <rtx_insn *> (trial), tmp);
|
||
|
||
/* Now emit a label before the special USE insn, and
|
||
redirect our jump to the new label. */
|
||
target_label = get_label_before (PREV_INSN (tmp), target_label);
|
||
reorg_redirect_jump (delay_jump_insn, target_label);
|
||
next = insn;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Similarly, if it is an unconditional jump with one insn in its
|
||
delay list and that insn is redundant, thread the jump. */
|
||
rtx_sequence *trial_seq =
|
||
trial ? dyn_cast <rtx_sequence *> (PATTERN (trial)) : NULL;
|
||
if (trial_seq
|
||
&& trial_seq->len () == 2
|
||
&& JUMP_P (trial_seq->insn (0))
|
||
&& simplejump_or_return_p (trial_seq->insn (0))
|
||
&& redundant_insn (trial_seq->insn (1), insn, vNULL))
|
||
{
|
||
rtx temp_label = JUMP_LABEL (trial_seq->insn (0));
|
||
if (ANY_RETURN_P (temp_label))
|
||
temp_label = find_end_label (temp_label);
|
||
|
||
if (temp_label
|
||
&& redirect_with_delay_slots_safe_p (delay_jump_insn,
|
||
temp_label, insn))
|
||
{
|
||
update_block (trial_seq->insn (1), insn);
|
||
reorg_redirect_jump (delay_jump_insn, temp_label);
|
||
next = insn;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* See if we have a simple (conditional) jump that is useless. */
|
||
if (!CROSSING_JUMP_P (delay_jump_insn)
|
||
&& !INSN_ANNULLED_BRANCH_P (delay_jump_insn)
|
||
&& !condjump_in_parallel_p (delay_jump_insn)
|
||
&& prev_active_insn (as_a<rtx_insn *> (target_label)) == insn
|
||
&& !BARRIER_P (prev_nonnote_insn (as_a<rtx_insn *> (target_label))))
|
||
{
|
||
rtx_insn *after;
|
||
int i;
|
||
|
||
/* All this insn does is execute its delay list and jump to the
|
||
following insn. So delete the jump and just execute the delay
|
||
list insns.
|
||
|
||
We do this by deleting the INSN containing the SEQUENCE, then
|
||
re-emitting the insns separately, and then deleting the jump.
|
||
This allows the count of the jump target to be properly
|
||
decremented.
|
||
|
||
Note that we need to change the INSN_UID of the re-emitted insns
|
||
since it is used to hash the insns for mark_target_live_regs and
|
||
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
||
|
||
Clear the from target bit, since these insns are no longer
|
||
in delay slots. */
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
||
|
||
rtx_insn *prev = PREV_INSN (insn);
|
||
delete_related_insns (insn);
|
||
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
||
add_insn_after (delay_jump_insn, prev, NULL);
|
||
after = delay_jump_insn;
|
||
for (i = 1; i < pat->len (); i++)
|
||
after = emit_copy_of_insn_after (pat->insn (i), after);
|
||
delete_scheduled_jump (delay_jump_insn);
|
||
continue;
|
||
}
|
||
|
||
/* See if this is an unconditional jump around a single insn which is
|
||
identical to the one in its delay slot. In this case, we can just
|
||
delete the branch and the insn in its delay slot. */
|
||
if (next && NONJUMP_INSN_P (next)
|
||
&& label_before_next_insn (next, insn) == target_label
|
||
&& simplejump_p (insn)
|
||
&& XVECLEN (pat, 0) == 2
|
||
&& rtx_equal_p (PATTERN (next), PATTERN (pat->insn (1))))
|
||
{
|
||
delete_related_insns (insn);
|
||
continue;
|
||
}
|
||
|
||
/* See if this jump (with its delay slots) conditionally branches
|
||
around an unconditional jump (without delay slots). If so, invert
|
||
this jump and point it to the target of the second jump. We cannot
|
||
do this for annulled jumps, though. Again, don't convert a jump to
|
||
a RETURN here. */
|
||
if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
|
||
&& any_condjump_p (delay_jump_insn)
|
||
&& next && simplejump_or_return_p (next)
|
||
&& (next_active_insn (as_a<rtx_insn *> (target_label))
|
||
== next_active_insn (next))
|
||
&& no_labels_between_p (insn, next)
|
||
&& !switch_text_sections_between_p (insn, next_active_insn (next)))
|
||
{
|
||
rtx label = JUMP_LABEL (next);
|
||
rtx old_label = JUMP_LABEL (delay_jump_insn);
|
||
|
||
if (ANY_RETURN_P (label))
|
||
label = find_end_label (label);
|
||
|
||
/* find_end_label can generate a new label. Check this first. */
|
||
if (label
|
||
&& no_labels_between_p (insn, next)
|
||
&& redirect_with_delay_slots_safe_p (delay_jump_insn,
|
||
label, insn))
|
||
{
|
||
/* Be careful how we do this to avoid deleting code or labels
|
||
that are momentarily dead. See similar optimization in
|
||
jump.cc */
|
||
if (old_label)
|
||
++LABEL_NUSES (old_label);
|
||
|
||
if (invert_jump (delay_jump_insn, label, 1))
|
||
{
|
||
/* Must update the INSN_FROM_TARGET_P bits now that
|
||
the branch is reversed, so that mark_target_live_regs
|
||
will handle the delay slot insn correctly. */
|
||
for (int i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
rtx slot = XVECEXP (PATTERN (insn), 0, i);
|
||
INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
|
||
}
|
||
|
||
/* We have just removed a BARRIER, which means that the block
|
||
number of the next insns has effectively been changed (see
|
||
find_basic_block in resource.cc), so clear it. */
|
||
rtx_insn *from = delete_related_insns (next);
|
||
if (from)
|
||
clear_hashed_info_until_next_barrier (from);
|
||
|
||
next = insn;
|
||
}
|
||
|
||
if (old_label && --LABEL_NUSES (old_label) == 0)
|
||
delete_related_insns (old_label);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If we own the thread opposite the way this insn branches, see if we
|
||
can merge its delay slots with following insns. */
|
||
if (INSN_FROM_TARGET_P (pat->insn (1))
|
||
&& own_thread_p (NEXT_INSN (insn), 0, true))
|
||
try_merge_delay_insns (insn, next);
|
||
else if (! INSN_FROM_TARGET_P (pat->insn (1))
|
||
&& own_thread_p (target_label, target_label, false))
|
||
try_merge_delay_insns (insn,
|
||
next_active_insn (as_a<rtx_insn *> (target_label)));
|
||
|
||
/* If we get here, we haven't deleted INSN. But we may have deleted
|
||
NEXT, so recompute it. */
|
||
next = next_active_insn (insn);
|
||
}
|
||
}
|
||
|
||
|
||
/* Look for filled jumps to the end of function label. We can try to convert
|
||
them into RETURN insns if the insns in the delay slot are valid for the
|
||
RETURN as well. */
|
||
|
||
static void
|
||
make_return_insns (rtx_insn *first)
|
||
{
|
||
rtx_insn *insn;
|
||
rtx_jump_insn *jump_insn;
|
||
rtx real_return_label = function_return_label;
|
||
rtx real_simple_return_label = function_simple_return_label;
|
||
int slots, i;
|
||
|
||
/* See if there is a RETURN insn in the function other than the one we
|
||
made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
|
||
into a RETURN to jump to it. */
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
|
||
{
|
||
rtx t = get_label_before (insn, NULL_RTX);
|
||
if (PATTERN (insn) == ret_rtx)
|
||
real_return_label = t;
|
||
else
|
||
real_simple_return_label = t;
|
||
break;
|
||
}
|
||
|
||
/* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
|
||
was equal to END_OF_FUNCTION_LABEL. */
|
||
if (real_return_label)
|
||
LABEL_NUSES (real_return_label)++;
|
||
if (real_simple_return_label)
|
||
LABEL_NUSES (real_simple_return_label)++;
|
||
|
||
/* Clear the list of insns to fill so we can use it. */
|
||
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
int flags;
|
||
rtx kind, real_label;
|
||
|
||
/* Only look at filled JUMP_INSNs that go to the end of function
|
||
label. */
|
||
if (!NONJUMP_INSN_P (insn))
|
||
continue;
|
||
|
||
if (GET_CODE (PATTERN (insn)) != SEQUENCE)
|
||
continue;
|
||
|
||
rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (insn));
|
||
|
||
if (!jump_to_label_p (pat->insn (0)))
|
||
continue;
|
||
|
||
if (JUMP_LABEL (pat->insn (0)) == function_return_label)
|
||
{
|
||
kind = ret_rtx;
|
||
real_label = real_return_label;
|
||
}
|
||
else if (JUMP_LABEL (pat->insn (0)) == function_simple_return_label)
|
||
{
|
||
kind = simple_return_rtx;
|
||
real_label = real_simple_return_label;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
jump_insn = as_a <rtx_jump_insn *> (pat->insn (0));
|
||
|
||
/* If we can't make the jump into a RETURN, try to redirect it to the best
|
||
RETURN and go on to the next insn. */
|
||
if (!reorg_redirect_jump (jump_insn, kind))
|
||
{
|
||
/* Make sure redirecting the jump will not invalidate the delay
|
||
slot insns. */
|
||
if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
|
||
reorg_redirect_jump (jump_insn, real_label);
|
||
continue;
|
||
}
|
||
|
||
/* See if this RETURN can accept the insns current in its delay slot.
|
||
It can if it has more or an equal number of slots and the contents
|
||
of each is valid. */
|
||
|
||
flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
|
||
slots = num_delay_slots (jump_insn);
|
||
if (slots >= XVECLEN (pat, 0) - 1)
|
||
{
|
||
for (i = 1; i < XVECLEN (pat, 0); i++)
|
||
if (! (
|
||
#if ANNUL_IFFALSE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
||
&& INSN_FROM_TARGET_P (pat->insn (i)))
|
||
? eligible_for_annul_false (jump_insn, i - 1,
|
||
pat->insn (i), flags) :
|
||
#endif
|
||
#if ANNUL_IFTRUE_SLOTS
|
||
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
||
&& ! INSN_FROM_TARGET_P (pat->insn (i)))
|
||
? eligible_for_annul_true (jump_insn, i - 1,
|
||
pat->insn (i), flags) :
|
||
#endif
|
||
eligible_for_delay (jump_insn, i - 1,
|
||
pat->insn (i), flags)))
|
||
break;
|
||
}
|
||
else
|
||
i = 0;
|
||
|
||
if (i == XVECLEN (pat, 0))
|
||
continue;
|
||
|
||
/* We have to do something with this insn. If it is an unconditional
|
||
RETURN, delete the SEQUENCE and output the individual insns,
|
||
followed by the RETURN. Then set things up so we try to find
|
||
insns for its delay slots, if it needs some. */
|
||
if (ANY_RETURN_P (PATTERN (jump_insn)))
|
||
{
|
||
rtx_insn *after = PREV_INSN (insn);
|
||
|
||
delete_related_insns (insn);
|
||
insn = jump_insn;
|
||
for (i = 1; i < pat->len (); i++)
|
||
after = emit_copy_of_insn_after (pat->insn (i), after);
|
||
add_insn_after (insn, after, NULL);
|
||
emit_barrier_after (insn);
|
||
|
||
if (slots)
|
||
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
||
}
|
||
else
|
||
/* It is probably more efficient to keep this with its current
|
||
delay slot as a branch to a RETURN. */
|
||
reorg_redirect_jump (jump_insn, real_label);
|
||
}
|
||
|
||
/* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
|
||
new delay slots we have created. */
|
||
if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
|
||
delete_related_insns (real_return_label);
|
||
if (real_simple_return_label != NULL_RTX
|
||
&& --LABEL_NUSES (real_simple_return_label) == 0)
|
||
delete_related_insns (real_simple_return_label);
|
||
|
||
fill_simple_delay_slots (true);
|
||
fill_simple_delay_slots (false);
|
||
}
|
||
|
||
/* Try to find insns to place in delay slots. */
|
||
|
||
static void
|
||
dbr_schedule (rtx_insn *first)
|
||
{
|
||
rtx_insn *insn, *next, *epilogue_insn = 0;
|
||
bool need_return_insns;
|
||
int i;
|
||
|
||
/* If the current function has no insns other than the prologue and
|
||
epilogue, then do not try to fill any delay slots. */
|
||
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
|
||
return;
|
||
|
||
/* Find the highest INSN_UID and allocate and initialize our map from
|
||
INSN_UID's to position in code. */
|
||
for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_UID (insn) > max_uid)
|
||
max_uid = INSN_UID (insn);
|
||
if (NOTE_P (insn)
|
||
&& NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
|
||
epilogue_insn = insn;
|
||
}
|
||
|
||
uid_to_ruid = XNEWVEC (int, max_uid + 1);
|
||
for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
|
||
uid_to_ruid[INSN_UID (insn)] = i;
|
||
|
||
/* Initialize the list of insns that need filling. */
|
||
if (unfilled_firstobj == 0)
|
||
{
|
||
gcc_obstack_init (&unfilled_slots_obstack);
|
||
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
||
}
|
||
|
||
for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
|
||
{
|
||
rtx target;
|
||
|
||
/* Skip vector tables. We can't get attributes for them. */
|
||
if (JUMP_TABLE_DATA_P (insn))
|
||
continue;
|
||
|
||
if (JUMP_P (insn))
|
||
INSN_ANNULLED_BRANCH_P (insn) = 0;
|
||
INSN_FROM_TARGET_P (insn) = 0;
|
||
|
||
if (num_delay_slots (insn) > 0)
|
||
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
||
|
||
/* Ensure all jumps go to the last of a set of consecutive labels. */
|
||
if (JUMP_P (insn)
|
||
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& !ANY_RETURN_P (JUMP_LABEL (insn))
|
||
&& ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
|
||
!= JUMP_LABEL (insn)))
|
||
redirect_jump (as_a <rtx_jump_insn *> (insn), target, 1);
|
||
}
|
||
|
||
init_resource_info (epilogue_insn);
|
||
|
||
/* Show we haven't computed an end-of-function label yet. */
|
||
function_return_label = function_simple_return_label = NULL;
|
||
|
||
/* Initialize the statistics for this function. */
|
||
memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
|
||
memset (num_filled_delays, 0, sizeof num_filled_delays);
|
||
|
||
/* Now do the delay slot filling. Try everything twice in case earlier
|
||
changes make more slots fillable. */
|
||
|
||
for (reorg_pass_number = 0;
|
||
reorg_pass_number < MAX_REORG_PASSES;
|
||
reorg_pass_number++)
|
||
{
|
||
fill_simple_delay_slots (true);
|
||
fill_simple_delay_slots (false);
|
||
if (!targetm.no_speculation_in_delay_slots_p ())
|
||
fill_eager_delay_slots ();
|
||
relax_delay_slots (first);
|
||
}
|
||
|
||
/* If we made an end of function label, indicate that it is now
|
||
safe to delete it by undoing our prior adjustment to LABEL_NUSES.
|
||
If it is now unused, delete it. */
|
||
if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
|
||
delete_related_insns (function_return_label);
|
||
if (function_simple_return_label
|
||
&& --LABEL_NUSES (function_simple_return_label) == 0)
|
||
delete_related_insns (function_simple_return_label);
|
||
|
||
need_return_insns = false;
|
||
need_return_insns |= targetm.have_return () && function_return_label != 0;
|
||
need_return_insns |= (targetm.have_simple_return ()
|
||
&& function_simple_return_label != 0);
|
||
if (need_return_insns)
|
||
make_return_insns (first);
|
||
|
||
/* Delete any USE insns made by update_block; subsequent passes don't need
|
||
them or know how to deal with them. */
|
||
for (insn = first; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
|
||
&& INSN_P (XEXP (PATTERN (insn), 0)))
|
||
next = delete_related_insns (insn);
|
||
}
|
||
|
||
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
||
|
||
/* It is not clear why the line below is needed, but it does seem to be. */
|
||
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
||
|
||
if (dump_file)
|
||
{
|
||
int i, j, need_comma;
|
||
int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
|
||
int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
|
||
|
||
for (reorg_pass_number = 0;
|
||
reorg_pass_number < MAX_REORG_PASSES;
|
||
reorg_pass_number++)
|
||
{
|
||
fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
|
||
for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
|
||
{
|
||
need_comma = 0;
|
||
fprintf (dump_file, ";; Reorg function #%d\n", i);
|
||
|
||
fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
|
||
num_insns_needing_delays[i][reorg_pass_number]);
|
||
|
||
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
||
if (num_filled_delays[i][j][reorg_pass_number])
|
||
{
|
||
if (need_comma)
|
||
fprintf (dump_file, ", ");
|
||
need_comma = 1;
|
||
fprintf (dump_file, "%d got %d delays",
|
||
num_filled_delays[i][j][reorg_pass_number], j);
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
memset (total_delay_slots, 0, sizeof total_delay_slots);
|
||
memset (total_annul_slots, 0, sizeof total_annul_slots);
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (! insn->deleted ()
|
||
&& NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
{
|
||
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
{
|
||
rtx control;
|
||
j = XVECLEN (PATTERN (insn), 0) - 1;
|
||
if (j > MAX_DELAY_HISTOGRAM)
|
||
j = MAX_DELAY_HISTOGRAM;
|
||
control = XVECEXP (PATTERN (insn), 0, 0);
|
||
if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
|
||
total_annul_slots[j]++;
|
||
else
|
||
total_delay_slots[j]++;
|
||
}
|
||
else if (num_delay_slots (insn) > 0)
|
||
total_delay_slots[0]++;
|
||
}
|
||
}
|
||
fprintf (dump_file, ";; Reorg totals: ");
|
||
need_comma = 0;
|
||
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
||
{
|
||
if (total_delay_slots[j])
|
||
{
|
||
if (need_comma)
|
||
fprintf (dump_file, ", ");
|
||
need_comma = 1;
|
||
fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
|
||
}
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
|
||
if (ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
|
||
{
|
||
fprintf (dump_file, ";; Reorg annuls: ");
|
||
need_comma = 0;
|
||
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
||
{
|
||
if (total_annul_slots[j])
|
||
{
|
||
if (need_comma)
|
||
fprintf (dump_file, ", ");
|
||
need_comma = 1;
|
||
fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
|
||
}
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
if (!sibling_labels.is_empty ())
|
||
{
|
||
update_alignments (sibling_labels);
|
||
sibling_labels.release ();
|
||
}
|
||
|
||
free_resource_info ();
|
||
free (uid_to_ruid);
|
||
crtl->dbr_scheduled_p = true;
|
||
}
|
||
|
||
/* Run delay slot optimization. */
|
||
static void
|
||
rest_of_handle_delay_slots (void)
|
||
{
|
||
if (DELAY_SLOTS)
|
||
dbr_schedule (get_insns ());
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_delay_slots =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"dbr", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_DBR_SCHED, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_delay_slots : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_delay_slots (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_delay_slots, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
bool gate (function *) final override;
|
||
unsigned int execute (function *) final override
|
||
{
|
||
rest_of_handle_delay_slots ();
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_delay_slots
|
||
|
||
bool
|
||
pass_delay_slots::gate (function *)
|
||
{
|
||
/* At -O0 dataflow info isn't updated after RA. */
|
||
if (DELAY_SLOTS)
|
||
return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
|
||
|
||
return false;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_delay_slots (gcc::context *ctxt)
|
||
{
|
||
return new pass_delay_slots (ctxt);
|
||
}
|
||
|
||
/* Machine dependent reorg pass. */
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_machine_reorg =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"mach", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_MACH_DEP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_machine_reorg : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_machine_reorg (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_machine_reorg, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
bool gate (function *) final override
|
||
{
|
||
return targetm.machine_dependent_reorg != 0;
|
||
}
|
||
|
||
unsigned int execute (function *) final override
|
||
{
|
||
targetm.machine_dependent_reorg ();
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_machine_reorg
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_machine_reorg (gcc::context *ctxt)
|
||
{
|
||
return new pass_machine_reorg (ctxt);
|
||
}
|