mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
191 lines
4.1 KiB
C++
191 lines
4.1 KiB
C++
/* Operations on HOST_WIDE_INT.
|
|
Copyright (C) 1987-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
|
|
#if GCC_VERSION < 3004
|
|
|
|
/* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
|
|
and exact_log2 are defined as inline functions in hwint.h
|
|
if GCC_VERSION >= 3004.
|
|
The definitions here are used for older versions of GCC and
|
|
non-GCC bootstrap compilers. */
|
|
|
|
/* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
|
|
If X is 0, return -1. */
|
|
|
|
int
|
|
floor_log2 (unsigned HOST_WIDE_INT x)
|
|
{
|
|
int t = 0;
|
|
|
|
if (x == 0)
|
|
return -1;
|
|
|
|
if (HOST_BITS_PER_WIDE_INT > 64)
|
|
if (x >= HOST_WIDE_INT_1U << (t + 64))
|
|
t += 64;
|
|
if (HOST_BITS_PER_WIDE_INT > 32)
|
|
if (x >= HOST_WIDE_INT_1U << (t + 32))
|
|
t += 32;
|
|
if (x >= HOST_WIDE_INT_1U << (t + 16))
|
|
t += 16;
|
|
if (x >= HOST_WIDE_INT_1U << (t + 8))
|
|
t += 8;
|
|
if (x >= HOST_WIDE_INT_1U << (t + 4))
|
|
t += 4;
|
|
if (x >= HOST_WIDE_INT_1U << (t + 2))
|
|
t += 2;
|
|
if (x >= HOST_WIDE_INT_1U << (t + 1))
|
|
t += 1;
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Given X, an unsigned number, return the least Y such that 2**Y >= X. */
|
|
|
|
int
|
|
ceil_log2 (unsigned HOST_WIDE_INT x)
|
|
{
|
|
return x == 0 ? 0 : floor_log2 (x - 1) + 1;
|
|
}
|
|
|
|
/* Return the logarithm of X, base 2, considering X unsigned,
|
|
if X is a power of 2. Otherwise, returns -1. */
|
|
|
|
int
|
|
exact_log2 (unsigned HOST_WIDE_INT x)
|
|
{
|
|
if (!pow2p_hwi (x))
|
|
return -1;
|
|
return floor_log2 (x);
|
|
}
|
|
|
|
/* Given X, an unsigned number, return the number of least significant bits
|
|
that are zero. When X == 0, the result is the word size. */
|
|
|
|
int
|
|
ctz_hwi (unsigned HOST_WIDE_INT x)
|
|
{
|
|
return x ? floor_log2 (least_bit_hwi (x)) : HOST_BITS_PER_WIDE_INT;
|
|
}
|
|
|
|
/* Similarly for most significant bits. */
|
|
|
|
int
|
|
clz_hwi (unsigned HOST_WIDE_INT x)
|
|
{
|
|
return HOST_BITS_PER_WIDE_INT - 1 - floor_log2 (x);
|
|
}
|
|
|
|
/* Similar to ctz_hwi, except that the least significant bit is numbered
|
|
starting from 1, and X == 0 yields 0. */
|
|
|
|
int
|
|
ffs_hwi (unsigned HOST_WIDE_INT x)
|
|
{
|
|
return 1 + floor_log2 (least_bit_hwi (x));
|
|
}
|
|
|
|
/* Return the number of set bits in X. */
|
|
|
|
int
|
|
popcount_hwi (unsigned HOST_WIDE_INT x)
|
|
{
|
|
int i, ret = 0;
|
|
size_t bits = sizeof (x) * CHAR_BIT;
|
|
|
|
for (i = 0; i < bits; i += 1)
|
|
{
|
|
ret += x & 1;
|
|
x >>= 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* GCC_VERSION < 3004 */
|
|
|
|
|
|
/* Compute the greatest common divisor of two numbers A and B using
|
|
Euclid's algorithm. */
|
|
|
|
HOST_WIDE_INT
|
|
gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
|
|
{
|
|
HOST_WIDE_INT x, y, z;
|
|
|
|
x = abs_hwi (a);
|
|
y = abs_hwi (b);
|
|
|
|
while (x > 0)
|
|
{
|
|
z = y % x;
|
|
y = x;
|
|
x = z;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
/* For X and Y positive integers, return X multiplied by Y and check
|
|
that the result does not overflow. */
|
|
|
|
HOST_WIDE_INT
|
|
pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
|
|
{
|
|
if (x != 0)
|
|
gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
|
|
|
|
return x * y;
|
|
}
|
|
|
|
/* Return X multiplied by Y and check that the result does not
|
|
overflow. */
|
|
|
|
HOST_WIDE_INT
|
|
mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
|
|
{
|
|
gcc_checking_assert (x != HOST_WIDE_INT_MIN
|
|
&& y != HOST_WIDE_INT_MIN);
|
|
|
|
if (x >= 0)
|
|
{
|
|
if (y >= 0)
|
|
return pos_mul_hwi (x, y);
|
|
|
|
return -pos_mul_hwi (x, -y);
|
|
}
|
|
|
|
if (y >= 0)
|
|
return -pos_mul_hwi (-x, y);
|
|
|
|
return pos_mul_hwi (-x, -y);
|
|
}
|
|
|
|
/* Compute the least common multiple of two numbers A and B . */
|
|
|
|
HOST_WIDE_INT
|
|
least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
|
|
{
|
|
return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
|
|
}
|