mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
50332a4fdd
I've tried to build stage3 with -Wleading-whitespace=blanks -Wtrailing-whitespace=blank -Wno-error=leading-whitespace=blanks -Wno-error=trailing-whitespace=blank added to STRICT_WARN and that expectably resulted in about 2744 unique trailing whitespace warnings and 124837 leading whitespace warnings when excluding *.md files (which obviously is in big part a generator issue). Others from that are generator related, I think those need to be solved later. The following patch just fixes up the easy case (trailing whitespace), which could be easily automated: for i in `find . -name \*.h -o -name \*.cc -o -name \*.c | xargs grep -l '[ ]$' | grep -v testsuite/`; do sed -i -e 's/[ ]*$//' $i; done I've excluded files which I knew are obviously generated or go FE. Is there anything else we'd want to avoid the changes? Due to patch size, I've split it between gcc/ part (this patch) and rest (include/, libiberty/, libgcc/, libcpp/, libstdc++-v3/). 2024-10-24 Jakub Jelinek <jakub@redhat.com> gcc/ * lra-assigns.cc: Remove trailing whitespace. * symtab.cc: Likewise. * stmt.cc: Likewise. * cgraphbuild.cc: Likewise. * cfgcleanup.cc: Likewise. * loop-init.cc: Likewise. * df-problems.cc: Likewise. * diagnostic-macro-unwinding.cc: Likewise. * langhooks.h: Likewise. * except.cc: Likewise. * tree-vect-loop.cc: Likewise. * coverage.cc: Likewise. * hash-table.cc: Likewise. * ggc-page.cc: Likewise. * gimple-ssa-strength-reduction.cc: Likewise. * tree-parloops.cc: Likewise. * internal-fn.cc: Likewise. * ipa-split.cc: Likewise. * calls.cc: Likewise. * reorg.cc: Likewise. * sbitmap.h: Likewise. * omp-offload.cc: Likewise. * cfgrtl.cc: Likewise. * reginfo.cc: Likewise. * gengtype.h: Likewise. * omp-general.h: Likewise. * ipa-comdats.cc: Likewise. * gimple-range-edge.h: Likewise. * tree-ssa-structalias.cc: Likewise. * target.def: Likewise. * basic-block.h: Likewise. * graphite-isl-ast-to-gimple.cc: Likewise. * auto-profile.cc: Likewise. * optabs.cc: Likewise. * gengtype-lex.l: Likewise. * optabs.def: Likewise. * ira-build.cc: Likewise. * ira.cc: Likewise. * function.h: Likewise. * tree-ssa-propagate.cc: Likewise. * gcov-io.cc: Likewise. * builtin-types.def: Likewise. * ddg.cc: Likewise. * lra-spills.cc: Likewise. * cfg.cc: Likewise. * bitmap.cc: Likewise. * gimple-range-gori.h: Likewise. * tree-ssa-loop-im.cc: Likewise. * cfghooks.h: Likewise. * genmatch.cc: Likewise. * explow.cc: Likewise. * lto-streamer-in.cc: Likewise. * graphite-scop-detection.cc: Likewise. * ipa-prop.cc: Likewise. * gcc.cc: Likewise. * vec.h: Likewise. * cfgexpand.cc: Likewise. * config/alpha/vms.h: Likewise. * config/alpha/alpha.cc: Likewise. * config/alpha/driver-alpha.cc: Likewise. * config/alpha/elf.h: Likewise. * config/iq2000/iq2000.h: Likewise. * config/iq2000/iq2000.cc: Likewise. * config/pa/pa-64.h: Likewise. * config/pa/som.h: Likewise. * config/pa/pa.cc: Likewise. * config/pa/pa.h: Likewise. * config/pa/pa32-regs.h: Likewise. * config/c6x/c6x.cc: Likewise. * config/openbsd-stdint.h: Likewise. * config/elfos.h: Likewise. * config/lm32/lm32.cc: Likewise. * config/lm32/lm32.h: Likewise. * config/lm32/lm32-protos.h: Likewise. * config/darwin-c.cc: Likewise. * config/rx/rx.cc: Likewise. * config/host-darwin.h: Likewise. * config/netbsd.h: Likewise. * config/ia64/ia64.cc: Likewise. * config/ia64/freebsd.h: Likewise. * config/avr/avr-c.cc: Likewise. * config/avr/avr.cc: Likewise. * config/avr/avr-arch.h: Likewise. * config/avr/avr.h: Likewise. * config/avr/stdfix.h: Likewise. * config/avr/gen-avr-mmcu-specs.cc: Likewise. * config/avr/avr-log.cc: Likewise. * config/avr/elf.h: Likewise. * config/avr/gen-avr-mmcu-texi.cc: Likewise. * config/avr/avr-devices.cc: Likewise. * config/nvptx/nvptx.cc: Likewise. * config/vx-common.h: Likewise. * config/sol2.cc: Likewise. * config/rl78/rl78.cc: Likewise. * config/cris/cris.cc: Likewise. * config/arm/symbian.h: Likewise. * config/arm/unknown-elf.h: Likewise. * config/arm/linux-eabi.h: Likewise. * config/arm/arm.cc: Likewise. * config/arm/arm-mve-builtins.h: Likewise. * config/arm/bpabi.h: Likewise. * config/arm/vxworks.h: Likewise. * config/arm/arm.h: Likewise. * config/arm/aout.h: Likewise. * config/arm/elf.h: Likewise. * config/host-linux.cc: Likewise. * config/sh/sh_treg_combine.cc: Likewise. * config/sh/vxworks.h: Likewise. * config/sh/elf.h: Likewise. * config/sh/netbsd-elf.h: Likewise. * config/sh/sh.cc: Likewise. * config/sh/embed-elf.h: Likewise. * config/sh/sh.h: Likewise. * config/darwin-driver.cc: Likewise. * config/m32c/m32c.cc: Likewise. * config/frv/frv.cc: Likewise. * config/openbsd.h: Likewise. * config/aarch64/aarch64-protos.h: Likewise. * config/aarch64/aarch64-builtins.cc: Likewise. * config/aarch64/aarch64-cost-tables.h: Likewise. * config/aarch64/aarch64.cc: Likewise. * config/bfin/bfin.cc: Likewise. * config/bfin/bfin.h: Likewise. * config/bfin/bfin-protos.h: Likewise. * config/i386/gmm_malloc.h: Likewise. * config/i386/djgpp.h: Likewise. * config/i386/sol2.h: Likewise. * config/i386/stringop.def: Likewise. * config/i386/i386-features.cc: Likewise. * config/i386/openbsdelf.h: Likewise. * config/i386/cpuid.h: Likewise. * config/i386/i386.h: Likewise. * config/i386/smmintrin.h: Likewise. * config/i386/avx10_2-512convertintrin.h: Likewise. * config/i386/i386-options.cc: Likewise. * config/i386/i386-opts.h: Likewise. * config/i386/i386-expand.cc: Likewise. * config/i386/avx512dqintrin.h: Likewise. * config/i386/wmmintrin.h: Likewise. * config/i386/gnu-user.h: Likewise. * config/i386/host-mingw32.cc: Likewise. * config/i386/avx10_2bf16intrin.h: Likewise. * config/i386/cygwin.h: Likewise. * config/i386/driver-i386.cc: Likewise. * config/i386/biarch64.h: Likewise. * config/i386/host-cygwin.cc: Likewise. * config/i386/cygming.h: Likewise. * config/i386/i386-builtins.cc: Likewise. * config/i386/avx10_2convertintrin.h: Likewise. * config/i386/i386.cc: Likewise. * config/i386/gas.h: Likewise. * config/i386/freebsd.h: Likewise. * config/mingw/winnt-cxx.cc: Likewise. * config/mingw/winnt.cc: Likewise. * config/h8300/h8300.cc: Likewise. * config/host-solaris.cc: Likewise. * config/m32r/m32r.h: Likewise. * config/m32r/m32r.cc: Likewise. * config/darwin.h: Likewise. * config/sparc/linux64.h: Likewise. * config/sparc/sparc-protos.h: Likewise. * config/sparc/sysv4.h: Likewise. * config/sparc/sparc.h: Likewise. * config/sparc/linux.h: Likewise. * config/sparc/freebsd.h: Likewise. * config/sparc/sparc.cc: Likewise. * config/gcn/gcn-run.cc: Likewise. * config/gcn/gcn.cc: Likewise. * config/gcn/gcn-tree.cc: Likewise. * config/kopensolaris-gnu.h: Likewise. * config/nios2/nios2.h: Likewise. * config/nios2/elf.h: Likewise. * config/nios2/nios2.cc: Likewise. * config/host-netbsd.cc: Likewise. * config/rtems.h: Likewise. * config/pdp11/pdp11.cc: Likewise. * config/pdp11/pdp11.h: Likewise. * config/mn10300/mn10300.cc: Likewise. * config/mn10300/linux.h: Likewise. * config/moxie/moxie.h: Likewise. * config/moxie/moxie.cc: Likewise. * config/rs6000/aix71.h: Likewise. * config/rs6000/vec_types.h: Likewise. * config/rs6000/xcoff.h: Likewise. * config/rs6000/rs6000.cc: Likewise. * config/rs6000/rs6000-internal.h: Likewise. * config/rs6000/rs6000-p8swap.cc: Likewise. * config/rs6000/rs6000-c.cc: Likewise. * config/rs6000/aix.h: Likewise. * config/rs6000/rs6000-logue.cc: Likewise. * config/rs6000/rs6000-string.cc: Likewise. * config/rs6000/rs6000-call.cc: Likewise. * config/rs6000/ppu_intrinsics.h: Likewise. * config/rs6000/altivec.h: Likewise. * config/rs6000/darwin.h: Likewise. * config/rs6000/host-darwin.cc: Likewise. * config/rs6000/freebsd64.h: Likewise. * config/rs6000/spu2vmx.h: Likewise. * config/rs6000/linux.h: Likewise. * config/rs6000/si2vmx.h: Likewise. * config/rs6000/driver-rs6000.cc: Likewise. * config/rs6000/freebsd.h: Likewise. * config/vxworksae.h: Likewise. * config/mips/frame-header-opt.cc: Likewise. * config/mips/mips.h: Likewise. * config/mips/mips.cc: Likewise. * config/mips/sde.h: Likewise. * config/darwin-protos.h: Likewise. * config/mcore/mcore-elf.h: Likewise. * config/mcore/mcore.h: Likewise. * config/mcore/mcore.cc: Likewise. * config/epiphany/epiphany.cc: Likewise. * config/fr30/fr30.h: Likewise. * config/fr30/fr30.cc: Likewise. * config/riscv/riscv-vector-builtins-shapes.cc: Likewise. * config/riscv/riscv-vector-builtins-bases.cc: Likewise. * config/visium/visium.h: Likewise. * config/mmix/mmix.cc: Likewise. * config/v850/v850.cc: Likewise. * config/v850/v850-c.cc: Likewise. * config/v850/v850.h: Likewise. * config/stormy16/stormy16.cc: Likewise. * config/stormy16/stormy16-protos.h: Likewise. * config/stormy16/stormy16.h: Likewise. * config/arc/arc.cc: Likewise. * config/vxworks.cc: Likewise. * config/microblaze/microblaze-c.cc: Likewise. * config/microblaze/microblaze-protos.h: Likewise. * config/microblaze/microblaze.h: Likewise. * config/microblaze/microblaze.cc: Likewise. * config/freebsd-spec.h: Likewise. * config/m68k/m68kelf.h: Likewise. * config/m68k/m68k.cc: Likewise. * config/m68k/netbsd-elf.h: Likewise. * config/m68k/linux.h: Likewise. * config/freebsd.h: Likewise. * config/host-openbsd.cc: Likewise. * regcprop.cc: Likewise. * dumpfile.cc: Likewise. * combine.cc: Likewise. * tree-ssa-forwprop.cc: Likewise. * ipa-profile.cc: Likewise. * hw-doloop.cc: Likewise. * opts.cc: Likewise. * gcc-ar.cc: Likewise. * tree-cfg.cc: Likewise. * incpath.cc: Likewise. * tree-ssa-sccvn.cc: Likewise. * function.cc: Likewise. * genattrtab.cc: Likewise. * rtl.def: Likewise. * genchecksum.cc: Likewise. * profile.cc: Likewise. * df-core.cc: Likewise. * tree-pretty-print.cc: Likewise. * tree.h: Likewise. * plugin.cc: Likewise. * tree-ssa-loop-ch.cc: Likewise. * emit-rtl.cc: Likewise. * haifa-sched.cc: Likewise. * gimple-range-edge.cc: Likewise. * range-op.cc: Likewise. * tree-ssa-ccp.cc: Likewise. * dwarf2cfi.cc: Likewise. * recog.cc: Likewise. * vtable-verify.cc: Likewise. * system.h: Likewise. * regrename.cc: Likewise. * tree-ssa-dom.cc: Likewise. * loop-unroll.cc: Likewise. * lra-constraints.cc: Likewise. * pretty-print.cc: Likewise. * ifcvt.cc: Likewise. * ipa.cc: Likewise. * alloc-pool.h: Likewise. * collect2.cc: Likewise. * pointer-query.cc: Likewise. * cfgloop.cc: Likewise. * toplev.cc: Likewise. * sese.cc: Likewise. * gengtype.cc: Likewise. * gimplify-me.cc: Likewise. * double-int.cc: Likewise. * bb-reorder.cc: Likewise. * dwarf2out.cc: Likewise. * tree-ssa-loop-ivcanon.cc: Likewise. * tree-ssa-reassoc.cc: Likewise. * cgraph.cc: Likewise. * sel-sched.cc: Likewise. * attribs.cc: Likewise. * expr.cc: Likewise. * tree-ssa-scopedtables.h: Likewise. * gimple-range-cache.cc: Likewise. * ipa-pure-const.cc: Likewise. * tree-inline.cc: Likewise. * genhooks.cc: Likewise. * gimple-range-phi.h: Likewise. * shrink-wrap.cc: Likewise. * tree.cc: Likewise. * gimple.cc: Likewise. * backend.h: Likewise. * opts-common.cc: Likewise. * cfg-flags.def: Likewise. * gcse-common.cc: Likewise. * tree-ssa-scopedtables.cc: Likewise. * ccmp.cc: Likewise. * builtins.def: Likewise. * builtin-attrs.def: Likewise. * postreload.cc: Likewise. * sched-deps.cc: Likewise. * ipa-inline-transform.cc: Likewise. * tree-vect-generic.cc: Likewise. * ipa-polymorphic-call.cc: Likewise. * builtins.cc: Likewise. * sel-sched-ir.cc: Likewise. * trans-mem.cc: Likewise. * ipa-visibility.cc: Likewise. * cgraph.h: Likewise. * tree-ssa-phiopt.cc: Likewise. * genopinit.cc: Likewise. * ipa-inline.cc: Likewise. * omp-low.cc: Likewise. * ipa-utils.cc: Likewise. * tree-ssa-math-opts.cc: Likewise. * tree-ssa-ifcombine.cc: Likewise. * gimple-range.cc: Likewise. * ipa-fnsummary.cc: Likewise. * ira-color.cc: Likewise. * value-prof.cc: Likewise. * varasm.cc: Likewise. * ipa-icf.cc: Likewise. * ira-emit.cc: Likewise. * lto-streamer.h: Likewise. * lto-wrapper.cc: Likewise. * regs.h: Likewise. * gengtype-parse.cc: Likewise. * alias.cc: Likewise. * lto-streamer.cc: Likewise. * real.h: Likewise. * wide-int.h: Likewise. * targhooks.cc: Likewise. * gimple-ssa-warn-access.cc: Likewise. * real.cc: Likewise. * ipa-reference.cc: Likewise. * bitmap.h: Likewise. * ginclude/float.h: Likewise. * ginclude/stddef.h: Likewise. * ginclude/stdarg.h: Likewise. * ginclude/stdatomic.h: Likewise. * optabs.h: Likewise. * sel-sched-ir.h: Likewise. * convert.cc: Likewise. * cgraphunit.cc: Likewise. * lra-remat.cc: Likewise. * tree-if-conv.cc: Likewise. * gcov-dump.cc: Likewise. * tree-predcom.cc: Likewise. * dominance.cc: Likewise. * gimple-range-cache.h: Likewise. * ipa-devirt.cc: Likewise. * rtl.h: Likewise. * ubsan.cc: Likewise. * tree-ssa.cc: Likewise. * ssa.h: Likewise. * cse.cc: Likewise. * jump.cc: Likewise. * hwint.h: Likewise. * caller-save.cc: Likewise. * coretypes.h: Likewise. * ipa-fnsummary.h: Likewise. * tree-ssa-strlen.cc: Likewise. * modulo-sched.cc: Likewise. * cgraphclones.cc: Likewise. * lto-cgraph.cc: Likewise. * hw-doloop.h: Likewise. * data-streamer.h: Likewise. * compare-elim.cc: Likewise. * profile-count.h: Likewise. * tree-vect-loop-manip.cc: Likewise. * ree.cc: Likewise. * reload.cc: Likewise. * tree-ssa-loop-split.cc: Likewise. * tree-into-ssa.cc: Likewise. * gcse.cc: Likewise. * cfgloopmanip.cc: Likewise. * df.h: Likewise. * fold-const.cc: Likewise. * wide-int.cc: Likewise. * gengtype-state.cc: Likewise. * sanitizer.def: Likewise. * tree-ssa-sink.cc: Likewise. * target-hooks-macros.h: Likewise. * tree-ssa-pre.cc: Likewise. * gimple-pretty-print.cc: Likewise. * ipa-utils.h: Likewise. * tree-outof-ssa.cc: Likewise. * tree-ssa-coalesce.cc: Likewise. * gimple-match.h: Likewise. * tree-ssa-loop-niter.cc: Likewise. * tree-loop-distribution.cc: Likewise. * tree-emutls.cc: Likewise. * tree-eh.cc: Likewise. * varpool.cc: Likewise. * ssa-iterators.h: Likewise. * asan.cc: Likewise. * reload1.cc: Likewise. * cfgloopanal.cc: Likewise. * tree-vectorizer.cc: Likewise. * simplify-rtx.cc: Likewise. * opts-global.cc: Likewise. * gimple-ssa-store-merging.cc: Likewise. * expmed.cc: Likewise. * tree-ssa-loop-prefetch.cc: Likewise. * tree-ssa-dse.h: Likewise. * tree-vect-stmts.cc: Likewise. * gimple-fold.cc: Likewise. * lra-coalesce.cc: Likewise. * data-streamer-out.cc: Likewise. * diagnostic.cc: Likewise. * tree-ssa-alias.cc: Likewise. * tree-vect-patterns.cc: Likewise. * common/common-target.def: Likewise. * common/config/rx/rx-common.cc: Likewise. * common/config/msp430/msp430-common.cc: Likewise. * common/config/avr/avr-common.cc: Likewise. * common/config/i386/i386-common.cc: Likewise. * common/config/pdp11/pdp11-common.cc: Likewise. * common/config/rs6000/rs6000-common.cc: Likewise. * common/config/mcore/mcore-common.cc: Likewise. * graphite.cc: Likewise. * gimple-low.cc: Likewise. * genmodes.cc: Likewise. * gimple-loop-jam.cc: Likewise. * lto-streamer-out.cc: Likewise. * predict.cc: Likewise. * omp-expand.cc: Likewise. * gimple-array-bounds.cc: Likewise. * predict.def: Likewise. * opts.h: Likewise. * tree-stdarg.cc: Likewise. * gimplify.cc: Likewise. * ira-lives.cc: Likewise. * loop-doloop.cc: Likewise. * lra.cc: Likewise. * gimple-iterator.h: Likewise. * tree-sra.cc: Likewise. gcc/fortran/ * trans-openmp.cc: Remove trailing whitespace. * trans-common.cc: Likewise. * match.h: Likewise. * scanner.cc: Likewise. * gfortranspec.cc: Likewise. * io.cc: Likewise. * iso-c-binding.def: Likewise. * iso-fortran-env.def: Likewise. * types.def: Likewise. * openmp.cc: Likewise. * f95-lang.cc: Likewise. gcc/analyzer/ * state-purge.cc: Remove trailing whitespace. * region-model.h: Likewise. * region-model.cc: Likewise. * program-point.cc: Likewise. * exploded-graph.h: Likewise. * program-state.cc: Likewise. * supergraph.cc: Likewise. gcc/c-family/ * c-ubsan.cc: Remove trailing whitespace. * stub-objc.cc: Likewise. * c-pragma.cc: Likewise. * c-ppoutput.cc: Likewise. * c-indentation.cc: Likewise. * c-ada-spec.cc: Likewise. * c-opts.cc: Likewise. * c-common.cc: Likewise. * c-format.cc: Likewise. * c-omp.cc: Likewise. * c-objc.h: Likewise. * c-cppbuiltin.cc: Likewise. * c-attribs.cc: Likewise. * c-target.def: Likewise. * c-common.h: Likewise. gcc/c/ * c-typeck.cc: Remove trailing whitespace. * gimple-parser.cc: Likewise. * c-parser.cc: Likewise. * c-decl.cc: Likewise. gcc/cp/ * vtable-class-hierarchy.cc: Remove trailing whitespace. * typeck2.cc: Likewise. * decl.cc: Likewise. * init.cc: Likewise. * semantics.cc: Likewise. * module.cc: Likewise. * rtti.cc: Likewise. * cxx-pretty-print.cc: Likewise. * cvt.cc: Likewise. * mangle.cc: Likewise. * name-lookup.h: Likewise. * coroutines.cc: Likewise. * error.cc: Likewise. * lambda.cc: Likewise. * tree.cc: Likewise. * g++spec.cc: Likewise. * decl2.cc: Likewise. * cp-tree.h: Likewise. * parser.cc: Likewise. * pt.cc: Likewise. * call.cc: Likewise. * lex.cc: Likewise. * cp-lang.cc: Likewise. * cp-tree.def: Likewise. * constexpr.cc: Likewise. * typeck.cc: Likewise. * name-lookup.cc: Likewise. * optimize.cc: Likewise. * search.cc: Likewise. * mapper-client.cc: Likewise. * ptree.cc: Likewise. * class.cc: Likewise. gcc/jit/ * docs/examples/tut04-toyvm/toyvm.cc: Remove trailing whitespace. gcc/lto/ * lto-object.cc: Remove trailing whitespace. * lto-symtab.cc: Likewise. * lto-partition.cc: Likewise. * lang-specs.h: Likewise. * lto-lang.cc: Likewise. gcc/objc/ * objc-encoding.cc: Remove trailing whitespace. * objc-map.h: Likewise. * objc-next-runtime-abi-01.cc: Likewise. * objc-act.cc: Likewise. * objc-map.cc: Likewise. gcc/objcp/ * objcp-decl.cc: Remove trailing whitespace. * objcp-lang.cc: Likewise. * objcp-decl.h: Likewise. gcc/rust/ * util/optional.h: Remove trailing whitespace. * util/expected.h: Likewise. * util/rust-unicode-data.h: Likewise. gcc/m2/ * mc-boot/GFpuIO.cc: Remove trailing whitespace. * mc-boot/GFIO.cc: Likewise. * mc-boot/GFormatStrings.cc: Likewise. * mc-boot/GCmdArgs.cc: Likewise. * mc-boot/GDebug.h: Likewise. * mc-boot/GM2Dependent.cc: Likewise. * mc-boot/GRTint.cc: Likewise. * mc-boot/GDebug.cc: Likewise. * mc-boot/GmcError.cc: Likewise. * mc-boot/Gmcp4.cc: Likewise. * mc-boot/GM2RTS.cc: Likewise. * mc-boot/GIO.cc: Likewise. * mc-boot/Gmcp5.cc: Likewise. * mc-boot/GDynamicStrings.cc: Likewise. * mc-boot/Gmcp1.cc: Likewise. * mc-boot/GFormatStrings.h: Likewise. * mc-boot/Gmcp2.cc: Likewise. * mc-boot/Gmcp3.cc: Likewise. * pge-boot/GFIO.cc: Likewise. * pge-boot/GDebug.h: Likewise. * pge-boot/GM2Dependent.cc: Likewise. * pge-boot/GDebug.cc: Likewise. * pge-boot/GM2RTS.cc: Likewise. * pge-boot/GSymbolKey.cc: Likewise. * pge-boot/GIO.cc: Likewise. * pge-boot/GIndexing.cc: Likewise. * pge-boot/GDynamicStrings.cc: Likewise. * pge-boot/GFormatStrings.h: Likewise. gcc/go/ * go-gcc.cc: Remove trailing whitespace. * gospec.cc: Likewise.
1572 lines
39 KiB
C++
1572 lines
39 KiB
C++
/* Operations with long integers.
|
|
Copyright (C) 2006-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
|
|
#include "tree.h"
|
|
|
|
static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
|
|
bool);
|
|
|
|
#define add_double(l1,h1,l2,h2,lv,hv) \
|
|
add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
|
|
|
|
static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
|
|
|
|
static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
|
|
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
|
|
bool);
|
|
|
|
#define mul_double(l1,h1,l2,h2,lv,hv) \
|
|
mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
|
|
|
|
static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
|
|
HOST_WIDE_INT, unsigned HOST_WIDE_INT,
|
|
HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
|
|
HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
|
|
HOST_WIDE_INT *);
|
|
|
|
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
|
|
overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
|
|
and SUM1. Then this yields nonzero if overflow occurred during the
|
|
addition.
|
|
|
|
Overflow occurs if A and B have the same sign, but A and SUM differ in
|
|
sign. Use `^' to test whether signs differ, and `< 0' to isolate the
|
|
sign. */
|
|
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
|
|
|
|
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
|
|
We do that by representing the two-word integer in 4 words, with only
|
|
HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
|
|
number. The value of the word is LOWPART + HIGHPART * BASE. */
|
|
|
|
#define LOWPART(x) \
|
|
((x) & ((HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
|
|
#define HIGHPART(x) \
|
|
((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
|
|
#define BASE (HOST_WIDE_INT_1U << HOST_BITS_PER_WIDE_INT / 2)
|
|
|
|
/* Unpack a two-word integer into 4 words.
|
|
LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
|
|
WORDS points to the array of HOST_WIDE_INTs. */
|
|
|
|
static void
|
|
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
|
|
{
|
|
words[0] = LOWPART (low);
|
|
words[1] = HIGHPART (low);
|
|
words[2] = LOWPART (hi);
|
|
words[3] = HIGHPART (hi);
|
|
}
|
|
|
|
/* Pack an array of 4 words into a two-word integer.
|
|
WORDS points to the array of words.
|
|
The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
|
|
|
|
static void
|
|
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
|
|
HOST_WIDE_INT *hi)
|
|
{
|
|
*low = words[0] + words[1] * BASE;
|
|
*hi = words[2] + words[3] * BASE;
|
|
}
|
|
|
|
/* Add two doubleword integers with doubleword result.
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
|
One argument is L1 and H1; the other, L2 and H2.
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
static int
|
|
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
bool unsigned_p)
|
|
{
|
|
unsigned HOST_WIDE_INT l;
|
|
HOST_WIDE_INT h;
|
|
|
|
l = l1 + l2;
|
|
h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
|
|
+ (unsigned HOST_WIDE_INT) h2
|
|
+ (l < l1));
|
|
|
|
*lv = l;
|
|
*hv = h;
|
|
|
|
if (unsigned_p)
|
|
return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
|
|
|| (h == h1
|
|
&& l < l1));
|
|
else
|
|
return OVERFLOW_SUM_SIGN (h1, h2, h);
|
|
}
|
|
|
|
/* Negate a doubleword integer with doubleword result.
|
|
Return nonzero if the operation overflows, assuming it's signed.
|
|
The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
static int
|
|
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
|
|
{
|
|
if (l1 == 0)
|
|
{
|
|
*lv = 0;
|
|
*hv = - (unsigned HOST_WIDE_INT) h1;
|
|
return (*hv & h1) < 0;
|
|
}
|
|
else
|
|
{
|
|
*lv = -l1;
|
|
*hv = ~h1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Multiply two doubleword integers with quadword result.
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
|
One argument is L1 and H1; the other, L2 and H2.
|
|
The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
|
|
*LW and *HW.
|
|
If lw is NULL then only the low part and no overflow is computed. */
|
|
|
|
static int
|
|
mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
|
|
bool unsigned_p)
|
|
{
|
|
HOST_WIDE_INT arg1[4];
|
|
HOST_WIDE_INT arg2[4];
|
|
HOST_WIDE_INT prod[4 * 2];
|
|
unsigned HOST_WIDE_INT carry;
|
|
int i, j, k;
|
|
unsigned HOST_WIDE_INT neglow;
|
|
HOST_WIDE_INT neghigh;
|
|
|
|
encode (arg1, l1, h1);
|
|
encode (arg2, l2, h2);
|
|
|
|
memset (prod, 0, sizeof prod);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
carry = 0;
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
k = i + j;
|
|
/* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
|
|
carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
|
|
/* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
|
|
carry += prod[k];
|
|
prod[k] = LOWPART (carry);
|
|
carry = HIGHPART (carry);
|
|
}
|
|
prod[i + 4] = carry;
|
|
}
|
|
|
|
decode (prod, lv, hv);
|
|
|
|
/* We are not interested in the wide part nor in overflow. */
|
|
if (lw == NULL)
|
|
return 0;
|
|
|
|
decode (prod + 4, lw, hw);
|
|
|
|
/* Unsigned overflow is immediate. */
|
|
if (unsigned_p)
|
|
return (*lw | *hw) != 0;
|
|
|
|
/* Check for signed overflow by calculating the signed representation of the
|
|
top half of the result; it should agree with the low half's sign bit. */
|
|
if (h1 < 0)
|
|
{
|
|
neg_double (l2, h2, &neglow, &neghigh);
|
|
add_double (neglow, neghigh, *lw, *hw, lw, hw);
|
|
}
|
|
if (h2 < 0)
|
|
{
|
|
neg_double (l1, h1, &neglow, &neghigh);
|
|
add_double (neglow, neghigh, *lw, *hw, lw, hw);
|
|
}
|
|
return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
|
|
}
|
|
|
|
/* Shift the doubleword integer in L1, H1 right by COUNT places
|
|
keeping only PREC bits of result. ARITH nonzero specifies
|
|
arithmetic shifting; otherwise use logical shift.
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
static void
|
|
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT count, unsigned int prec,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
bool arith)
|
|
{
|
|
unsigned HOST_WIDE_INT signmask;
|
|
|
|
signmask = (arith
|
|
? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
|
|
: 0);
|
|
|
|
if (count >= HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
*hv = 0;
|
|
*lv = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv = 0;
|
|
*lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = (unsigned HOST_WIDE_INT) h1 >> count;
|
|
*lv = ((l1 >> count)
|
|
| ((unsigned HOST_WIDE_INT) h1
|
|
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
|
|
}
|
|
|
|
/* Zero / sign extend all bits that are beyond the precision. */
|
|
|
|
if (count >= prec)
|
|
{
|
|
*hv = signmask;
|
|
*lv = signmask;
|
|
}
|
|
else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
|
|
;
|
|
else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
|
|
*hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = signmask;
|
|
*lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
|
|
*lv |= signmask << (prec - count);
|
|
}
|
|
}
|
|
|
|
/* Shift the doubleword integer in L1, H1 left by COUNT places
|
|
keeping only PREC bits of result.
|
|
Shift right if COUNT is negative.
|
|
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
static void
|
|
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT count, unsigned int prec,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
|
|
{
|
|
unsigned HOST_WIDE_INT signmask;
|
|
|
|
if (count >= HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
*hv = 0;
|
|
*lv = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
|
|
*lv = 0;
|
|
}
|
|
else
|
|
{
|
|
*hv = (((unsigned HOST_WIDE_INT) h1 << count)
|
|
| (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
|
|
*lv = l1 << count;
|
|
}
|
|
|
|
/* Sign extend all bits that are beyond the precision. */
|
|
|
|
signmask = -((prec > HOST_BITS_PER_WIDE_INT
|
|
? ((unsigned HOST_WIDE_INT) *hv
|
|
>> (prec - HOST_BITS_PER_WIDE_INT - 1))
|
|
: (*lv >> (prec - 1))) & 1);
|
|
|
|
if (prec >= HOST_BITS_PER_DOUBLE_INT)
|
|
;
|
|
else if (prec >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
|
|
*hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = signmask;
|
|
*lv &= ~(HOST_WIDE_INT_M1U << prec);
|
|
*lv |= signmask << prec;
|
|
}
|
|
}
|
|
|
|
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
|
|
for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
|
|
CODE is a tree code for a kind of division, one of
|
|
TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
|
|
or EXACT_DIV_EXPR
|
|
It controls how the quotient is rounded to an integer.
|
|
Return nonzero if the operation overflows.
|
|
UNS nonzero says do unsigned division. */
|
|
|
|
static int
|
|
div_and_round_double (unsigned code, int uns,
|
|
/* num == numerator == dividend */
|
|
unsigned HOST_WIDE_INT lnum_orig,
|
|
HOST_WIDE_INT hnum_orig,
|
|
/* den == denominator == divisor */
|
|
unsigned HOST_WIDE_INT lden_orig,
|
|
HOST_WIDE_INT hden_orig,
|
|
unsigned HOST_WIDE_INT *lquo,
|
|
HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
|
|
HOST_WIDE_INT *hrem)
|
|
{
|
|
int quo_neg = 0;
|
|
HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
|
|
HOST_WIDE_INT den[4], quo[4];
|
|
int i, j;
|
|
unsigned HOST_WIDE_INT work;
|
|
unsigned HOST_WIDE_INT carry = 0;
|
|
unsigned HOST_WIDE_INT lnum = lnum_orig;
|
|
HOST_WIDE_INT hnum = hnum_orig;
|
|
unsigned HOST_WIDE_INT lden = lden_orig;
|
|
HOST_WIDE_INT hden = hden_orig;
|
|
int overflow = 0;
|
|
|
|
if (hden == 0 && lden == 0)
|
|
overflow = 1, lden = 1;
|
|
|
|
/* Calculate quotient sign and convert operands to unsigned. */
|
|
if (!uns)
|
|
{
|
|
if (hnum < 0)
|
|
{
|
|
quo_neg = ~ quo_neg;
|
|
/* (minimum integer) / (-1) is the only overflow case. */
|
|
if (neg_double (lnum, hnum, &lnum, &hnum)
|
|
&& ((HOST_WIDE_INT) lden & hden) == -1)
|
|
overflow = 1;
|
|
}
|
|
if (hden < 0)
|
|
{
|
|
quo_neg = ~ quo_neg;
|
|
neg_double (lden, hden, &lden, &hden);
|
|
}
|
|
}
|
|
|
|
if (hnum == 0 && hden == 0)
|
|
{ /* single precision */
|
|
*hquo = *hrem = 0;
|
|
/* This unsigned division rounds toward zero. */
|
|
*lquo = lnum / lden;
|
|
goto finish_up;
|
|
}
|
|
|
|
if (hnum == 0)
|
|
{ /* trivial case: dividend < divisor */
|
|
/* hden != 0 already checked. */
|
|
*hquo = *lquo = 0;
|
|
*hrem = hnum;
|
|
*lrem = lnum;
|
|
goto finish_up;
|
|
}
|
|
|
|
memset (quo, 0, sizeof quo);
|
|
|
|
memset (num, 0, sizeof num); /* to zero 9th element */
|
|
memset (den, 0, sizeof den);
|
|
|
|
encode (num, lnum, hnum);
|
|
encode (den, lden, hden);
|
|
|
|
/* Special code for when the divisor < BASE. */
|
|
if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
|
|
{
|
|
/* hnum != 0 already checked. */
|
|
for (i = 4 - 1; i >= 0; i--)
|
|
{
|
|
work = num[i] + carry * BASE;
|
|
quo[i] = work / lden;
|
|
carry = work % lden;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Full double precision division,
|
|
with thanks to Don Knuth's "Seminumerical Algorithms". */
|
|
int num_hi_sig, den_hi_sig;
|
|
unsigned HOST_WIDE_INT quo_est, scale;
|
|
|
|
/* Find the highest nonzero divisor digit. */
|
|
for (i = 4 - 1;; i--)
|
|
if (den[i] != 0)
|
|
{
|
|
den_hi_sig = i;
|
|
break;
|
|
}
|
|
|
|
/* Insure that the first digit of the divisor is at least BASE/2.
|
|
This is required by the quotient digit estimation algorithm. */
|
|
|
|
scale = BASE / (den[den_hi_sig] + 1);
|
|
if (scale > 1)
|
|
{ /* scale divisor and dividend */
|
|
carry = 0;
|
|
for (i = 0; i <= 4 - 1; i++)
|
|
{
|
|
work = (num[i] * scale) + carry;
|
|
num[i] = LOWPART (work);
|
|
carry = HIGHPART (work);
|
|
}
|
|
|
|
num[4] = carry;
|
|
carry = 0;
|
|
for (i = 0; i <= 4 - 1; i++)
|
|
{
|
|
work = (den[i] * scale) + carry;
|
|
den[i] = LOWPART (work);
|
|
carry = HIGHPART (work);
|
|
if (den[i] != 0) den_hi_sig = i;
|
|
}
|
|
}
|
|
|
|
num_hi_sig = 4;
|
|
|
|
/* Main loop */
|
|
for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
|
|
{
|
|
/* Guess the next quotient digit, quo_est, by dividing the first
|
|
two remaining dividend digits by the high order quotient digit.
|
|
quo_est is never low and is at most 2 high. */
|
|
unsigned HOST_WIDE_INT tmp;
|
|
|
|
num_hi_sig = i + den_hi_sig + 1;
|
|
work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
|
|
if (num[num_hi_sig] != den[den_hi_sig])
|
|
quo_est = work / den[den_hi_sig];
|
|
else
|
|
quo_est = BASE - 1;
|
|
|
|
/* Refine quo_est so it's usually correct, and at most one high. */
|
|
tmp = work - quo_est * den[den_hi_sig];
|
|
if (tmp < BASE
|
|
&& (den[den_hi_sig - 1] * quo_est
|
|
> (tmp * BASE + num[num_hi_sig - 2])))
|
|
quo_est--;
|
|
|
|
/* Try QUO_EST as the quotient digit, by multiplying the
|
|
divisor by QUO_EST and subtracting from the remaining dividend.
|
|
Keep in mind that QUO_EST is the I - 1st digit. */
|
|
|
|
carry = 0;
|
|
for (j = 0; j <= den_hi_sig; j++)
|
|
{
|
|
work = quo_est * den[j] + carry;
|
|
carry = HIGHPART (work);
|
|
work = num[i + j] - LOWPART (work);
|
|
num[i + j] = LOWPART (work);
|
|
carry += HIGHPART (work) != 0;
|
|
}
|
|
|
|
/* If quo_est was high by one, then num[i] went negative and
|
|
we need to correct things. */
|
|
if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
|
|
{
|
|
quo_est--;
|
|
carry = 0; /* add divisor back in */
|
|
for (j = 0; j <= den_hi_sig; j++)
|
|
{
|
|
work = num[i + j] + den[j] + carry;
|
|
carry = HIGHPART (work);
|
|
num[i + j] = LOWPART (work);
|
|
}
|
|
|
|
num [num_hi_sig] += carry;
|
|
}
|
|
|
|
/* Store the quotient digit. */
|
|
quo[i] = quo_est;
|
|
}
|
|
}
|
|
|
|
decode (quo, lquo, hquo);
|
|
|
|
finish_up:
|
|
/* If result is negative, make it so. */
|
|
if (quo_neg)
|
|
neg_double (*lquo, *hquo, lquo, hquo);
|
|
|
|
/* Compute trial remainder: rem = num - (quo * den) */
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
|
|
|
switch (code)
|
|
{
|
|
case TRUNC_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR: /* round toward zero */
|
|
case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
|
|
return overflow;
|
|
|
|
case FLOOR_DIV_EXPR:
|
|
case FLOOR_MOD_EXPR: /* round toward negative infinity */
|
|
if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
|
|
{
|
|
/* quo = quo - 1; */
|
|
add_double (*lquo, *hquo, HOST_WIDE_INT_M1, HOST_WIDE_INT_M1,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
break;
|
|
|
|
case CEIL_DIV_EXPR:
|
|
case CEIL_MOD_EXPR: /* round toward positive infinity */
|
|
if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
|
|
{
|
|
add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
break;
|
|
|
|
case ROUND_DIV_EXPR:
|
|
case ROUND_MOD_EXPR: /* round to closest integer */
|
|
{
|
|
unsigned HOST_WIDE_INT labs_rem = *lrem;
|
|
HOST_WIDE_INT habs_rem = *hrem;
|
|
unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
|
|
HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
|
|
|
|
/* Get absolute values. */
|
|
if (!uns && *hrem < 0)
|
|
neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
|
|
if (!uns && hden < 0)
|
|
neg_double (lden, hden, &labs_den, &habs_den);
|
|
|
|
/* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
|
|
neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
|
|
add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
|
|
&ldiff, &hdiff);
|
|
|
|
if (((unsigned HOST_WIDE_INT) habs_rem
|
|
> (unsigned HOST_WIDE_INT) hdiff)
|
|
|| (habs_rem == hdiff && labs_rem >= ldiff))
|
|
{
|
|
if (quo_neg)
|
|
/* quo = quo - 1; */
|
|
add_double (*lquo, *hquo,
|
|
HOST_WIDE_INT_M1, HOST_WIDE_INT_M1, lquo, hquo);
|
|
else
|
|
/* quo = quo + 1; */
|
|
add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Compute true remainder: rem = num - (quo * den) */
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
|
return overflow;
|
|
}
|
|
|
|
|
|
/* Construct from a buffer of length LEN. BUFFER will be read according
|
|
to byte endianness and word endianness. Only the lower LEN bytes
|
|
of the result are set; the remaining high bytes are cleared. */
|
|
|
|
double_int
|
|
double_int::from_buffer (const unsigned char *buffer, int len)
|
|
{
|
|
double_int result = double_int_zero;
|
|
int words = len / UNITS_PER_WORD;
|
|
|
|
gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
|
|
|
|
for (int byte = 0; byte < len; byte++)
|
|
{
|
|
int offset;
|
|
int bitpos = byte * BITS_PER_UNIT;
|
|
unsigned HOST_WIDE_INT value;
|
|
|
|
if (len > UNITS_PER_WORD)
|
|
{
|
|
int word = byte / UNITS_PER_WORD;
|
|
|
|
if (WORDS_BIG_ENDIAN)
|
|
word = (words - 1) - word;
|
|
|
|
offset = word * UNITS_PER_WORD;
|
|
|
|
if (BYTES_BIG_ENDIAN)
|
|
offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
|
|
else
|
|
offset += byte % UNITS_PER_WORD;
|
|
}
|
|
else
|
|
offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
|
|
|
|
value = (unsigned HOST_WIDE_INT) buffer[offset];
|
|
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
|
result.low |= value << bitpos;
|
|
else
|
|
result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Returns mask for PREC bits. */
|
|
|
|
double_int
|
|
double_int::mask (unsigned prec)
|
|
{
|
|
unsigned HOST_WIDE_INT m;
|
|
double_int mask;
|
|
|
|
if (prec > HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
|
m = (HOST_WIDE_INT_UC (2) << (prec - 1)) - 1;
|
|
mask.high = (HOST_WIDE_INT) m;
|
|
mask.low = ALL_ONES;
|
|
}
|
|
else
|
|
{
|
|
mask.high = 0;
|
|
mask.low = prec ? (HOST_WIDE_INT_UC (2) << (prec - 1)) - 1 : 0;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/* Returns a maximum value for signed or unsigned integer
|
|
of precision PREC. */
|
|
|
|
double_int
|
|
double_int::max_value (unsigned int prec, bool uns)
|
|
{
|
|
return double_int::mask (prec - (uns ? 0 : 1));
|
|
}
|
|
|
|
/* Returns a minimum value for signed or unsigned integer
|
|
of precision PREC. */
|
|
|
|
double_int
|
|
double_int::min_value (unsigned int prec, bool uns)
|
|
{
|
|
if (uns)
|
|
return double_int_zero;
|
|
return double_int_one.lshift (prec - 1, prec, false);
|
|
}
|
|
|
|
/* Clears the bits of CST over the precision PREC. If UNS is false, the bits
|
|
outside of the precision are set to the sign bit (i.e., the PREC-th one),
|
|
otherwise they are set to zero.
|
|
|
|
This corresponds to returning the value represented by PREC lowermost bits
|
|
of CST, with the given signedness. */
|
|
|
|
double_int
|
|
double_int::ext (unsigned prec, bool uns) const
|
|
{
|
|
if (uns)
|
|
return this->zext (prec);
|
|
else
|
|
return this->sext (prec);
|
|
}
|
|
|
|
/* The same as double_int::ext with UNS = true. */
|
|
|
|
double_int
|
|
double_int::zext (unsigned prec) const
|
|
{
|
|
const double_int &cst = *this;
|
|
double_int mask = double_int::mask (prec);
|
|
double_int r;
|
|
|
|
r.low = cst.low & mask.low;
|
|
r.high = cst.high & mask.high;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* The same as double_int::ext with UNS = false. */
|
|
|
|
double_int
|
|
double_int::sext (unsigned prec) const
|
|
{
|
|
const double_int &cst = *this;
|
|
double_int mask = double_int::mask (prec);
|
|
double_int r;
|
|
unsigned HOST_WIDE_INT snum;
|
|
|
|
if (prec <= HOST_BITS_PER_WIDE_INT)
|
|
snum = cst.low;
|
|
else
|
|
{
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
|
snum = (unsigned HOST_WIDE_INT) cst.high;
|
|
}
|
|
if (((snum >> (prec - 1)) & 1) == 1)
|
|
{
|
|
r.low = cst.low | ~mask.low;
|
|
r.high = cst.high | ~mask.high;
|
|
}
|
|
else
|
|
{
|
|
r.low = cst.low & mask.low;
|
|
r.high = cst.high & mask.high;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Returns true if CST fits in signed HOST_WIDE_INT. */
|
|
|
|
bool
|
|
double_int::fits_shwi () const
|
|
{
|
|
const double_int &cst = *this;
|
|
if (cst.high == 0)
|
|
return (HOST_WIDE_INT) cst.low >= 0;
|
|
else if (cst.high == -1)
|
|
return (HOST_WIDE_INT) cst.low < 0;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
|
|
unsigned HOST_WIDE_INT if UNS is true. */
|
|
|
|
bool
|
|
double_int::fits_hwi (bool uns) const
|
|
{
|
|
if (uns)
|
|
return this->fits_uhwi ();
|
|
else
|
|
return this->fits_shwi ();
|
|
}
|
|
|
|
/* Returns A * B. */
|
|
|
|
double_int
|
|
double_int::operator * (double_int b) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Multiplies *this with B and returns a reference to *this. */
|
|
|
|
double_int &
|
|
double_int::operator *= (double_int b)
|
|
{
|
|
mul_double (low, high, b.low, b.high, &low, &high);
|
|
return *this;
|
|
}
|
|
|
|
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
|
|
*OVERFLOW is set to nonzero. */
|
|
|
|
double_int
|
|
double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret, tem;
|
|
*overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
|
|
&ret.low, &ret.high,
|
|
&tem.low, &tem.high, unsigned_p);
|
|
return ret;
|
|
}
|
|
|
|
double_int
|
|
double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
|
|
double_int *higher, bool *overflow) const
|
|
|
|
{
|
|
double_int lower;
|
|
*overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
|
|
&lower.low, &lower.high,
|
|
&higher->low, &higher->high,
|
|
unsigned_p);
|
|
return lower;
|
|
}
|
|
|
|
/* Returns A + B. */
|
|
|
|
double_int
|
|
double_int::operator + (double_int b) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Adds B to *this and returns a reference to *this. */
|
|
|
|
double_int &
|
|
double_int::operator += (double_int b)
|
|
{
|
|
add_double (low, high, b.low, b.high, &low, &high);
|
|
return *this;
|
|
}
|
|
|
|
|
|
/* Returns A + B. If the operation overflows according to UNSIGNED_P,
|
|
*OVERFLOW is set to nonzero. */
|
|
|
|
double_int
|
|
double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
*overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
|
|
&ret.low, &ret.high, unsigned_p);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A - B. */
|
|
|
|
double_int
|
|
double_int::operator - (double_int b) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
neg_double (b.low, b.high, &b.low, &b.high);
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Subtracts B from *this and returns a reference to *this. */
|
|
|
|
double_int &
|
|
double_int::operator -= (double_int b)
|
|
{
|
|
neg_double (b.low, b.high, &b.low, &b.high);
|
|
add_double (low, high, b.low, b.high, &low, &high);
|
|
return *this;
|
|
}
|
|
|
|
|
|
/* Returns A - B. If the operation overflows via inconsistent sign bits,
|
|
*OVERFLOW is set to nonzero. */
|
|
|
|
double_int
|
|
double_int::sub_with_overflow (double_int b, bool *overflow) const
|
|
{
|
|
double_int ret;
|
|
neg_double (b.low, b.high, &ret.low, &ret.high);
|
|
add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
|
|
*overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns -A. */
|
|
|
|
double_int
|
|
double_int::operator - () const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
neg_double (a.low, a.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
double_int
|
|
double_int::neg_with_overflow (bool *overflow) const
|
|
{
|
|
double_int ret;
|
|
*overflow = neg_double (low, high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. The remainder after the division is
|
|
stored to MOD. */
|
|
|
|
double_int
|
|
double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
|
|
double_int *mod, bool *overflow) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
|
|
*overflow = div_and_round_double (code, uns, a.low, a.high,
|
|
b.low, b.high, &ret.low, &ret.high,
|
|
&mod->low, &mod->high);
|
|
return ret;
|
|
}
|
|
|
|
double_int
|
|
double_int::divmod (double_int b, bool uns, unsigned code,
|
|
double_int *mod) const
|
|
{
|
|
const double_int &a = *this;
|
|
double_int ret;
|
|
|
|
div_and_round_double (code, uns, a.low, a.high,
|
|
b.low, b.high, &ret.low, &ret.high,
|
|
&mod->low, &mod->high);
|
|
return ret;
|
|
}
|
|
|
|
/* The same as double_int::divmod with UNS = false. */
|
|
|
|
double_int
|
|
double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
|
|
{
|
|
return this->divmod (b, false, code, mod);
|
|
}
|
|
|
|
/* The same as double_int::divmod with UNS = true. */
|
|
|
|
double_int
|
|
double_int::udivmod (double_int b, unsigned code, double_int *mod) const
|
|
{
|
|
return this->divmod (b, true, code, mod);
|
|
}
|
|
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. */
|
|
|
|
double_int
|
|
double_int::div (double_int b, bool uns, unsigned code) const
|
|
{
|
|
double_int mod;
|
|
|
|
return this->divmod (b, uns, code, &mod);
|
|
}
|
|
|
|
/* The same as double_int::div with UNS = false. */
|
|
|
|
double_int
|
|
double_int::sdiv (double_int b, unsigned code) const
|
|
{
|
|
return this->div (b, false, code);
|
|
}
|
|
|
|
/* The same as double_int::div with UNS = true. */
|
|
|
|
double_int
|
|
double_int::udiv (double_int b, unsigned code) const
|
|
{
|
|
return this->div (b, true, code);
|
|
}
|
|
|
|
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. */
|
|
|
|
double_int
|
|
double_int::mod (double_int b, bool uns, unsigned code) const
|
|
{
|
|
double_int mod;
|
|
|
|
this->divmod (b, uns, code, &mod);
|
|
return mod;
|
|
}
|
|
|
|
/* The same as double_int::mod with UNS = false. */
|
|
|
|
double_int
|
|
double_int::smod (double_int b, unsigned code) const
|
|
{
|
|
return this->mod (b, false, code);
|
|
}
|
|
|
|
/* The same as double_int::mod with UNS = true. */
|
|
|
|
double_int
|
|
double_int::umod (double_int b, unsigned code) const
|
|
{
|
|
return this->mod (b, true, code);
|
|
}
|
|
|
|
/* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
|
|
the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
|
|
unchanged. */
|
|
|
|
bool
|
|
double_int::multiple_of (double_int factor,
|
|
bool unsigned_p, double_int *multiple) const
|
|
{
|
|
double_int remainder;
|
|
double_int quotient = this->divmod (factor, unsigned_p,
|
|
TRUNC_DIV_EXPR, &remainder);
|
|
if (remainder.is_zero ())
|
|
{
|
|
*multiple = quotient;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Set BITPOS bit in A. */
|
|
double_int
|
|
double_int::set_bit (unsigned bitpos) const
|
|
{
|
|
double_int a = *this;
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
|
a.low |= HOST_WIDE_INT_1U << bitpos;
|
|
else
|
|
a.high |= HOST_WIDE_INT_1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
|
|
|
return a;
|
|
}
|
|
|
|
/* Count trailing zeros in A. */
|
|
int
|
|
double_int::trailing_zeros () const
|
|
{
|
|
const double_int &a = *this;
|
|
unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
|
|
unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
|
|
if (!w)
|
|
return HOST_BITS_PER_DOUBLE_INT;
|
|
bits += ctz_hwi (w);
|
|
return bits;
|
|
}
|
|
|
|
/* Shift A left by COUNT places. */
|
|
|
|
double_int
|
|
double_int::lshift (HOST_WIDE_INT count) const
|
|
{
|
|
double_int ret;
|
|
|
|
gcc_checking_assert (count >= 0);
|
|
|
|
if (count >= HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
ret.high = 0;
|
|
ret.low = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
|
|
ret.low = 0;
|
|
}
|
|
else
|
|
{
|
|
ret.high = (((unsigned HOST_WIDE_INT) high << count)
|
|
| (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
|
|
ret.low = low << count;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Shift A right by COUNT places. */
|
|
|
|
double_int
|
|
double_int::rshift (HOST_WIDE_INT count) const
|
|
{
|
|
double_int ret;
|
|
|
|
gcc_checking_assert (count >= 0);
|
|
|
|
if (count >= HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
ret.high = 0;
|
|
ret.low = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
ret.high = 0;
|
|
ret.low
|
|
= (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
|
|
}
|
|
else
|
|
{
|
|
ret.high = high >> count;
|
|
ret.low = ((low >> count)
|
|
| ((unsigned HOST_WIDE_INT) high
|
|
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Shift A left by COUNT places keeping only PREC bits of result. Shift
|
|
right if COUNT is negative. ARITH true specifies arithmetic shifting;
|
|
otherwise use logical shift. */
|
|
|
|
double_int
|
|
double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
|
|
{
|
|
double_int ret;
|
|
if (count > 0)
|
|
lshift_double (low, high, count, prec, &ret.low, &ret.high);
|
|
else
|
|
rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
|
|
return ret;
|
|
}
|
|
|
|
/* Shift A right by COUNT places keeping only PREC bits of result. Shift
|
|
left if COUNT is negative. ARITH true specifies arithmetic shifting;
|
|
otherwise use logical shift. */
|
|
|
|
double_int
|
|
double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
|
|
{
|
|
double_int ret;
|
|
if (count > 0)
|
|
rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
|
|
else
|
|
lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
|
|
Shift right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int r;
|
|
if (count > 0)
|
|
lshift_double (low, high, count, prec, &r.low, &r.high);
|
|
else
|
|
rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
|
|
return r;
|
|
}
|
|
|
|
/* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
|
|
Shift left if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int r;
|
|
if (count > 0)
|
|
rshift_double (low, high, count, prec, &r.low, &r.high, true);
|
|
else
|
|
lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
|
|
return r;
|
|
}
|
|
|
|
/* Logical shift A left by COUNT places keeping only PREC bits of result.
|
|
Shift right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int r;
|
|
if (count > 0)
|
|
lshift_double (low, high, count, prec, &r.low, &r.high);
|
|
else
|
|
rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
|
|
return r;
|
|
}
|
|
|
|
/* Logical shift A right by COUNT places keeping only PREC bits of result.
|
|
Shift left if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int r;
|
|
if (count > 0)
|
|
rshift_double (low, high, count, prec, &r.low, &r.high, false);
|
|
else
|
|
lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
|
|
return r;
|
|
}
|
|
|
|
/* Rotate A left by COUNT places keeping only PREC bits of result.
|
|
Rotate right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int t1, t2;
|
|
|
|
count %= prec;
|
|
if (count < 0)
|
|
count += prec;
|
|
|
|
t1 = this->llshift (count, prec);
|
|
t2 = this->lrshift (prec - count, prec);
|
|
|
|
return t1 | t2;
|
|
}
|
|
|
|
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
|
|
Rotate right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
|
|
{
|
|
double_int t1, t2;
|
|
|
|
count %= prec;
|
|
if (count < 0)
|
|
count += prec;
|
|
|
|
t1 = this->lrshift (count, prec);
|
|
t2 = this->llshift (prec - count, prec);
|
|
|
|
return t1 | t2;
|
|
}
|
|
|
|
/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
int
|
|
double_int::cmp (double_int b, bool uns) const
|
|
{
|
|
if (uns)
|
|
return this->ucmp (b);
|
|
else
|
|
return this->scmp (b);
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
|
|
and 1 if A > B. */
|
|
|
|
int
|
|
double_int::ucmp (double_int b) const
|
|
{
|
|
const double_int &a = *this;
|
|
if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
|
|
return -1;
|
|
if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
|
|
return 1;
|
|
if (a.low < b.low)
|
|
return -1;
|
|
if (a.low > b.low)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
|
|
and 1 if A > B. */
|
|
|
|
int
|
|
double_int::scmp (double_int b) const
|
|
{
|
|
const double_int &a = *this;
|
|
if (a.high < b.high)
|
|
return -1;
|
|
if (a.high > b.high)
|
|
return 1;
|
|
if (a.low < b.low)
|
|
return -1;
|
|
if (a.low > b.low)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B for less-than. */
|
|
|
|
bool
|
|
double_int::ult (double_int b) const
|
|
{
|
|
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
|
|
return true;
|
|
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
|
|
return false;
|
|
if (low < b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B for less-than or equal-to. */
|
|
|
|
bool
|
|
double_int::ule (double_int b) const
|
|
{
|
|
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
|
|
return true;
|
|
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
|
|
return false;
|
|
if (low <= b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B for greater-than. */
|
|
|
|
bool
|
|
double_int::ugt (double_int b) const
|
|
{
|
|
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
|
|
return true;
|
|
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
|
|
return false;
|
|
if (low > b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Compares two signed values A and B for less-than. */
|
|
|
|
bool
|
|
double_int::slt (double_int b) const
|
|
{
|
|
if (high < b.high)
|
|
return true;
|
|
if (high > b.high)
|
|
return false;
|
|
if (low < b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Compares two signed values A and B for less-than or equal-to. */
|
|
|
|
bool
|
|
double_int::sle (double_int b) const
|
|
{
|
|
if (high < b.high)
|
|
return true;
|
|
if (high > b.high)
|
|
return false;
|
|
if (low <= b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Compares two signed values A and B for greater-than. */
|
|
|
|
bool
|
|
double_int::sgt (double_int b) const
|
|
{
|
|
if (high > b.high)
|
|
return true;
|
|
if (high < b.high)
|
|
return false;
|
|
if (low > b.low)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Compares two values A and B. Returns max value. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
double_int
|
|
double_int::max (double_int b, bool uns)
|
|
{
|
|
return (this->cmp (b, uns) == 1) ? *this : b;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns max value. */
|
|
|
|
double_int
|
|
double_int::smax (double_int b)
|
|
{
|
|
return (this->scmp (b) == 1) ? *this : b;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns max value. */
|
|
|
|
double_int
|
|
double_int::umax (double_int b)
|
|
{
|
|
return (this->ucmp (b) == 1) ? *this : b;
|
|
}
|
|
|
|
/* Compares two values A and B. Returns mix value. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
double_int
|
|
double_int::min (double_int b, bool uns)
|
|
{
|
|
return (this->cmp (b, uns) == -1) ? *this : b;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns min value. */
|
|
|
|
double_int
|
|
double_int::smin (double_int b)
|
|
{
|
|
return (this->scmp (b) == -1) ? *this : b;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns min value. */
|
|
|
|
double_int
|
|
double_int::umin (double_int b)
|
|
{
|
|
return (this->ucmp (b) == -1) ? *this : b;
|
|
}
|
|
|
|
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
|
|
|
|
static unsigned
|
|
double_int_split_digit (double_int *cst, unsigned base)
|
|
{
|
|
unsigned HOST_WIDE_INT resl, reml;
|
|
HOST_WIDE_INT resh, remh;
|
|
|
|
div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
|
|
&resl, &resh, &reml, &remh);
|
|
cst->high = resh;
|
|
cst->low = resl;
|
|
|
|
return reml;
|
|
}
|
|
|
|
/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
|
|
otherwise it is signed. */
|
|
|
|
void
|
|
dump_double_int (FILE *file, double_int cst, bool uns)
|
|
{
|
|
unsigned digits[100], n;
|
|
int i;
|
|
|
|
if (cst.is_zero ())
|
|
{
|
|
fprintf (file, "0");
|
|
return;
|
|
}
|
|
|
|
if (!uns && cst.is_negative ())
|
|
{
|
|
fprintf (file, "-");
|
|
cst = -cst;
|
|
}
|
|
|
|
for (n = 0; !cst.is_zero (); n++)
|
|
digits[n] = double_int_split_digit (&cst, 10);
|
|
for (i = n - 1; i >= 0; i--)
|
|
fprintf (file, "%u", digits[i]);
|
|
}
|
|
|
|
|
|
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
|
|
otherwise. */
|
|
|
|
void
|
|
mpz_set_double_int (mpz_t result, double_int val, bool uns)
|
|
{
|
|
bool negate = false;
|
|
unsigned HOST_WIDE_INT vp[2];
|
|
|
|
if (!uns && val.is_negative ())
|
|
{
|
|
negate = true;
|
|
val = -val;
|
|
}
|
|
|
|
vp[0] = val.low;
|
|
vp[1] = (unsigned HOST_WIDE_INT) val.high;
|
|
mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
|
|
|
|
if (negate)
|
|
mpz_neg (result, result);
|
|
}
|
|
|
|
/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
|
|
values of VAL will be wrapped; otherwise, they will be set to the
|
|
appropriate minimum or maximum TYPE bound. */
|
|
|
|
double_int
|
|
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
|
|
{
|
|
unsigned HOST_WIDE_INT *vp;
|
|
size_t count, numb;
|
|
double_int res;
|
|
|
|
if (!wrap)
|
|
{
|
|
mpz_t min, max;
|
|
|
|
mpz_init (min);
|
|
mpz_init (max);
|
|
get_type_static_bounds (type, min, max);
|
|
|
|
if (mpz_cmp (val, min) < 0)
|
|
mpz_set (val, min);
|
|
else if (mpz_cmp (val, max) > 0)
|
|
mpz_set (val, max);
|
|
|
|
mpz_clear (min);
|
|
mpz_clear (max);
|
|
}
|
|
|
|
/* Determine the number of unsigned HOST_WIDE_INT that are required
|
|
for representing the value. The code to calculate count is
|
|
extracted from the GMP manual, section "Integer Import and Export":
|
|
http://gmplib.org/manual/Integer-Import-and-Export.html */
|
|
numb = 8 * sizeof (HOST_WIDE_INT);
|
|
count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
|
|
if (count < 2)
|
|
count = 2;
|
|
vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
|
|
|
|
vp[0] = 0;
|
|
vp[1] = 0;
|
|
mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
|
|
|
|
gcc_assert (wrap || count <= 2);
|
|
|
|
res.low = vp[0];
|
|
res.high = (HOST_WIDE_INT) vp[1];
|
|
|
|
res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
|
|
if (mpz_sgn (val) < 0)
|
|
res = -res;
|
|
|
|
return res;
|
|
}
|