Add random numbers and fix some bugs.

This patch adds random number support for UNSIGNED, plus fixes
two bugs, with array I/O where the type used to be set to BT_INTEGER,
and for division with the divisor being a constant.

gcc/fortran/ChangeLog:

	* check.cc (gfc_check_random_number): Adjust for unsigned.
	* iresolve.cc (gfc_resolve_random_number): Handle unsigned.
	* trans-expr.cc (gfc_conv_expr_op): Handle BT_UNSIGNED for divide.
	* trans-types.cc (gfc_get_dtype_rank_type): Handle BT_UNSIGNED.
	* gfortran.texi: Add RANDOM_NUMBER for UNSIGNED.

libgfortran/ChangeLog:

	* gfortran.map: Add _gfortran_random_m1, _gfortran_random_m2,
	_gfortran_random_m4, _gfortran_random_m8 and _gfortran_random_m16.
	* intrinsics/random.c (random_m1): New function.
	(random_m2): New function.
	(random_m4): New function.
	(random_m8): New function.
	(random_m16): New function.
	(arandom_m1): New function.
	(arandom_m2): New function.
	(arandom_m4): New function.
	(arandom_m8): New funciton.
	(arandom_m16): New function.

gcc/testsuite/ChangeLog:

	* gfortran.dg/unsigned_30.f90: New test.
This commit is contained in:
Thomas Koenig 2024-09-24 22:57:42 +02:00
parent fbeb1a965d
commit 291e20e860
8 changed files with 534 additions and 7 deletions

View File

@ -7007,8 +7007,14 @@ gfc_check_random_init (gfc_expr *repeatable, gfc_expr *image_distinct)
bool
gfc_check_random_number (gfc_expr *harvest)
{
if (!type_check (harvest, 0, BT_REAL))
return false;
if (flag_unsigned)
{
if (!type_check2 (harvest, 0, BT_REAL, BT_UNSIGNED))
return false;
}
else
if (!type_check (harvest, 0, BT_REAL))
return false;
if (!variable_check (harvest, 0, false))
return false;

View File

@ -2790,6 +2790,7 @@ As of now, the following intrinsics take unsigned arguments:
@item @code{TRANSFER}
@item @code{SUM}, @code{PRODUCT}, @code{MATMUL} and @code{DOT_PRODUCT}
@item @code{IANY}, @code{IALL} and @code{IPARITY}
@item @code{RANDOM_NUMBER}.
@end itemize
This list will grow in the near future.
@c ---------------------------------------------------------------------

View File

@ -3452,12 +3452,14 @@ gfc_resolve_random_number (gfc_code *c)
{
const char *name;
int kind;
char type;
kind = gfc_type_abi_kind (&c->ext.actual->expr->ts);
type = gfc_type_letter (c->ext.actual->expr->ts.type);
if (c->ext.actual->expr->rank == 0)
name = gfc_get_string (PREFIX ("random_r%d"), kind);
name = gfc_get_string (PREFIX ("random_%c%d"), type, kind);
else
name = gfc_get_string (PREFIX ("arandom_r%d"), kind);
name = gfc_get_string (PREFIX ("arandom_%c%d"), type, kind);
c->resolved_sym = gfc_get_intrinsic_sub_symbol (name);
}

View File

@ -3973,9 +3973,9 @@ gfc_conv_expr_op (gfc_se * se, gfc_expr * expr)
case INTRINSIC_DIVIDE:
/* If expr is a real or complex expr, use an RDIV_EXPR. If op1 is
an integer, we must round towards zero, so we use a
an integer or unsigned, we must round towards zero, so we use a
TRUNC_DIV_EXPR. */
if (expr->ts.type == BT_INTEGER)
if (expr->ts.type == BT_INTEGER || expr->ts.type == BT_UNSIGNED)
code = TRUNC_DIV_EXPR;
else
code = RDIV_EXPR;

View File

@ -1651,7 +1651,12 @@ gfc_get_dtype_rank_type (int rank, tree etype)
&& TYPE_STRING_FLAG (ptype))
n = BT_CHARACTER;
else
n = BT_INTEGER;
{
if (TYPE_UNSIGNED (etype))
n = BT_UNSIGNED;
else
n = BT_INTEGER;
}
break;
case BOOLEAN_TYPE:

View File

@ -0,0 +1,63 @@
! { dg-do run }
! { dg-options "-funsigned" }
! The leading bytes of the unsigned sequences should be the same for
! kinds 1 to 8. This also tests array I/O for unsigneds.
program memain
implicit none
integer, dimension(:), allocatable :: seed
integer :: n
call random_seed (size=n)
allocate(seed(n))
call test1
call test2
contains
subroutine test1
unsigned(1) :: u1
unsigned(2) :: u2
unsigned(4) :: u4
unsigned(8) :: u8
character (len=16) :: line1, line2, line4, line8
integer :: i, n
do i=1,10
call random_seed(get=seed)
call random_number(u1)
write (line1,'(Z2.2)') u1
call random_seed(put=seed)
call random_number(u2)
write (line2,'(Z4.4)') u2
call random_seed(put=seed)
call random_number(u4)
write (line4,'(Z8.8)') u4
call random_seed(put=seed)
call random_number(u8)
write (line8,'(Z16.16)') u8
if (line8(1:8) /= line4 (1:8)) error stop 1
if (line4(1:4) /= line2 (1:4)) error stop 2
if (line2(1:2) /= line1 (1:2)) error stop 3
end do
end subroutine test1
subroutine test2
unsigned(1), dimension(2,2) :: v1
unsigned(2), dimension(2,2) :: v2
unsigned(4), dimension(2,2) :: v4
unsigned(8), dimension(2,2) :: v8
character(len=16), dimension(4) :: c1, c2, c4, c8
call random_seed(put=seed)
call random_number (v1)
write (c1,'(Z2.2)') v1
call random_seed(put=seed)
call random_number (v2)
write (c2,'(Z4.4)') v2
call random_seed(put=seed)
call random_number (v4)
write (c4,'(Z8.8)') v4
call random_seed(put=seed)
call random_number (v8)
write (c8,'(Z16.16)') v8
if (any(c8(:)(1:8) /= c4(:)(1:8))) error stop 10
if (any(c4(:)(1:4) /= c2(:)(1:4))) error stop 11
if (any(c2(:)(1:2) /= c1(:)(1:2))) error stop 12
end subroutine test2
end program memain

View File

@ -1777,4 +1777,14 @@ GFORTRAN_15 {
_gfortran_internal_unpack_class;
_gfortran_transfer_unsigned;
_gfortran_transfer_unsigned_write;
_gfortran_random_m1;
_gfortran_random_m2;
_gfortran_random_m4;
_gfortran_random_m8;
_gfortran_random_m16;
_gfortran_arandom_m1;
_gfortran_arandom_m2;
_gfortran_arandom_m4;
_gfortran_arandom_m8;
_gfortran_arandom_m16;
} GFORTRAN_14;

View File

@ -89,6 +89,43 @@ export_proto(arandom_r17);
#endif
extern void random_m1 (GFC_UINTEGER_1 *);
export_proto (random_m1);
extern void random_m2 (GFC_UINTEGER_2 *);
export_proto (random_m2);
extern void random_m4 (GFC_UINTEGER_4 *);
export_proto (random_m4);
extern void random_m8 (GFC_UINTEGER_8 *);
export_proto (random_m8);
#ifdef HAVE_GFC_UINTEGER_16
extern void random_m16 (GFC_UINTEGER_16 *);
export_proto (random_m16);
#endif
extern void arandom_m1 (gfc_array_m1 *);
export_proto (arandom_m1);
extern void arandom_m2 (gfc_array_m2 *);
export_proto (arandom_m2);
extern void arandom_m4 (gfc_array_m4 *);
export_proto (arandom_m4);
extern void arandom_m8 (gfc_array_m8 *);
export_proto (arandom_m8);
#ifdef HAVE_GFC_UINTEGER_16
extern void arandom_m16 (gfc_array_m16 *);
export_proto (arandom_m16);
#endif
#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t random_lock = __GTHREAD_MUTEX_INIT;
#else
@ -498,6 +535,81 @@ iexport(random_r17);
#endif
/* Versions for unsigned numbers. */
/* Returns a random byte. */
void
random_m1 (GFC_UINTEGER_1 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
GFC_UINTEGER_8 r = prng_next (rs);
*x = r >> 56;
}
/* A random 16-bit number. */
void
random_m2 (GFC_UINTEGER_2 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
GFC_UINTEGER_8 r = prng_next (rs);
*x = r >> 48;
}
/* A random 32-bit number. */
void
random_m4 (GFC_UINTEGER_4 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
GFC_UINTEGER_8 r = prng_next (rs);
*x = r >> 32;
}
/* A random 64-bit number. */
void
random_m8 (GFC_UINTEGER_8 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
GFC_UINTEGER_8 r = prng_next (rs);
*x = r;
}
/* ... and a random 128-bit number, if we have the type. */
#ifdef HAVE_GFC_UINTEGER_16
void
random_m16 (GFC_UINTEGER_16 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
GFC_UINTEGER_8 r1 = prng_next (rs);
GFC_UINTEGER_8 r2 = prng_next (rs);
*x = (((GFC_UINTEGER_16) r1) << 64) | (GFC_UINTEGER_16) r2;
}
#endif
/* This function fills a REAL(4) array with values from the uniform
distribution with range [0,1). */
@ -843,6 +955,334 @@ arandom_r17 (gfc_array_r17 *x)
#endif
/* Fill an unsigned array with random bytes. */
void
arandom_m1 (gfc_array_m1 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_UINTEGER_1 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_m1 (dest); */
uint64_t r = prng_next (rs);
*dest = r >> 56;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
/* Fill an unsigned array with random 16-bit unsigneds. */
void
arandom_m2 (gfc_array_m2 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_UINTEGER_2 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_m1 (dest); */
uint64_t r = prng_next (rs);
*dest = r >> 48;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
/* Fill an array with random 32-bit unsigneds. */
void
arandom_m4 (gfc_array_m4 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_UINTEGER_4 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_m4 (dest); */
uint64_t r = prng_next (rs);
*dest = r >> 32;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
/* Fill an array with random 64-bit unsigneds. */
void
arandom_m8 (gfc_array_m8 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_UINTEGER_8 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_m8 (dest); */
uint64_t r = prng_next (rs);
*dest = r;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#ifdef GFC_HAVE_GFC_UINTEGER_16
/* Fill an unsigned array with random bytes. */
void
arandom_m16 (gfc_array_m16 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_UINTEGER_16 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_m16 (dest); */
uint64_t r1 = prng_next (rs), r2 = prng_next (rs);
*dest = (((GFC_UINTEGER_16) r1) << 64) | (GFC_UINTEGER_16) r2;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif
/* Number of elements in master_state array. */
#define SZU64 (sizeof (master_state.s) / sizeof (uint64_t))