mirror of
https://github.com/gcc-mirror/gcc.git
synced 2024-11-21 13:40:47 +00:00
re PR libquadmath/65757 (gfortran gives incorrect result for anint with real*16 argument)
PR libquadmath/65757 * quadmath-imp.h (math_opt_barrier, math_force_eval, math_narrow_eval, math_check_force_underflow, math_check_force_underflow_nonneg): Define. * math/ceilq.c: Backport changes from upstream glibc between 2012-11-01 and 2017-07-13. * math/remquoq.c: Likewise. * math/expq.c: Likewise. * math/llroundq.c: Likewise. * math/logq.c: Likewise. * math/atanq.c: Likewise. * math/nearbyintq.c: Likewise. * math/scalblnq.c: Likewise. * math/finiteq.c: Likewise. * math/atanhq.c: Likewise. * math/expm1q.c: Likewise. * math/sinhq.c: Likewise. * math/log10q.c: Likewise. * math/rintq.c: Likewise. * math/roundq.c: Likewise. * math/fmaq.c: Likewise. * math/erfq.c: Likewise. * math/log2q.c: Likewise. * math/lroundq.c: Likewise. * math/j1q.c: Likewise. * math/scalbnq.c: Likewise. * math/truncq.c: Likewise. * math/frexpq.c: Likewise. * math/sincosq.c: Likewise. * math/tanhq.c: Likewise. * math/asinq.c: Likewise. * math/coshq.c: Likewise. * math/j0q.c: Likewise. * math/asinhq.c: Likewise. * math/floorq.c: Likewise. * math/sinq_kernel.c: Likewise. * math/powq.c: Likewise. * math/hypotq.c: Likewise. * math/sincos_table.c: Likewise. * math/rem_pio2q.c: Likewise. * math/nextafterq.c: Likewise. * math/log1pq.c: Likewise. * math/sincosq_kernel.c: Likewise. * math/tanq.c: Likewise. * math/acosq.c: Likewise. * math/lrintq.c: Likewise. * math/llrintq.c: Likewise. From-SVN: r250343
This commit is contained in:
parent
564e405c13
commit
1eba086706
@ -1,3 +1,53 @@
|
||||
2017-07-19 Jakub Jelinek <jakub@redhat.com>
|
||||
|
||||
PR libquadmath/65757
|
||||
* quadmath-imp.h (math_opt_barrier, math_force_eval,
|
||||
math_narrow_eval, math_check_force_underflow,
|
||||
math_check_force_underflow_nonneg): Define.
|
||||
* math/ceilq.c: Backport changes from upstream glibc
|
||||
between 2012-11-01 and 2017-07-13.
|
||||
* math/remquoq.c: Likewise.
|
||||
* math/expq.c: Likewise.
|
||||
* math/llroundq.c: Likewise.
|
||||
* math/logq.c: Likewise.
|
||||
* math/atanq.c: Likewise.
|
||||
* math/nearbyintq.c: Likewise.
|
||||
* math/scalblnq.c: Likewise.
|
||||
* math/finiteq.c: Likewise.
|
||||
* math/atanhq.c: Likewise.
|
||||
* math/expm1q.c: Likewise.
|
||||
* math/sinhq.c: Likewise.
|
||||
* math/log10q.c: Likewise.
|
||||
* math/rintq.c: Likewise.
|
||||
* math/roundq.c: Likewise.
|
||||
* math/fmaq.c: Likewise.
|
||||
* math/erfq.c: Likewise.
|
||||
* math/log2q.c: Likewise.
|
||||
* math/lroundq.c: Likewise.
|
||||
* math/j1q.c: Likewise.
|
||||
* math/scalbnq.c: Likewise.
|
||||
* math/truncq.c: Likewise.
|
||||
* math/frexpq.c: Likewise.
|
||||
* math/sincosq.c: Likewise.
|
||||
* math/tanhq.c: Likewise.
|
||||
* math/asinq.c: Likewise.
|
||||
* math/coshq.c: Likewise.
|
||||
* math/j0q.c: Likewise.
|
||||
* math/asinhq.c: Likewise.
|
||||
* math/floorq.c: Likewise.
|
||||
* math/sinq_kernel.c: Likewise.
|
||||
* math/powq.c: Likewise.
|
||||
* math/hypotq.c: Likewise.
|
||||
* math/sincos_table.c: Likewise.
|
||||
* math/rem_pio2q.c: Likewise.
|
||||
* math/nextafterq.c: Likewise.
|
||||
* math/log1pq.c: Likewise.
|
||||
* math/sincosq_kernel.c: Likewise.
|
||||
* math/tanq.c: Likewise.
|
||||
* math/acosq.c: Likewise.
|
||||
* math/lrintq.c: Likewise.
|
||||
* math/llrintq.c: Likewise.
|
||||
|
||||
2017-02-09 Gerald Pfeifer <gerald@pfeifer.com>
|
||||
|
||||
* configure.ac (ACX_BUGURL): Update.
|
||||
|
@ -172,7 +172,7 @@ acosq (__float128 x)
|
||||
}
|
||||
else if (ix < 0x3ffe0000) /* |x| < 0.5 */
|
||||
{
|
||||
if (ix < 0x3fc60000) /* |x| < 2**-57 */
|
||||
if (ix < 0x3f8e0000) /* |x| < 2**-113 */
|
||||
return pio2_hi + pio2_lo;
|
||||
if (ix < 0x3ffde000) /* |x| < .4375 */
|
||||
{
|
||||
|
@ -46,6 +46,7 @@ asinhq (__float128 x)
|
||||
return x + x; /* x is inf or NaN */
|
||||
if (ix < 0x3fc70000)
|
||||
{ /* |x| < 2^ -56 */
|
||||
math_check_force_underflow (x);
|
||||
if (huge + x > one)
|
||||
return x; /* return x inexact except 0 */
|
||||
}
|
||||
|
@ -151,8 +151,10 @@ asinq (__float128 x)
|
||||
{
|
||||
if (ix < 0x3fc60000) /* |x| < 2**-57 */
|
||||
{
|
||||
if (huge + x > one)
|
||||
return x; /* return x with inexact if x!=0 */
|
||||
math_check_force_underflow (x);
|
||||
__float128 force_inexact = huge + x;
|
||||
math_force_eval (force_inexact);
|
||||
return x; /* return x with inexact if x!=0 */
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -55,7 +55,11 @@ atanhq (__float128 x)
|
||||
else
|
||||
return (x-x)/(x-x);
|
||||
}
|
||||
if(ix<0x3fc60000 && (huge+x)>zero) return x; /* x < 2^-57 */
|
||||
if(ix<0x3fc60000 && (huge+x)>zero) /* x < 2^-57 */
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
return x;
|
||||
}
|
||||
|
||||
if(ix<0x3ffe0000) { /* x < 0.5 */
|
||||
t = u.value+u.value;
|
||||
|
@ -42,7 +42,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
|
||||
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -167,7 +167,7 @@ static const __float128
|
||||
q4 = 2.173623741810414221251136181221172551416E1Q;
|
||||
/* q5 = 1.000000000000000000000000000000000000000E0 */
|
||||
|
||||
static const long double huge = 1.0e4930Q;
|
||||
static const __float128 huge = 1.0e4930Q;
|
||||
|
||||
__float128
|
||||
atanq (__float128 x)
|
||||
@ -200,6 +200,7 @@ atanq (__float128 x)
|
||||
|
||||
if (k <= 0x3fc50000) /* |x| < 2**-58 */
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
/* Raise inexact. */
|
||||
if (huge + x > 0.0)
|
||||
return x;
|
||||
|
@ -15,8 +15,6 @@
|
||||
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
static const __float128 huge = 1.0e4930Q;
|
||||
|
||||
__float128
|
||||
ceilq (__float128 x)
|
||||
{
|
||||
@ -25,18 +23,15 @@ ceilq (__float128 x)
|
||||
GET_FLT128_WORDS64(i0,i1,x);
|
||||
j0 = ((i0>>48)&0x7fff)-0x3fff;
|
||||
if(j0<48) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x8000000000000000ULL;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3fff000000000000ULL;i1=0;}
|
||||
}
|
||||
if(j0<0) {
|
||||
/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x8000000000000000ULL;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3fff000000000000ULL;i1=0;}
|
||||
} else {
|
||||
i = (0x0000ffffffffffffULL)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x0001000000000000LL)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
if(i0>0) i0 += (0x0001000000000000LL)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
} else if (j0>111) {
|
||||
if(j0==0x4000) return x+x; /* inf or NaN */
|
||||
@ -44,17 +39,15 @@ ceilq (__float128 x)
|
||||
} else {
|
||||
i = -1ULL>>(j0-48);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==48) i0+=1;
|
||||
else {
|
||||
j = i1+(1LL<<(112-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
if(i0>0) {
|
||||
if(j0==48) i0+=1;
|
||||
else {
|
||||
j = i1+(1LL<<(112-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
SET_FLT128_WORDS64(x,i0,i1);
|
||||
return x;
|
||||
|
@ -76,10 +76,10 @@ coshq (__float128 x)
|
||||
/* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expq(|x|)) */
|
||||
if (ex < 0x3ffd62e4) /* 0.3465728759765625 */
|
||||
{
|
||||
if (ex < 0x3fb80000) /* |x| < 2^-116 */
|
||||
return one; /* cosh(tiny) = 1 */
|
||||
t = expm1q (u.value);
|
||||
w = one + t;
|
||||
if (ex < 0x3fb80000) /* |x| < 2^-116 */
|
||||
return w; /* cosh(tiny) = 1 */
|
||||
|
||||
return one + (t * t) / (w + w);
|
||||
}
|
||||
|
@ -11,9 +11,9 @@
|
||||
|
||||
/* Modifications and expansions for 128-bit long double are
|
||||
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
||||
and are incorporated herein by permission of the author. The author
|
||||
and are incorporated herein by permission of the author. The author
|
||||
reserves the right to distribute this material elsewhere under different
|
||||
copying permissions. These modifications are distributed here under
|
||||
copying permissions. These modifications are distributed here under
|
||||
the following terms:
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
@ -96,6 +96,7 @@
|
||||
* erfc/erf(NaN) is NaN
|
||||
*/
|
||||
|
||||
#include <errno.h>
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
|
||||
@ -142,13 +143,10 @@ deval (__float128 x, const __float128 *p, int n)
|
||||
|
||||
static const __float128
|
||||
tiny = 1e-4931Q,
|
||||
half = 0.5Q,
|
||||
one = 1.0Q,
|
||||
two = 2.0Q,
|
||||
/* 2/sqrt(pi) - 1 */
|
||||
efx = 1.2837916709551257389615890312154517168810E-1Q,
|
||||
/* 8 * (2/sqrt(pi) - 1) */
|
||||
efx8 = 1.0270333367641005911692712249723613735048E0Q;
|
||||
efx = 1.2837916709551257389615890312154517168810E-1Q;
|
||||
|
||||
|
||||
/* erf(x) = x + x R(x^2)
|
||||
@ -773,6 +771,8 @@ erfq (__float128 x)
|
||||
|
||||
if (ix >= 0x3fff0000) /* |x| >= 1.0 */
|
||||
{
|
||||
if (ix >= 0x40030000 && sign > 0)
|
||||
return one; /* x >= 16, avoid spurious underflow from erfc. */
|
||||
y = erfcq (x);
|
||||
return (one - y);
|
||||
/* return (one - erfcq (x)); */
|
||||
@ -785,7 +785,12 @@ erfq (__float128 x)
|
||||
if (ix < 0x3fc60000) /* |x|<2**-57 */
|
||||
{
|
||||
if (ix < 0x00080000)
|
||||
return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */
|
||||
{
|
||||
/* Avoid spurious underflow. */
|
||||
__float128 ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
|
||||
math_check_force_underflow (ret);
|
||||
return ret;
|
||||
}
|
||||
return x + efx * x;
|
||||
}
|
||||
y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
|
||||
@ -867,7 +872,7 @@ erfcq (__float128 x)
|
||||
y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
|
||||
y += C19a;
|
||||
break;
|
||||
case 9:
|
||||
default: /* i == 9. */
|
||||
z = x - 1.125Q;
|
||||
y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
|
||||
y += C20a;
|
||||
@ -921,14 +926,22 @@ erfcq (__float128 x)
|
||||
z = u.value;
|
||||
r = expq (-z * z - 0.5625) * expq ((z - x) * (z + x) + p);
|
||||
if ((sign & 0x80000000) == 0)
|
||||
return r / x;
|
||||
{
|
||||
__float128 ret = r / x;
|
||||
if (ret == 0)
|
||||
errno = ERANGE;
|
||||
return ret;
|
||||
}
|
||||
else
|
||||
return two - r / x;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((sign & 0x80000000) == 0)
|
||||
return tiny * tiny;
|
||||
{
|
||||
errno = ERANGE;
|
||||
return tiny * tiny;
|
||||
}
|
||||
else
|
||||
return two - tiny;
|
||||
}
|
||||
|
@ -35,7 +35,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
/* Copyright 2001 by Stephen L. Moshier
|
||||
/* Copyright 2001 by Stephen L. Moshier
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -82,8 +82,6 @@ static const __float128
|
||||
|
||||
C1 = 6.93145751953125E-1Q,
|
||||
C2 = 1.428606820309417232121458176568075500134E-6Q,
|
||||
/* ln (2^16384 * (1 - 2^-113)) */
|
||||
maxlog = 1.1356523406294143949491931077970764891253E4Q,
|
||||
/* ln 2^-114 */
|
||||
minarg = -7.9018778583833765273564461846232128760607E1Q;
|
||||
|
||||
@ -108,33 +106,30 @@ expm1q (__float128 x)
|
||||
}
|
||||
if (ix >= 0x7fff0000)
|
||||
{
|
||||
/* Infinity. */
|
||||
/* Infinity (which must be negative infinity). */
|
||||
if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
|
||||
{
|
||||
if (sign)
|
||||
return -1.0Q;
|
||||
else
|
||||
return x;
|
||||
}
|
||||
/* NaN. No invalid exception. */
|
||||
return x;
|
||||
return -1.0Q;
|
||||
/* NaN. Invalid exception if signaling. */
|
||||
return x + x;
|
||||
}
|
||||
|
||||
/* expm1(+- 0) = +- 0. */
|
||||
if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
|
||||
return x;
|
||||
|
||||
/* Overflow. */
|
||||
if (x > maxlog)
|
||||
{
|
||||
errno = ERANGE;
|
||||
return (HUGE_VALQ * HUGE_VALQ);
|
||||
}
|
||||
|
||||
/* Minimum value. */
|
||||
if (x < minarg)
|
||||
return (4.0/HUGE_VALQ - 1.0Q);
|
||||
|
||||
/* Avoid internal underflow when result does not underflow, while
|
||||
ensuring underflow (without returning a zero of the wrong sign)
|
||||
when the result does underflow. */
|
||||
if (fabsq (x) < 0x1p-113Q)
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
return x;
|
||||
}
|
||||
|
||||
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
|
||||
xx = C1 + C2; /* ln 2. */
|
||||
px = floorq (0.5 + x / xx);
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Quad-precision floating point e^x.
|
||||
Copyright (C) 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
|
||||
Partly based on double-precision code
|
||||
@ -1075,7 +1075,7 @@ static const __float128 C[] = {
|
||||
#define TWO15 C[11]
|
||||
32768.0Q,
|
||||
|
||||
/* Chebyshev polynom coeficients for (exp(x)-1)/x */
|
||||
/* Chebyshev polynom coefficients for (exp(x)-1)/x */
|
||||
#define P1 C[12]
|
||||
#define P2 C[13]
|
||||
#define P3 C[14]
|
||||
@ -1142,7 +1142,7 @@ expq (__float128 x)
|
||||
* __expq_table[T_EXPL_RES2 + tval2];
|
||||
n_i = (int)n;
|
||||
/* 'unsafe' is 1 iff n_1 != 0. */
|
||||
unsafe = abs(n_i) >= -FLT128_MIN_EXP - 1;
|
||||
unsafe = abs(n_i) >= 15000;
|
||||
ex2_u.ieee.exponent += n_i >> unsafe;
|
||||
|
||||
/* Compute scale = 2^n_1. */
|
||||
@ -1179,7 +1179,7 @@ expq (__float128 x)
|
||||
ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
|
||||
ex2_u.d = result;
|
||||
ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
|
||||
- ex2_u.ieee.exponent;
|
||||
- ex2_u.ieee.exponent;
|
||||
n_i = abs (ex3_u.d);
|
||||
n_i = (n_i + 1) / 2;
|
||||
#ifdef USE_FENV_H
|
||||
@ -1196,7 +1196,11 @@ expq (__float128 x)
|
||||
if (!unsafe)
|
||||
return result;
|
||||
else
|
||||
return result * scale_u.value;
|
||||
{
|
||||
result *= scale_u.value;
|
||||
math_check_force_underflow_nonneg (result);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
/* Exceptional cases: */
|
||||
else if (__builtin_isless (x, himark))
|
||||
|
@ -25,6 +25,6 @@ finiteq (const __float128 x)
|
||||
{
|
||||
int64_t hx;
|
||||
GET_FLT128_MSW64(hx,x);
|
||||
return (int)((uint64_t)((hx&0x7fffffffffffffffLL)
|
||||
return (int)((uint64_t)((hx&0x7fff000000000000LL)
|
||||
-0x7fff000000000000LL)>>63);
|
||||
}
|
||||
|
@ -15,8 +15,6 @@
|
||||
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
static const __float128 huge = 1.0e4930Q;
|
||||
|
||||
__float128
|
||||
floorq (__float128 x)
|
||||
{
|
||||
@ -25,19 +23,16 @@ floorq (__float128 x)
|
||||
GET_FLT128_WORDS64(i0,i1,x);
|
||||
j0 = ((i0>>48)&0x7fff)-0x3fff;
|
||||
if(j0<48) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffffffffffffLL)|i1)!=0)
|
||||
{ i0=0xbfff000000000000ULL;i1=0;}
|
||||
}
|
||||
if(j0<0) {
|
||||
/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffffffffffffLL)|i1)!=0)
|
||||
{ i0=0xbfff000000000000ULL;i1=0;}
|
||||
} else {
|
||||
i = (0x0000ffffffffffffULL)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x0001000000000000LL)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
if(i0<0) i0 += (0x0001000000000000LL)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
} else if (j0>111) {
|
||||
if(j0==0x4000) return x+x; /* inf or NaN */
|
||||
@ -45,17 +40,15 @@ floorq (__float128 x)
|
||||
} else {
|
||||
i = -1ULL>>(j0-48);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) {
|
||||
if(j0==48) i0+=1;
|
||||
else {
|
||||
j = i1+(1LL<<(112-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
if(i0<0) {
|
||||
if(j0==48) i0+=1;
|
||||
else {
|
||||
j = i1+(1LL<<(112-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
SET_FLT128_WORDS64(x,i0,i1);
|
||||
return x;
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Compute x * y + z as ternary operation.
|
||||
Copyright (C) 2010-2012 Free Software Foundation, Inc.
|
||||
Copyright (C) 2010-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
|
||||
|
||||
@ -97,8 +97,8 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
&& w.ieee.mant_low == 0
|
||||
&& w.ieee.mant_high == 0)))
|
||||
{
|
||||
volatile __float128 force_underflow = x * y;
|
||||
(void) force_underflow;
|
||||
__float128 force_underflow = x * y;
|
||||
math_force_eval (force_underflow);
|
||||
}
|
||||
return v.value * 0x1p-114Q;
|
||||
}
|
||||
@ -161,15 +161,15 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
<= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */
|
||||
{
|
||||
if (u.ieee.exponent > v.ieee.exponent)
|
||||
u.ieee.exponent += 2 * FLT128_MANT_DIG;
|
||||
u.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
||||
else
|
||||
v.ieee.exponent += 2 * FLT128_MANT_DIG;
|
||||
if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 4)
|
||||
v.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
||||
if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 6)
|
||||
{
|
||||
if (w.ieee.exponent)
|
||||
w.ieee.exponent += 2 * FLT128_MANT_DIG;
|
||||
w.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
||||
else
|
||||
w.value *= 0x1p226Q;
|
||||
w.value *= 0x1p228Q;
|
||||
adjust = -1;
|
||||
}
|
||||
/* Otherwise x * y should just affect inexact
|
||||
@ -182,7 +182,10 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
|
||||
/* Ensure correct sign of exact 0 + 0. */
|
||||
if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0))
|
||||
return x * y + z;
|
||||
{
|
||||
x = math_opt_barrier (x);
|
||||
return x * y + z;
|
||||
}
|
||||
|
||||
#ifdef USE_FENV_H
|
||||
fenv_t env;
|
||||
@ -208,24 +211,24 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
t1 = m1 - t1;
|
||||
t2 = z - t2;
|
||||
__float128 a2 = t1 + t2;
|
||||
/* Ensure the arithmetic is not scheduled after feclearexcept call. */
|
||||
math_force_eval (m2);
|
||||
math_force_eval (a2);
|
||||
#ifdef USE_FENV_H
|
||||
feclearexcept (FE_INEXACT);
|
||||
#endif
|
||||
|
||||
/* If the result is an exact zero, ensure it has the correct
|
||||
sign. */
|
||||
/* If the result is an exact zero, ensure it has the correct sign. */
|
||||
if (a1 == 0 && m2 == 0)
|
||||
{
|
||||
#ifdef USE_FENV_H
|
||||
feupdateenv (&env);
|
||||
#endif
|
||||
/* Ensure that round-to-nearest value of z + m1 is not
|
||||
reused. */
|
||||
asm volatile ("" : "=m" (z) : "m" (z));
|
||||
/* Ensure that round-to-nearest value of z + m1 is not reused. */
|
||||
z = math_opt_barrier (z);
|
||||
return z + m1;
|
||||
}
|
||||
|
||||
|
||||
#ifdef USE_FENV_H
|
||||
fesetround (FE_TOWARDZERO);
|
||||
#endif
|
||||
@ -273,19 +276,19 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
/* If a1 + u.value is exact, the only rounding happens during
|
||||
scaling down. */
|
||||
if (j == 0)
|
||||
return v.value * 0x1p-226Q;
|
||||
return v.value * 0x1p-228Q;
|
||||
/* If result rounded to zero is not subnormal, no double
|
||||
rounding will occur. */
|
||||
if (v.ieee.exponent > 226)
|
||||
return (a1 + u.value) * 0x1p-226Q;
|
||||
/* If v.value * 0x1p-226Q with round to zero is a subnormal above
|
||||
or equal to FLT128_MIN / 2, then v.value * 0x1p-226Q shifts mantissa
|
||||
if (v.ieee.exponent > 228)
|
||||
return (a1 + u.value) * 0x1p-228Q;
|
||||
/* If v.value * 0x1p-228Q with round to zero is a subnormal above
|
||||
or equal to FLT128_MIN / 2, then v.value * 0x1p-228Q shifts mantissa
|
||||
down just by 1 bit, which means v.ieee.mant_low |= j would
|
||||
change the round bit, not sticky or guard bit.
|
||||
v.value * 0x1p-226Q never normalizes by shifting up,
|
||||
v.value * 0x1p-228Q never normalizes by shifting up,
|
||||
so round bit plus sticky bit should be already enough
|
||||
for proper rounding. */
|
||||
if (v.ieee.exponent == 226)
|
||||
if (v.ieee.exponent == 228)
|
||||
{
|
||||
/* If the exponent would be in the normal range when
|
||||
rounding to normal precision with unbounded exponent
|
||||
@ -295,8 +298,8 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
if (TININESS_AFTER_ROUNDING)
|
||||
{
|
||||
w.value = a1 + u.value;
|
||||
if (w.ieee.exponent == 227)
|
||||
return w.value * 0x1p-226Q;
|
||||
if (w.ieee.exponent == 229)
|
||||
return w.value * 0x1p-228Q;
|
||||
}
|
||||
/* v.ieee.mant_low & 2 is LSB bit of the result before rounding,
|
||||
v.ieee.mant_low & 1 is the round bit and j is our sticky
|
||||
@ -305,11 +308,11 @@ fmaq (__float128 x, __float128 y, __float128 z)
|
||||
w.ieee.mant_low = ((v.ieee.mant_low & 3) << 1) | j;
|
||||
w.ieee.negative = v.ieee.negative;
|
||||
v.ieee.mant_low &= ~3U;
|
||||
v.value *= 0x1p-226Q;
|
||||
v.value *= 0x1p-228Q;
|
||||
w.value *= 0x1p-2Q;
|
||||
return v.value + w.value;
|
||||
}
|
||||
v.ieee.mant_low |= j;
|
||||
return v.value * 0x1p-226Q;
|
||||
return v.value * 0x1p-228Q;
|
||||
}
|
||||
}
|
||||
|
@ -35,7 +35,7 @@ frexpq (__float128 x, int *eptr)
|
||||
GET_FLT128_WORDS64(hx,lx,x);
|
||||
ix = 0x7fffffffffffffffULL&hx;
|
||||
*eptr = 0;
|
||||
if(ix>=0x7fff000000000000ULL||((ix|lx)==0)) return x; /* 0,inf,nan */
|
||||
if(ix>=0x7fff000000000000ULL||((ix|lx)==0)) return x + x;/* 0,inf,nan */
|
||||
if (ix<0x0001000000000000ULL) { /* subnormal */
|
||||
x *= two114;
|
||||
GET_FLT128_MSW64(hx,x);
|
||||
|
@ -89,6 +89,17 @@ hypotq (__float128 x, __float128 y)
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 16382;
|
||||
GET_FLT128_MSW64 (ha, a);
|
||||
GET_FLT128_MSW64 (hb, b);
|
||||
if (hb > ha)
|
||||
{
|
||||
t1 = a;
|
||||
a = b;
|
||||
b = t1;
|
||||
j = ha;
|
||||
ha = hb;
|
||||
hb = j;
|
||||
}
|
||||
} else { /* scale a and b by 2^9600 */
|
||||
ha += 0x2580000000000000LL; /* a *= 2^9600 */
|
||||
hb += 0x2580000000000000LL; /* b *= 2^9600 */
|
||||
@ -119,6 +130,8 @@ hypotq (__float128 x, __float128 y)
|
||||
t1 = 1.0Q;
|
||||
GET_FLT128_MSW64(high,t1);
|
||||
SET_FLT128_MSW64(t1,high+(k<<48));
|
||||
return t1*w;
|
||||
w *= t1;
|
||||
math_check_force_underflow_nonneg (w);
|
||||
return w;
|
||||
} else return w;
|
||||
}
|
||||
|
@ -681,7 +681,7 @@ j0q (__float128 x)
|
||||
if (! finiteq (x))
|
||||
{
|
||||
if (x != x)
|
||||
return x;
|
||||
return x + x;
|
||||
else
|
||||
return 0.0Q;
|
||||
}
|
||||
@ -691,6 +691,8 @@ j0q (__float128 x)
|
||||
xx = fabsq (x);
|
||||
if (xx <= 2.0Q)
|
||||
{
|
||||
if (xx < 0x1p-57Q)
|
||||
return 1.0Q;
|
||||
/* 0 <= x <= 2 */
|
||||
z = xx * xx;
|
||||
p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
|
||||
@ -699,6 +701,28 @@ j0q (__float128 x)
|
||||
return p;
|
||||
}
|
||||
|
||||
/* X = x - pi/4
|
||||
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (sin(x) - cos(x))
|
||||
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
if (xx <= FLT128_MAX / 2.0Q)
|
||||
{
|
||||
z = -cosq (xx + xx);
|
||||
if ((s * c) < 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
|
||||
if (xx > 0x1p256Q)
|
||||
return ONEOSQPI * cc / sqrtq (xx);
|
||||
|
||||
xinv = 1.0Q / xx;
|
||||
z = xinv * xinv;
|
||||
if (xinv <= 0.25)
|
||||
@ -760,21 +784,6 @@ j0q (__float128 x)
|
||||
p = 1.0Q + z * p;
|
||||
q = z * xinv * q;
|
||||
q = q - 0.125Q * xinv;
|
||||
/* X = x - pi/4
|
||||
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (sin(x) - cos(x))
|
||||
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
z = - cosq (xx + xx);
|
||||
if ((s * c) < 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
|
||||
return z;
|
||||
}
|
||||
@ -817,17 +826,12 @@ y0q (__float128 x)
|
||||
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
||||
|
||||
if (! finiteq (x))
|
||||
{
|
||||
if (x != x)
|
||||
return x;
|
||||
else
|
||||
return 0.0Q;
|
||||
}
|
||||
return 1 / (x + x * x);
|
||||
if (x <= 0.0Q)
|
||||
{
|
||||
if (x < 0.0Q)
|
||||
return (zero / (zero * x));
|
||||
return -HUGE_VALQ + x;
|
||||
return -1 / zero; /* -inf and divide by zero exception. */
|
||||
}
|
||||
xx = fabsq (x);
|
||||
if (xx <= 0x1p-57)
|
||||
@ -841,6 +845,28 @@ y0q (__float128 x)
|
||||
return p;
|
||||
}
|
||||
|
||||
/* X = x - pi/4
|
||||
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (sin(x) - cos(x))
|
||||
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (x, &s, &c);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
if (xx <= FLT128_MAX / 2.0Q)
|
||||
{
|
||||
z = -cosq (x + x);
|
||||
if ((s * c) < 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
|
||||
if (xx > 0x1p256Q)
|
||||
return ONEOSQPI * ss / sqrtq (x);
|
||||
|
||||
xinv = 1.0Q / xx;
|
||||
z = xinv * xinv;
|
||||
if (xinv <= 0.25)
|
||||
@ -902,21 +928,6 @@ y0q (__float128 x)
|
||||
p = 1.0Q + z * p;
|
||||
q = z * xinv * q;
|
||||
q = q - 0.125Q * xinv;
|
||||
/* X = x - pi/4
|
||||
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
||||
= 1/sqrt(2) * (sin(x) - cos(x))
|
||||
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (x, &s, &c);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
z = - cosq (x + x);
|
||||
if ((s * c) < 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
z = ONEOSQPI * (p * ss + q * cc) / sqrtq (x);
|
||||
return z;
|
||||
}
|
||||
|
@ -95,6 +95,7 @@
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
||||
|
||||
#include <errno.h>
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
/* 1 / sqrt(pi) */
|
||||
@ -687,13 +688,21 @@ j1q (__float128 x)
|
||||
if (! finiteq (x))
|
||||
{
|
||||
if (x != x)
|
||||
return x;
|
||||
return x + x;
|
||||
else
|
||||
return 0.0Q;
|
||||
}
|
||||
if (x == 0.0Q)
|
||||
return x;
|
||||
xx = fabsq (x);
|
||||
if (xx <= 0x1p-58Q)
|
||||
{
|
||||
__float128 ret = x * 0.5Q;
|
||||
math_check_force_underflow (ret);
|
||||
if (ret == 0)
|
||||
errno = ERANGE;
|
||||
return ret;
|
||||
}
|
||||
if (xx <= 2.0Q)
|
||||
{
|
||||
/* 0 <= x <= 2 */
|
||||
@ -705,6 +714,32 @@ j1q (__float128 x)
|
||||
return p;
|
||||
}
|
||||
|
||||
/* X = x - 3 pi/4
|
||||
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
||||
= 1/sqrt(2) * (-cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
||||
= -1/sqrt(2) * (sin(x) + cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
if (xx <= FLT128_MAX / 2.0Q)
|
||||
{
|
||||
z = cosq (xx + xx);
|
||||
if ((s * c) > 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
|
||||
if (xx > 0x1p256Q)
|
||||
{
|
||||
z = ONEOSQPI * cc / sqrtq (xx);
|
||||
if (x < 0)
|
||||
z = -z;
|
||||
return z;
|
||||
}
|
||||
|
||||
xinv = 1.0Q / xx;
|
||||
z = xinv * xinv;
|
||||
if (xinv <= 0.25)
|
||||
@ -766,20 +801,6 @@ j1q (__float128 x)
|
||||
p = 1.0Q + z * p;
|
||||
q = z * q;
|
||||
q = q * xinv + 0.375Q * xinv;
|
||||
/* X = x - 3 pi/4
|
||||
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
||||
= 1/sqrt(2) * (-cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
||||
= -1/sqrt(2) * (sin(x) + cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
z = cosq (xx + xx);
|
||||
if ((s * c) > 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
|
||||
if (x < 0)
|
||||
z = -z;
|
||||
@ -823,24 +844,25 @@ y1q (__float128 x)
|
||||
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
||||
|
||||
if (! finiteq (x))
|
||||
{
|
||||
if (x != x)
|
||||
return x;
|
||||
else
|
||||
return 0.0Q;
|
||||
}
|
||||
return 1 / (x + x * x);
|
||||
if (x <= 0.0Q)
|
||||
{
|
||||
if (x < 0.0Q)
|
||||
return (zero / (zero * x));
|
||||
return -HUGE_VALQ + x;
|
||||
return -1 / zero; /* -inf and divide by zero exception. */
|
||||
}
|
||||
xx = fabsq (x);
|
||||
if (xx <= 0x1p-114)
|
||||
return -TWOOPI / x;
|
||||
{
|
||||
z = -TWOOPI / x;
|
||||
if (isinfq (z))
|
||||
errno = ERANGE;
|
||||
return z;
|
||||
}
|
||||
if (xx <= 2.0Q)
|
||||
{
|
||||
/* 0 <= x <= 2 */
|
||||
/* FIXME: SET_RESTORE_ROUNDL (FE_TONEAREST); */
|
||||
z = xx * xx;
|
||||
p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
|
||||
p = -TWOOPI / xx + p;
|
||||
@ -848,6 +870,27 @@ y1q (__float128 x)
|
||||
return p;
|
||||
}
|
||||
|
||||
/* X = x - 3 pi/4
|
||||
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
||||
= 1/sqrt(2) * (-cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
||||
= -1/sqrt(2) * (sin(x) + cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
if (xx <= FLT128_MAX / 2.0Q)
|
||||
{
|
||||
z = cosq (xx + xx);
|
||||
if ((s * c) > 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
|
||||
if (xx > 0x1p256Q)
|
||||
return ONEOSQPI * ss / sqrtq (xx);
|
||||
|
||||
xinv = 1.0Q / xx;
|
||||
z = xinv * xinv;
|
||||
if (xinv <= 0.25)
|
||||
@ -909,20 +952,6 @@ y1q (__float128 x)
|
||||
p = 1.0Q + z * p;
|
||||
q = z * q;
|
||||
q = q * xinv + 0.375Q * xinv;
|
||||
/* X = x - 3 pi/4
|
||||
cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
|
||||
= 1/sqrt(2) * (-cos(x) + sin(x))
|
||||
sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
|
||||
= -1/sqrt(2) * (sin(x) + cos(x))
|
||||
cf. Fdlibm. */
|
||||
sincosq (xx, &s, &c);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
z = cosq (xx + xx);
|
||||
if ((s * c) > 0)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
z = ONEOSQPI * (p * ss + q * cc) / sqrtq (xx);
|
||||
return z;
|
||||
}
|
||||
|
@ -1,9 +1,9 @@
|
||||
/* Round argument to nearest integral value according to current rounding
|
||||
direction.
|
||||
Copyright (C) 1997, 1999, 2006 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -33,7 +33,7 @@ llrintq (__float128 x)
|
||||
{
|
||||
int32_t j0;
|
||||
uint64_t i0,i1;
|
||||
volatile __float128 w;
|
||||
__float128 w;
|
||||
__float128 t;
|
||||
long long int result;
|
||||
int sx;
|
||||
@ -46,8 +46,23 @@ llrintq (__float128 x)
|
||||
|
||||
if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
#if defined FE_INVALID || defined FE_INEXACT
|
||||
/* X < LLONG_MAX + 1 implied by J0 < 63. */
|
||||
if (x > (__float128) LLONG_MAX)
|
||||
{
|
||||
/* In the event of overflow we must raise the "invalid"
|
||||
exception, but not "inexact". */
|
||||
t = nearbyintq (x);
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (t == LLONG_MAX ? FE_INEXACT : FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
}
|
||||
GET_FLT128_WORDS64 (i0, i1, t);
|
||||
j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
@ -62,6 +77,24 @@ llrintq (__float128 x)
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The number is too large. Unless it rounds to LLONG_MIN,
|
||||
FE_INVALID must be raised and the return value is
|
||||
unspecified. */
|
||||
#if defined FE_INVALID || defined FE_INEXACT
|
||||
if (x < (__float128) LLONG_MIN
|
||||
&& x > (__float128) LLONG_MIN - 1.0Q)
|
||||
{
|
||||
/* If truncation produces LLONG_MIN, the cast will not raise
|
||||
the exception, but may raise "inexact". */
|
||||
t = nearbyintq (x);
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (t == LLONG_MIN ? FE_INEXACT : FE_INVALID);
|
||||
#endif
|
||||
return LLONG_MIN;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* The number is too large. It is left implementation defined
|
||||
what happens. */
|
||||
return (long long int) x;
|
||||
|
@ -1,8 +1,8 @@
|
||||
/* Round __float128 value to long long int.
|
||||
Copyright (C) 1997, 1999, 2004 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -59,13 +59,32 @@ llroundq (__float128 x)
|
||||
if (j0 == 48)
|
||||
result = (long long int) i0;
|
||||
else
|
||||
result = ((long long int) i0 << (j0 - 48)) | (j >> (112 - j0));
|
||||
{
|
||||
result = ((long long int) i0 << (j0 - 48)) | (j >> (112 - j0));
|
||||
#if defined FE_INVALID && defined USE_FENV_H
|
||||
if (sign == 1 && result == LLONG_MIN)
|
||||
/* Rounding brought the value out of range. */
|
||||
feraiseexcept (FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The number is too large. It is left implementation defined
|
||||
what happens. */
|
||||
/* The number is too large. Unless it rounds to LLONG_MIN,
|
||||
FE_INVALID must be raised and the return value is
|
||||
unspecified. */
|
||||
#ifdef FE_INVALID
|
||||
if (x <= (__float128) LLONG_MIN - 0.5Q)
|
||||
{
|
||||
/* If truncation produces LLONG_MIN, the cast will not raise
|
||||
the exception, but may raise "inexact". */
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (FE_INVALID);
|
||||
#endif
|
||||
return LLONG_MIN;
|
||||
}
|
||||
#endif
|
||||
return (long long int) x;
|
||||
}
|
||||
|
||||
|
@ -188,12 +188,15 @@ log10q (__float128 x)
|
||||
/* Test for domain */
|
||||
GET_FLT128_WORDS64 (hx, lx, x);
|
||||
if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
|
||||
return (-1.0Q / (x - x));
|
||||
return (-1.0Q / fabsq (x)); /* log10l(+-0)=-inf */
|
||||
if (hx < 0)
|
||||
return (x - x) / (x - x);
|
||||
if (hx >= 0x7fff000000000000LL)
|
||||
return (x + x);
|
||||
|
||||
if (x == 1.0Q)
|
||||
return 0.0Q;
|
||||
|
||||
/* separate mantissa from exponent */
|
||||
|
||||
/* Note, frexp is used so that denormal numbers
|
||||
|
@ -36,7 +36,7 @@
|
||||
* IEEE -1, 8 100000 1.9e-34 4.3e-35
|
||||
*/
|
||||
|
||||
/* Copyright 2001 by Stephen L. Moshier
|
||||
/* Copyright 2001 by Stephen L. Moshier
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -128,8 +128,8 @@ log1pq (__float128 xm1)
|
||||
/* Test for NaN or infinity input. */
|
||||
u.value = xm1;
|
||||
hx = u.words32.w0;
|
||||
if (hx >= 0x7fff0000)
|
||||
return xm1;
|
||||
if ((hx & 0x7fffffff) >= 0x7fff0000)
|
||||
return xm1 + fabsq (xm1);
|
||||
|
||||
/* log1p(+- 0) = +- 0. */
|
||||
if (((hx & 0x7fffffff) == 0)
|
||||
@ -138,17 +138,21 @@ log1pq (__float128 xm1)
|
||||
|
||||
if ((hx & 0x7fffffff) < 0x3f8e0000)
|
||||
{
|
||||
math_check_force_underflow (xm1);
|
||||
if ((int) xm1 == 0)
|
||||
return xm1;
|
||||
}
|
||||
|
||||
x = xm1 + 1.0Q;
|
||||
if (xm1 >= 0x1p113Q)
|
||||
x = xm1;
|
||||
else
|
||||
x = xm1 + 1.0Q;
|
||||
|
||||
/* log1p(-1) = -inf */
|
||||
if (x <= 0.0Q)
|
||||
{
|
||||
if (x == 0.0Q)
|
||||
return (-1.0Q / (x - x));
|
||||
return (-1.0Q / zero); /* log1p(-1) = -inf */
|
||||
else
|
||||
return (zero / (x - x));
|
||||
}
|
||||
|
@ -181,12 +181,15 @@ log2q (__float128 x)
|
||||
/* Test for domain */
|
||||
GET_FLT128_WORDS64 (hx, lx, x);
|
||||
if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
|
||||
return (-1.0Q / (x - x));
|
||||
return (-1.0Q / fabsq (x)); /* log2l(+-0)=-inf */
|
||||
if (hx < 0)
|
||||
return (x - x) / (x - x);
|
||||
if (hx >= 0x7fff000000000000LL)
|
||||
return (x + x);
|
||||
|
||||
if (x == 1.0Q)
|
||||
return 0.0Q;
|
||||
|
||||
/* separate mantissa from exponent */
|
||||
|
||||
/* Note, frexp is used so that denormal numbers
|
||||
|
@ -212,9 +212,8 @@ logq (__float128 x)
|
||||
}
|
||||
|
||||
/* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
|
||||
e = (int) (m >> 16) - (int) 0x3ffe;
|
||||
m &= 0xffff;
|
||||
u.words32.w0 = m | 0x3ffe0000;
|
||||
u.value = frexpq (x, &e);
|
||||
m = u.words32.w0 & 0xffff;
|
||||
m |= 0x10000;
|
||||
/* Find lookup table index k from high order bits of the significand. */
|
||||
if (m < 0x16800)
|
||||
@ -241,6 +240,8 @@ logq (__float128 x)
|
||||
/* On this interval the table is not used due to cancellation error. */
|
||||
if ((x <= 1.0078125Q) && (x >= 0.9921875Q))
|
||||
{
|
||||
if (x == 1.0Q)
|
||||
return 0.0Q;
|
||||
z = x - 1.0Q;
|
||||
k = 64;
|
||||
t.value = 1.0Q;
|
||||
|
@ -1,9 +1,9 @@
|
||||
/* Round argument to nearest integral value according to current rounding
|
||||
direction.
|
||||
Copyright (C) 1997, 1999, 2004, 2006 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -33,7 +33,7 @@ lrintq (__float128 x)
|
||||
{
|
||||
int32_t j0;
|
||||
uint64_t i0,i1;
|
||||
volatile __float128 w;
|
||||
__float128 w;
|
||||
__float128 t;
|
||||
long int result;
|
||||
int sx;
|
||||
@ -44,25 +44,57 @@ lrintq (__float128 x)
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
i0 |= 0x0001000000000000LL;
|
||||
|
||||
if (j0 < 48)
|
||||
if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
GET_FLT128_WORDS64 (i0, i1, t);
|
||||
j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
i0 |= 0x0001000000000000LL;
|
||||
if (j0 < 48)
|
||||
{
|
||||
#if defined FE_INVALID || defined FE_INEXACT
|
||||
/* X < LONG_MAX + 1 implied by J0 < 31. */
|
||||
if (sizeof (long int) == 4
|
||||
&& x > (__float128) LONG_MAX)
|
||||
{
|
||||
/* In the event of overflow we must raise the "invalid"
|
||||
exception, but not "inexact". */
|
||||
t = nearbyintq (x);
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (t == LONG_MAX ? FE_INEXACT : FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
}
|
||||
GET_FLT128_WORDS64 (i0, i1, t);
|
||||
j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
i0 |= 0x0001000000000000LL;
|
||||
|
||||
result = (j0 < 0 ? 0 : i0 >> (48 - j0));
|
||||
}
|
||||
else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
|
||||
{
|
||||
if (j0 >= 112)
|
||||
result = (j0 < 0 ? 0 : i0 >> (48 - j0));
|
||||
}
|
||||
else if (j0 >= 112)
|
||||
result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112));
|
||||
else
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
#if defined FE_INVALID || defined FE_INEXACT
|
||||
/* X < LONG_MAX + 1 implied by J0 < 63. */
|
||||
if (sizeof (long int) == 8
|
||||
&& x > (__float128) LONG_MAX)
|
||||
{
|
||||
/* In the event of overflow we must raise the "invalid"
|
||||
exception, but not "inexact". */
|
||||
t = nearbyintq (x);
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (t == LONG_MAX ? FE_INEXACT : FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
w = two112[sx] + x;
|
||||
t = w - two112[sx];
|
||||
}
|
||||
GET_FLT128_WORDS64 (i0, i1, t);
|
||||
j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
@ -76,8 +108,22 @@ lrintq (__float128 x)
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The number is too large. It is left implementation defined
|
||||
what happens. */
|
||||
/* The number is too large. Unless it rounds to LONG_MIN,
|
||||
FE_INVALID must be raised and the return value is
|
||||
unspecified. */
|
||||
#if defined FE_INVALID || defined FE_INEXACT
|
||||
if (x < (__float128) LONG_MIN
|
||||
&& x > (__float128) LONG_MIN - 1.0Q)
|
||||
{
|
||||
/* If truncation produces LONG_MIN, the cast will not raise
|
||||
the exception, but may raise "inexact". */
|
||||
t = nearbyintq (x);
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (t == LONG_MIN ? FE_INEXACT : FE_INVALID);
|
||||
#endif
|
||||
return LONG_MIN;
|
||||
}
|
||||
#endif
|
||||
return (long int) x;
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
/* Round __float128 value to long int.
|
||||
Copyright (C) 1997, 1999, 2004 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
@ -36,19 +36,26 @@ lroundq (__float128 x)
|
||||
i0 &= 0x0000ffffffffffffLL;
|
||||
i0 |= 0x0001000000000000LL;
|
||||
|
||||
if (j0 < 48)
|
||||
if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
|
||||
{
|
||||
if (j0 < 0)
|
||||
return j0 < -1 ? 0 : sign;
|
||||
else
|
||||
if (j0 < 48)
|
||||
{
|
||||
i0 += 0x0000800000000000LL >> j0;
|
||||
result = i0 >> (48 - j0);
|
||||
if (j0 < 0)
|
||||
return j0 < -1 ? 0 : sign;
|
||||
else
|
||||
{
|
||||
i0 += 0x0000800000000000LL >> j0;
|
||||
result = i0 >> (48 - j0);
|
||||
#if defined FE_INVALID && defined USE_FENV_H
|
||||
if (sizeof (long int) == 4
|
||||
&& sign == 1
|
||||
&& result == LONG_MIN)
|
||||
/* Rounding brought the value out of range. */
|
||||
feraiseexcept (FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
|
||||
{
|
||||
if (j0 >= 112)
|
||||
else if (j0 >= 112)
|
||||
result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112));
|
||||
else
|
||||
{
|
||||
@ -59,13 +66,34 @@ lroundq (__float128 x)
|
||||
if (j0 == 48)
|
||||
result = (long int) i0;
|
||||
else
|
||||
result = ((long int) i0 << (j0 - 48)) | (j >> (112 - j0));
|
||||
{
|
||||
result = ((long int) i0 << (j0 - 48)) | (j >> (112 - j0));
|
||||
#if defined FE_INVALID && defined USE_FENV_H
|
||||
if (sizeof (long int) == 8
|
||||
&& sign == 1
|
||||
&& result == LONG_MIN)
|
||||
/* Rounding brought the value out of range. */
|
||||
feraiseexcept (FE_INVALID);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* The number is too large. It is left implementation defined
|
||||
what happens. */
|
||||
/* The number is too large. Unless it rounds to LONG_MIN,
|
||||
FE_INVALID must be raised and the return value is
|
||||
unspecified. */
|
||||
#ifdef FE_INVALID
|
||||
if (x <= (__float128) LONG_MIN - 0.5Q)
|
||||
{
|
||||
/* If truncation produces LONG_MIN, the cast will not raise
|
||||
the exception, but may raise "inexact". */
|
||||
#ifdef USE_FENV_H
|
||||
feraiseexcept (FE_INVALID);
|
||||
#endif
|
||||
return LONG_MIN;
|
||||
}
|
||||
#endif
|
||||
return (long int) x;
|
||||
}
|
||||
|
||||
|
@ -44,7 +44,7 @@ nearbyintq(__float128 x)
|
||||
fenv_t env;
|
||||
#endif
|
||||
int64_t i0,j0,sx;
|
||||
uint64_t i1;
|
||||
uint64_t i1 __attribute__ ((unused));
|
||||
__float128 w,t;
|
||||
GET_FLT128_WORDS64(i0,i1,x);
|
||||
sx = (((uint64_t)i0)>>63);
|
||||
@ -56,6 +56,7 @@ nearbyintq(__float128 x)
|
||||
#endif
|
||||
w = TWO112[sx]+x;
|
||||
t = w-TWO112[sx];
|
||||
math_force_eval (t);
|
||||
#ifdef USE_FENV_H
|
||||
fesetenv (&env);
|
||||
#endif
|
||||
@ -72,6 +73,7 @@ nearbyintq(__float128 x)
|
||||
#endif
|
||||
w = TWO112[sx]+x;
|
||||
t = w-TWO112[sx];
|
||||
math_force_eval (t);
|
||||
#ifdef USE_FENV_H
|
||||
fesetenv (&env);
|
||||
#endif
|
||||
|
@ -13,6 +13,7 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <errno.h>
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
__float128
|
||||
@ -54,9 +55,15 @@ nextafterq (__float128 x, __float128 y)
|
||||
}
|
||||
}
|
||||
hy = hx&0x7fff000000000000LL;
|
||||
if(hy==0x7fff000000000000LL) return x+x;/* overflow */
|
||||
if(hy==0x7fff000000000000LL) {
|
||||
__float128 u = x + x; /* overflow */
|
||||
math_force_eval (u);
|
||||
errno = ERANGE;
|
||||
}
|
||||
if(hy==0) {
|
||||
/* here we should raise an underflow flag */
|
||||
__float128 u = x*x; /* underflow */
|
||||
math_force_eval (u); /* raise underflow flag */
|
||||
errno = ERANGE;
|
||||
}
|
||||
SET_FLT128_WORDS64(x,hx,lx);
|
||||
return x;
|
||||
|
@ -147,7 +147,7 @@ __float128
|
||||
powq (__float128 x, __float128 y)
|
||||
{
|
||||
__float128 z, ax, z_h, z_l, p_h, p_l;
|
||||
__float128 y1, t1, t2, r, s, t, u, v, w;
|
||||
__float128 y1, t1, t2, r, s, sgn, t, u, v, w;
|
||||
__float128 s2, s_h, s_l, t_h, t_l, ay;
|
||||
int32_t i, j, k, yisint, n;
|
||||
uint32_t ix, iy;
|
||||
@ -261,6 +261,11 @@ powq (__float128 x, __float128 y)
|
||||
if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
|
||||
return (x - x) / (x - x);
|
||||
|
||||
/* sgn (sign of result -ve**odd) = -1 else = 1 */
|
||||
sgn = one;
|
||||
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
||||
sgn = -one; /* (-ve)**(odd int) */
|
||||
|
||||
/* |y| is huge.
|
||||
2^-16495 = 1/2 of smallest representable value.
|
||||
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
||||
@ -276,9 +281,9 @@ powq (__float128 x, __float128 y)
|
||||
}
|
||||
/* over/underflow if x is not close to one */
|
||||
if (ix < 0x3ffeffff)
|
||||
return (hy < 0) ? huge * huge : tiny * tiny;
|
||||
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
||||
if (ix > 0x3fff0000)
|
||||
return (hy > 0) ? huge * huge : tiny * tiny;
|
||||
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
||||
}
|
||||
|
||||
ay = y > 0 ? y : -y;
|
||||
@ -365,11 +370,6 @@ powq (__float128 x, __float128 y)
|
||||
t1 = o.value;
|
||||
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
||||
|
||||
/* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
s = one;
|
||||
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
||||
s = -one; /* (-ve)**(odd int) */
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
y1 = y;
|
||||
o.value = y1;
|
||||
@ -385,11 +385,11 @@ powq (__float128 x, __float128 y)
|
||||
{
|
||||
/* if z > 16384 */
|
||||
if (((j - 0x400d0000) | o.words32.w1 | o.words32.w2 | o.words32.w3) != 0)
|
||||
return s * huge * huge; /* overflow */
|
||||
return sgn * huge * huge; /* overflow */
|
||||
else
|
||||
{
|
||||
if (p_l + ovt > z - p_h)
|
||||
return s * huge * huge; /* overflow */
|
||||
return sgn * huge * huge; /* overflow */
|
||||
}
|
||||
}
|
||||
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
|
||||
@ -397,11 +397,11 @@ powq (__float128 x, __float128 y)
|
||||
/* z < -16495 */
|
||||
if (((j - 0xc00d01bc) | o.words32.w1 | o.words32.w2 | o.words32.w3)
|
||||
!= 0)
|
||||
return s * tiny * tiny; /* underflow */
|
||||
return sgn * tiny * tiny; /* underflow */
|
||||
else
|
||||
{
|
||||
if (p_l <= z - p_h)
|
||||
return s * tiny * tiny; /* underflow */
|
||||
return sgn * tiny * tiny; /* underflow */
|
||||
}
|
||||
}
|
||||
/* compute 2**(p_h+p_l) */
|
||||
@ -434,11 +434,15 @@ powq (__float128 x, __float128 y)
|
||||
j = o.words32.w0;
|
||||
j += (n << 16);
|
||||
if ((j >> 16) <= 0)
|
||||
z = scalbnq (z, n); /* subnormal output */
|
||||
{
|
||||
z = scalbnq (z, n); /* subnormal output */
|
||||
__float128 force_underflow = z * z;
|
||||
math_force_eval (force_underflow);
|
||||
}
|
||||
else
|
||||
{
|
||||
o.words32.w0 = j;
|
||||
z = o.value;
|
||||
}
|
||||
return s * z;
|
||||
return sgn * z;
|
||||
}
|
||||
|
@ -312,7 +312,7 @@ recompute:
|
||||
|
||||
|
||||
/* Quad-precision floating point argument reduction.
|
||||
Copyright (C) 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
|
||||
|
||||
@ -332,176 +332,176 @@ recompute:
|
||||
02111-1307 USA. */
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi
|
||||
* Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi
|
||||
*/
|
||||
static const int32_t two_over_pi[] = {
|
||||
0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
|
||||
0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
|
||||
0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
|
||||
0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
|
||||
0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
|
||||
0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
|
||||
0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
|
||||
0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
|
||||
0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
|
||||
0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
|
||||
0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
|
||||
0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
|
||||
0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
|
||||
0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
|
||||
0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
|
||||
0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
|
||||
0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
|
||||
0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
|
||||
0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
|
||||
0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
|
||||
0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
|
||||
0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
|
||||
0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
|
||||
0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
|
||||
0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
|
||||
0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
|
||||
0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
|
||||
0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
|
||||
0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
|
||||
0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
|
||||
0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
|
||||
0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
|
||||
0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
|
||||
0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
|
||||
0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
|
||||
0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
|
||||
0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
|
||||
0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
|
||||
0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
|
||||
0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
|
||||
0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
|
||||
0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
|
||||
0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
|
||||
0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
|
||||
0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
|
||||
0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
|
||||
0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
|
||||
0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
|
||||
0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
|
||||
0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
|
||||
0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
|
||||
0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
|
||||
0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
|
||||
0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
|
||||
0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
|
||||
0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
|
||||
0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
|
||||
0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
|
||||
0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
|
||||
0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
|
||||
0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
|
||||
0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
|
||||
0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
|
||||
0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
|
||||
0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
|
||||
0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
|
||||
0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
|
||||
0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
|
||||
0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
|
||||
0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
|
||||
0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
|
||||
0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
|
||||
0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
|
||||
0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
|
||||
0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
|
||||
0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
|
||||
0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
|
||||
0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
|
||||
0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
|
||||
0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
|
||||
0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
|
||||
0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
|
||||
0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
|
||||
0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
|
||||
0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
|
||||
0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
|
||||
0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
|
||||
0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
|
||||
0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
|
||||
0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
|
||||
0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
|
||||
0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
|
||||
0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
|
||||
0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
|
||||
0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
|
||||
0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
|
||||
0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
|
||||
0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
|
||||
0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
|
||||
0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
|
||||
0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
|
||||
0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
|
||||
0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
|
||||
0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
|
||||
0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
|
||||
0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
|
||||
0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
|
||||
0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
|
||||
0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
|
||||
0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
|
||||
0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
|
||||
0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
|
||||
0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
|
||||
0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
|
||||
0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
|
||||
0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
|
||||
0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
|
||||
0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
|
||||
0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
|
||||
0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
|
||||
0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
|
||||
0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
|
||||
0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
|
||||
0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
|
||||
0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
|
||||
0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
|
||||
0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
|
||||
0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
|
||||
0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
|
||||
0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
|
||||
0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
|
||||
0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
|
||||
0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
|
||||
0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
|
||||
0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
|
||||
0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
|
||||
0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
|
||||
0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
|
||||
0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
|
||||
0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
|
||||
0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
|
||||
0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
|
||||
0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
|
||||
0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
|
||||
0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
|
||||
0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
|
||||
0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
|
||||
0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
|
||||
0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
|
||||
0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
|
||||
0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
|
||||
0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
|
||||
0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
|
||||
0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
|
||||
0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
|
||||
0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
|
||||
0x7b7b89, 0x483d38,
|
||||
0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
|
||||
0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
|
||||
0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
|
||||
0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
|
||||
0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
|
||||
0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
|
||||
0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
|
||||
0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
|
||||
0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
|
||||
0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
|
||||
0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
|
||||
0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
|
||||
0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
|
||||
0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
|
||||
0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
|
||||
0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
|
||||
0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
|
||||
0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
|
||||
0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
|
||||
0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
|
||||
0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
|
||||
0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
|
||||
0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
|
||||
0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
|
||||
0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
|
||||
0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
|
||||
0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
|
||||
0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
|
||||
0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
|
||||
0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
|
||||
0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
|
||||
0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
|
||||
0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
|
||||
0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
|
||||
0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
|
||||
0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
|
||||
0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
|
||||
0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
|
||||
0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
|
||||
0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
|
||||
0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
|
||||
0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
|
||||
0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
|
||||
0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
|
||||
0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
|
||||
0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
|
||||
0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
|
||||
0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
|
||||
0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
|
||||
0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
|
||||
0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
|
||||
0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
|
||||
0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
|
||||
0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
|
||||
0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
|
||||
0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
|
||||
0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
|
||||
0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
|
||||
0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
|
||||
0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
|
||||
0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
|
||||
0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
|
||||
0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
|
||||
0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
|
||||
0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
|
||||
0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
|
||||
0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
|
||||
0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
|
||||
0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
|
||||
0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
|
||||
0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
|
||||
0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
|
||||
0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
|
||||
0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
|
||||
0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
|
||||
0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
|
||||
0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
|
||||
0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
|
||||
0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
|
||||
0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
|
||||
0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
|
||||
0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
|
||||
0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
|
||||
0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
|
||||
0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
|
||||
0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
|
||||
0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
|
||||
0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
|
||||
0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
|
||||
0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
|
||||
0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
|
||||
0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
|
||||
0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
|
||||
0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
|
||||
0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
|
||||
0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
|
||||
0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
|
||||
0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
|
||||
0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
|
||||
0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
|
||||
0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
|
||||
0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
|
||||
0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
|
||||
0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
|
||||
0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
|
||||
0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
|
||||
0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
|
||||
0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
|
||||
0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
|
||||
0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
|
||||
0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
|
||||
0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
|
||||
0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
|
||||
0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
|
||||
0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
|
||||
0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
|
||||
0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
|
||||
0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
|
||||
0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
|
||||
0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
|
||||
0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
|
||||
0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
|
||||
0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
|
||||
0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
|
||||
0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
|
||||
0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
|
||||
0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
|
||||
0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
|
||||
0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
|
||||
0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
|
||||
0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
|
||||
0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
|
||||
0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
|
||||
0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
|
||||
0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
|
||||
0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
|
||||
0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
|
||||
0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
|
||||
0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
|
||||
0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
|
||||
0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
|
||||
0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
|
||||
0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
|
||||
0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
|
||||
0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
|
||||
0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
|
||||
0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
|
||||
0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
|
||||
0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
|
||||
0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
|
||||
0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
|
||||
0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
|
||||
0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
|
||||
0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
|
||||
0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
|
||||
0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
|
||||
0x7b7b89, 0x483d38,
|
||||
};
|
||||
|
||||
static const __float128 c[] = {
|
||||
/* 93 bits of pi/2 */
|
||||
/* 113 bits of pi/2 */
|
||||
#define PI_2_1 c[0]
|
||||
1.57079632679489661923132169155131424e+00Q, /* 3fff921fb54442d18469898cc5100000 */
|
||||
0x1.921fb54442d18469898cc51701b8p+0Q,
|
||||
|
||||
/* pi/2 - PI_2_1 */
|
||||
#define PI_2_1t c[1]
|
||||
8.84372056613570112025531863263659260e-29Q, /* 3fa1c06e0e68948127044533e63a0106 */
|
||||
0x3.9a252049c1114cf98e804177d4c8p-116Q,
|
||||
};
|
||||
|
||||
|
||||
@ -525,8 +525,8 @@ __quadmath_rem_pio2q (__float128 x, __float128 *y)
|
||||
if (ix < 0x40002d97c7f3321dLL) /* |x| in <pi/4, 3pi/4) */
|
||||
{
|
||||
if (hx > 0)
|
||||
{
|
||||
/* 113 + 93 bit PI is ok */
|
||||
{
|
||||
/* 113 + 113 bit PI is ok */
|
||||
z = x - PI_2_1;
|
||||
y[0] = z - PI_2_1t;
|
||||
y[1] = (z - y[0]) - PI_2_1t;
|
||||
@ -534,7 +534,7 @@ __quadmath_rem_pio2q (__float128 x, __float128 *y)
|
||||
}
|
||||
else
|
||||
{
|
||||
/* 113 + 93 bit PI is ok */
|
||||
/* 113 + 113 bit PI is ok */
|
||||
z = x + PI_2_1;
|
||||
y[0] = z + PI_2_1t;
|
||||
y[1] = (z - y[0]) + PI_2_1t;
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Compute remainder and a congruent to the quotient.
|
||||
Copyright (C) 1997, 1999, 2002 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
@ -49,7 +49,7 @@ remquoq (__float128 x, __float128 y, int *quo)
|
||||
|
||||
if (hy <= 0x7ffbffffffffffffLL)
|
||||
x = fmodq (x, 8 * y); /* now x < 8y */
|
||||
|
||||
|
||||
if (((hx - hy) | (lx - ly)) == 0)
|
||||
{
|
||||
*quo = qs ? -1 : 1;
|
||||
@ -60,12 +60,12 @@ remquoq (__float128 x, __float128 y, int *quo)
|
||||
y = fabsq (y);
|
||||
cquo = 0;
|
||||
|
||||
if (x >= 4 * y)
|
||||
if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y)
|
||||
{
|
||||
x -= 4 * y;
|
||||
cquo += 4;
|
||||
}
|
||||
if (x >= 2 * y)
|
||||
if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y)
|
||||
{
|
||||
x -= 2 * y;
|
||||
cquo += 2;
|
||||
@ -101,6 +101,9 @@ remquoq (__float128 x, __float128 y, int *quo)
|
||||
|
||||
*quo = qs ? -cquo : cquo;
|
||||
|
||||
/* Ensure correct sign of zero result in round-downward mode. */
|
||||
if (x == 0.0Q)
|
||||
x = 0.0Q;
|
||||
if (sx)
|
||||
x = -x;
|
||||
return x;
|
||||
|
@ -35,7 +35,7 @@ __float128
|
||||
rintq (__float128 x)
|
||||
{
|
||||
int64_t i0,j0,sx;
|
||||
uint64_t i1;
|
||||
uint64_t i1 __attribute__ ((unused));
|
||||
__float128 w,t;
|
||||
GET_FLT128_WORDS64(i0,i1,x);
|
||||
sx = (((uint64_t)i0)>>63);
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Round __float128 to integer away from zero.
|
||||
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
@ -21,9 +21,6 @@
|
||||
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
static const __float128 huge = 1.0E4930Q;
|
||||
|
||||
|
||||
__float128
|
||||
roundq (__float128 x)
|
||||
{
|
||||
@ -32,17 +29,14 @@ roundq (__float128 x)
|
||||
|
||||
GET_FLT128_WORDS64 (i0, i1, x);
|
||||
j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
|
||||
if (j0 < 31)
|
||||
if (j0 < 48)
|
||||
{
|
||||
if (j0 < 0)
|
||||
{
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
i0 &= 0x8000000000000000ULL;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3fff000000000000LL;
|
||||
i1 = 0;
|
||||
}
|
||||
i0 &= 0x8000000000000000ULL;
|
||||
if (j0 == -1)
|
||||
i0 |= 0x3fff000000000000LL;
|
||||
i1 = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -50,13 +44,9 @@ roundq (__float128 x)
|
||||
if (((i0 & i) | i1) == 0)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
i0 += 0x0000800000000000LL >> j0;
|
||||
i0 &= ~i;
|
||||
i1 = 0;
|
||||
}
|
||||
i0 += 0x0000800000000000LL >> j0;
|
||||
i0 &= ~i;
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
else if (j0 > 111)
|
||||
@ -74,14 +64,10 @@ roundq (__float128 x)
|
||||
/* X is integral. */
|
||||
return x;
|
||||
|
||||
if (huge + x > 0.0)
|
||||
{
|
||||
/* Raise inexact if x != 0. */
|
||||
uint64_t j = i1 + (1LL << (111 - j0));
|
||||
if (j < i1)
|
||||
i0 += 1;
|
||||
i1 = j;
|
||||
}
|
||||
uint64_t j = i1 + (1LL << (111 - j0));
|
||||
if (j < i1)
|
||||
i0 += 1;
|
||||
i1 = j;
|
||||
i1 &= ~i;
|
||||
}
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
/* scalblnq.c -- __float128 version of s_scalbn.c.
|
||||
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
|
@ -1,7 +1,7 @@
|
||||
/* scalbnq.c -- __float128 version of s_scalbn.c.
|
||||
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Quad-precision floating point sine and cosine tables.
|
||||
Copyright (C) 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
|
||||
|
||||
@ -37,7 +37,7 @@ const __float128 __sincosq_table[] = {
|
||||
/* sin(x) = 0.25dc50bc95711d0d9787d108fd438cf5959ee0bfb7a1e36e8b1a112968f356657420e9cc9ea */
|
||||
1.47892995873409608580026675734609314e-01Q, /* 3ffc2ee285e4ab88e86cbc3e8847ea1c */
|
||||
9.74950446464233268291647449768590886e-36Q, /* 3f8a9eb2b3dc17f6f43c6dd16342252d */
|
||||
|
||||
|
||||
/* x = 1.56250000000000000000000000000000000e-01 3ffc4000000000000000000000000000 */
|
||||
/* cos(x) = 0.fce1a053e621438b6d60c76e8c45bf0a9dc71aa16f922acc10e95144ec796a249813c9cb649 */
|
||||
9.87817783816471944100503034363211317e-01Q, /* 3ffef9c340a7cc428716dac18edd188b */
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Compute sine and cosine of argument.
|
||||
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>.
|
||||
@ -19,6 +19,7 @@
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
#include <errno.h>
|
||||
#include "quadmath-imp.h"
|
||||
|
||||
void
|
||||
@ -37,6 +38,8 @@ sincosq (__float128 x, __float128 *sinx, __float128 *cosx)
|
||||
{
|
||||
/* sin(Inf or NaN) is NaN */
|
||||
*sinx = *cosx = x - x;
|
||||
if (isinfq (x))
|
||||
errno = EDOM;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* Quad-precision floating point sine and cosine on <-pi/4,pi/4>.
|
||||
Copyright (C) 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1999-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
|
||||
|
||||
@ -110,12 +110,15 @@ __quadmath_kernel_sincosq(__float128 x, __float128 y, __float128 *sinx,
|
||||
/* Argument is small enough to approximate it by a Chebyshev
|
||||
polynomial of degree 16(17). */
|
||||
if (tix < 0x3fc60000) /* |x| < 2^-57 */
|
||||
if (!((int)x)) /* generate inexact */
|
||||
{
|
||||
*sinx = x;
|
||||
*cosx = ONE;
|
||||
return;
|
||||
}
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
if (!((int)x)) /* generate inexact */
|
||||
{
|
||||
*sinx = x;
|
||||
*cosx = ONE;
|
||||
return;
|
||||
}
|
||||
}
|
||||
z = x * x;
|
||||
*sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
|
||||
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
|
||||
|
@ -85,8 +85,11 @@ sinhq (__float128 x)
|
||||
if (ix <= 0x40044000)
|
||||
{
|
||||
if (ix < 0x3fc60000) /* |x| < 2^-57 */
|
||||
if (shuge + x > one)
|
||||
return x; /* sinh(tiny) = tiny with inexact */
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
if (shuge + x > one)
|
||||
return x; /* sinh(tiny) = tiny with inexact */
|
||||
}
|
||||
t = expm1q (u.value);
|
||||
if (ix < 0x3fff0000)
|
||||
return h * (2.0Q * t - t * t / (t + one));
|
||||
|
@ -90,7 +90,10 @@ __quadmath_kernel_sinq (__float128 x, __float128 y, int iy)
|
||||
/* Argument is small enough to approximate it by a Chebyshev
|
||||
polynomial of degree 17. */
|
||||
if (tix < 0x3fc60000) /* |x| < 2^-57 */
|
||||
if (!((int)x)) return x; /* generate inexact */
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
if (!((int)x)) return x; /* generate inexact */
|
||||
}
|
||||
z = x * x;
|
||||
return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
|
||||
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
|
||||
|
@ -72,7 +72,10 @@ tanhq (__float128 x)
|
||||
if (u.value == 0)
|
||||
return x; /* x == +- 0 */
|
||||
if (ix < 0x3fc60000) /* |x| < 2^-57 */
|
||||
return x * (one + tiny); /* tanh(small) = small */
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
return x * (one + tiny); /* tanh(small) = small */
|
||||
}
|
||||
u.words32.w0 = ix; /* Absolute value of x. */
|
||||
if (ix >= 0x3fff0000)
|
||||
{ /* |x| >= 1 */
|
||||
|
@ -12,9 +12,9 @@
|
||||
/*
|
||||
Long double expansions are
|
||||
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
||||
and are incorporated herein by permission of the author. The author
|
||||
and are incorporated herein by permission of the author. The author
|
||||
reserves the right to distribute this material elsewhere under different
|
||||
copying permissions. These modifications are distributed here under
|
||||
copying permissions. These modifications are distributed here under
|
||||
the following terms:
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
@ -99,8 +99,13 @@ __quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
|
||||
if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
|
||||
| (iy + 1)) == 0)
|
||||
return one / fabsq (x);
|
||||
else if (iy == 1)
|
||||
{
|
||||
math_check_force_underflow (x);
|
||||
return x;
|
||||
}
|
||||
else
|
||||
return (iy == 1) ? x : -one / x;
|
||||
return -one / x;
|
||||
}
|
||||
}
|
||||
if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
|
||||
@ -163,7 +168,7 @@ __quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
|
||||
/* tanq.c -- __float128 version of s_tan.c.
|
||||
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
||||
*/
|
||||
|
||||
|
||||
/* @(#)s_tan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
|
@ -1,8 +1,8 @@
|
||||
/* Truncate argument to nearest integral value not larger than the argument.
|
||||
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
|
||||
Copyright (C) 1997-2017 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
Jakub Jelinek <jj@ultra.linux.cz>, 1999.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
|
@ -186,4 +186,45 @@ do { \
|
||||
__builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
|
||||
QUADFP_SUBNORMAL, QUADFP_ZERO, x)
|
||||
|
||||
#ifndef math_opt_barrier
|
||||
# define math_opt_barrier(x) \
|
||||
({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
|
||||
# define math_force_eval(x) \
|
||||
({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
|
||||
#endif
|
||||
|
||||
/* math_narrow_eval reduces its floating-point argument to the range
|
||||
and precision of its semantic type. (The original evaluation may
|
||||
still occur with excess range and precision, so the result may be
|
||||
affected by double rounding.) */
|
||||
#define math_narrow_eval(x) (x)
|
||||
|
||||
/* If X (which is not a NaN) is subnormal, force an underflow
|
||||
exception. */
|
||||
#define math_check_force_underflow(x) \
|
||||
do \
|
||||
{ \
|
||||
__float128 force_underflow_tmp = (x); \
|
||||
if (fabsq (force_underflow_tmp) < FLT128_MIN) \
|
||||
{ \
|
||||
__float128 force_underflow_tmp2 \
|
||||
= force_underflow_tmp * force_underflow_tmp; \
|
||||
math_force_eval (force_underflow_tmp2); \
|
||||
} \
|
||||
} \
|
||||
while (0)
|
||||
/* Likewise, but X is also known to be nonnegative. */
|
||||
#define math_check_force_underflow_nonneg(x) \
|
||||
do \
|
||||
{ \
|
||||
__float128 force_underflow_tmp = (x); \
|
||||
if (force_underflow_tmp < FLT128_MIN) \
|
||||
{ \
|
||||
__float128 force_underflow_tmp2 \
|
||||
= force_underflow_tmp * force_underflow_tmp; \
|
||||
math_force_eval (force_underflow_tmp2); \
|
||||
} \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user