mirror of
https://github.com/nodejs/node.git
synced 2024-11-21 10:59:27 +00:00
873e5ce54a
PR-URL: https://github.com/nodejs/node/pull/46610 Reviewed-By: Darshan Sen <raisinten@gmail.com> Reviewed-By: Mohammed Keyvanzadeh <mohammadkeyvanzade94@gmail.com> Reviewed-By: James M Snell <jasnell@gmail.com> Reviewed-By: Moshe Atlow <moshe@atlow.co.il> Reviewed-By: Juan José Arboleda <soyjuanarbol@gmail.com>
123 lines
4.6 KiB
JavaScript
123 lines
4.6 KiB
JavaScript
'use strict';
|
|
const common = require('../common');
|
|
if (!common.hasCrypto)
|
|
common.skip('missing crypto');
|
|
|
|
if (!common.enoughTestMem)
|
|
common.skip('memory-intensive test');
|
|
|
|
const assert = require('assert');
|
|
const crypto = require('crypto');
|
|
|
|
function runOneBenchmark(compareFunc, firstBufFill, secondBufFill, bufSize) {
|
|
return eval(`
|
|
const firstBuffer = Buffer.alloc(bufSize, firstBufFill);
|
|
const secondBuffer = Buffer.alloc(bufSize, secondBufFill);
|
|
|
|
const startTime = process.hrtime();
|
|
const result = compareFunc(firstBuffer, secondBuffer);
|
|
const endTime = process.hrtime(startTime);
|
|
|
|
// Ensure that the result of the function call gets used, so it doesn't
|
|
// get discarded due to engine optimizations.
|
|
assert.strictEqual(result, firstBufFill === secondBufFill);
|
|
|
|
endTime[0] * 1e9 + endTime[1];
|
|
`);
|
|
}
|
|
|
|
function getTValue(compareFunc) {
|
|
const numTrials = 1e5;
|
|
const bufSize = 10000;
|
|
// Perform benchmarks to verify that timingSafeEqual is actually timing-safe.
|
|
|
|
const rawEqualBenches = Array(numTrials);
|
|
const rawUnequalBenches = Array(numTrials);
|
|
|
|
for (let i = 0; i < numTrials; i++) {
|
|
if (Math.random() < 0.5) {
|
|
// First benchmark: comparing two equal buffers
|
|
rawEqualBenches[i] = runOneBenchmark(compareFunc, 'A', 'A', bufSize);
|
|
// Second benchmark: comparing two unequal buffers
|
|
rawUnequalBenches[i] = runOneBenchmark(compareFunc, 'B', 'C', bufSize);
|
|
} else {
|
|
// Flip the order of the benchmarks half of the time.
|
|
rawUnequalBenches[i] = runOneBenchmark(compareFunc, 'B', 'C', bufSize);
|
|
rawEqualBenches[i] = runOneBenchmark(compareFunc, 'A', 'A', bufSize);
|
|
}
|
|
}
|
|
|
|
const equalBenches = filterOutliers(rawEqualBenches);
|
|
const unequalBenches = filterOutliers(rawUnequalBenches);
|
|
|
|
// Use a two-sample t-test to determine whether the timing difference between
|
|
// the benchmarks is statistically significant.
|
|
// https://wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
|
|
|
|
const equalMean = mean(equalBenches);
|
|
const unequalMean = mean(unequalBenches);
|
|
|
|
const equalLen = equalBenches.length;
|
|
const unequalLen = unequalBenches.length;
|
|
|
|
const combinedStd = combinedStandardDeviation(equalBenches, unequalBenches);
|
|
const standardErr = combinedStd * Math.sqrt(1 / equalLen + 1 / unequalLen);
|
|
|
|
return (equalMean - unequalMean) / standardErr;
|
|
}
|
|
|
|
// Returns the mean of an array
|
|
function mean(array) {
|
|
return array.reduce((sum, val) => sum + val, 0) / array.length;
|
|
}
|
|
|
|
// Returns the sample standard deviation of an array
|
|
function standardDeviation(array) {
|
|
const arrMean = mean(array);
|
|
const total = array.reduce((sum, val) => sum + Math.pow(val - arrMean, 2), 0);
|
|
return Math.sqrt(total / (array.length - 1));
|
|
}
|
|
|
|
// Returns the common standard deviation of two arrays
|
|
function combinedStandardDeviation(array1, array2) {
|
|
const sum1 = Math.pow(standardDeviation(array1), 2) * (array1.length - 1);
|
|
const sum2 = Math.pow(standardDeviation(array2), 2) * (array2.length - 1);
|
|
return Math.sqrt((sum1 + sum2) / (array1.length + array2.length - 2));
|
|
}
|
|
|
|
// Filter large outliers from an array. A 'large outlier' is a value that is at
|
|
// least 50 times larger than the mean. This prevents the tests from failing
|
|
// due to the standard deviation increase when a function unexpectedly takes
|
|
// a very long time to execute.
|
|
function filterOutliers(array) {
|
|
const arrMean = mean(array);
|
|
return array.filter((value) => value / arrMean < 50);
|
|
}
|
|
|
|
// t_(0.99995, ∞)
|
|
// i.e. If a given comparison function is indeed timing-safe, the t-test result
|
|
// has a 99.99% chance to be below this threshold. Unfortunately, this means
|
|
// that this test will be a bit flakey and will fail 0.01% of the time even if
|
|
// crypto.timingSafeEqual is working properly.
|
|
// t-table ref: http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
|
|
// Note that in reality there are roughly `2 * numTrials - 2` degrees of
|
|
// freedom, not ∞. However, assuming `numTrials` is large, this doesn't
|
|
// significantly affect the threshold.
|
|
const T_THRESHOLD = 3.892;
|
|
|
|
const t = getTValue(crypto.timingSafeEqual);
|
|
assert(
|
|
Math.abs(t) < T_THRESHOLD,
|
|
`timingSafeEqual should not leak information from its execution time (t=${t})`,
|
|
);
|
|
|
|
// As a coherence check to make sure the statistical tests are working, run the
|
|
// same benchmarks again, this time with an unsafe comparison function. In this
|
|
// case the t-value should be above the threshold.
|
|
const unsafeCompare = (bufA, bufB) => bufA.equals(bufB);
|
|
const t2 = getTValue(unsafeCompare);
|
|
assert(
|
|
Math.abs(t2) > T_THRESHOLD,
|
|
`Buffer#equals should leak information from its execution time (t=${t2})`,
|
|
);
|