crypto: add generatePrime/checkPrime

APIs for generating and checking pseudo-random primes

Signed-off-by: James M Snell <jasnell@gmail.com>

PR-URL: https://github.com/nodejs/node/pull/36997
Reviewed-By: Tobias Nießen <tniessen@tnie.de>
This commit is contained in:
James M Snell 2021-01-18 23:03:58 -08:00
parent ecb78188a3
commit bb13469acb
No known key found for this signature in database
GPG Key ID: 7341B15C070877AC
9 changed files with 769 additions and 0 deletions

View File

@ -1961,6 +1961,48 @@ is currently in use. Setting to true requires a FIPS build of Node.js.
This property is deprecated. Please use `crypto.setFips()` and
`crypto.getFips()` instead.
### `crypto.checkPrime(candidate[, options, [callback]])`
<!-- YAML
added: REPLACEME
-->
* `candidate` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
A possible prime encoded as a sequence of big endian octets of arbitrary
length.
* `options` {Object}
* `checks` {number} The number of Miller-Rabin probabilistic primality
iterations to perform. When the value is `0` (zero), a number of checks
is used that yields a false positive rate of at most 2<sup>-64</sup> for
random input. Care must be used when selecting a number of checks. Refer
to the OpenSSL documentation for the [`BN_is_prime_ex`][] function `nchecks`
options for more details. **Defaults**: `0`
* `callback` {Function}
* `err` {Error} Set to an {Error} object if an error occured during check.
* `result` {boolean} `true` if the candidate is a prime with an error
probability less than `0.25 ** options.checks`.
Checks the primality of the `candidate`.
### `crypto.checkPrimeSync(candidate[, options])`
<!-- YAML
added: REPLACEME
-->
* `candidate` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
A possible prime encoded as a sequence of big endian octets of arbitrary
length.
* `options` {Object}
* `checks` {number} The number of Miller-Rabin probabilistic primality
iterations to perform. When the value is `0` (zero), a number of checks
is used that yields a false positive rate of at most 2<sup>-64</sup> for
random input. Care must be used when selecting a number of checks. Refer
to the OpenSSL documentation for the [`BN_is_prime_ex`][] function `nchecks`
options for more details. **Defaults**: `0`
* Returns: {boolean} `true` if the candidate is a prime with an error
probability less than `0.25 ** options.checks`.
Checks the primality of the `candidate`.
### `crypto.createCipher(algorithm, password[, options])`
<!-- YAML
added: v0.1.94
@ -2694,6 +2736,78 @@ The return value `{ publicKey, privateKey }` represents the generated key pair.
When PEM encoding was selected, the respective key will be a string, otherwise
it will be a buffer containing the data encoded as DER.
### `crypto.generatePrime(size[, options[, callback]])`
<!-- YAML
added: REPLACEME
-->
* `size` {number} The size (in bits) of the prime to generate.
* `options` {Object}
* `add` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
* `rem` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
* `safe` {boolean} **Defaults**: `false`.
* `bigint` {boolean} When `true`, the generated prime is returned
as a `bigint`.
* `callback` {Function}
* `err` {Error}
* `prime` {ArrayBuffer|bigint}
Generates a pseudo-random prime of `size` bits.
If `options.safe` is `true`, the prime will be a safe prime -- that is,
`(prime - 1) / 2` will also be a prime.
If `options.add` and `options.rem` are set, the prime will satisfy the
condition that `prime % add = rem`. The `options.rem` is ignored if
`options.add` is not given. If `options.safe` is `true`, `options.add`
is given, and `options.rem` is `undefined`, then the prime generated
will satisfy the condition `prime % add = 3`. Otherwise if `options.safe`
is `false` and `options.rem` is `undefined`, `options.add` will be
ignored.
Both `options.add` and `options.rem` must be encoded as big-endian sequences
if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or
`DataView`.
By default, the prime is encoded as a big-endian sequence of octets
in an {ArrayBuffer}. If the `bigint` option is `true`, then a {bigint}
is provided.
### `crypto.generatePrimeSync(size[, options])`
<!-- YAML
added: REPLACEME
-->
* `size` {number} The size (in bits) of the prime to generate.
* `options` {Object}
* `add` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
* `rem` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint}
* `safe` {boolean} **Defaults**: `false`.
* `bigint` {boolean} When `true`, the generated prime is returned
as a `bigint`.
* Returns: {ArrayBuffer|bigint}
Generates a pseudo-random prime of `size` bits.
If `options.safe` is `true`, the prime will be a safe prime -- that is,
`(prime - 1)` / 2 will also be a prime.
If `options.add` and `options.rem` are set, the prime will satisfy the
condition that `prime % add = rem`. The `options.rem` is ignored if
`options.add` is not given. If `options.safe` is `true`, `options.add`
is given, and `options.rem` is `undefined`, then the prime generated
will satisfy the condition `prime % add = 3`. Otherwise if `options.safe`
is `false` and `options.rem` is `undefined`, `options.add` will be
ignored.
Both `options.add` and `options.rem` must be encoded as big-endian sequences
if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or
`DataView`.
By default, the prime is encoded as a big-endian sequence of octets
in an {ArrayBuffer}. If the `bigint` option is `true`, then a {bigint}
is provided.
### `crypto.getCiphers()`
<!-- YAML
added: v0.9.3
@ -4234,6 +4348,7 @@ See the [list of SSL OP Flags][] for details.
[RFC 4122]: https://www.rfc-editor.org/rfc/rfc4122.txt
[RFC 5208]: https://www.rfc-editor.org/rfc/rfc5208.txt
[Web Crypto API documentation]: webcrypto.md
[`BN_is_prime_ex`]: https://www.openssl.org/docs/man1.1.1/man3/BN_is_prime_ex.html
[`Buffer`]: buffer.md
[`EVP_BytesToKey`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html
[`KeyObject`]: #crypto_class_keyobject

View File

@ -50,6 +50,10 @@ const {
timingSafeEqual,
} = internalBinding('crypto');
const {
checkPrime,
checkPrimeSync,
generatePrime,
generatePrimeSync,
randomBytes,
randomFill,
randomFillSync,
@ -170,6 +174,8 @@ function createVerify(algorithm, options) {
module.exports = {
// Methods
checkPrime,
checkPrimeSync,
createCipheriv,
createDecipheriv,
createDiffieHellman,
@ -183,6 +189,8 @@ module.exports = {
createSign,
createVerify,
diffieHellman,
generatePrime,
generatePrimeSync,
getCiphers,
getCipherInfo,
getCurves,

View File

@ -1,6 +1,7 @@
'use strict';
const {
BigInt,
FunctionPrototypeBind,
FunctionPrototypeCall,
MathMin,
@ -10,6 +11,8 @@ const {
const {
RandomBytesJob,
RandomPrimeJob,
CheckPrimeJob,
kCryptoJobAsync,
kCryptoJobSync,
secureBuffer,
@ -34,6 +37,7 @@ const {
validateBoolean,
validateCallback,
validateObject,
validateUint32,
} = require('internal/validators');
const {
@ -387,11 +391,212 @@ function randomUUID(options) {
return uuid.latin1Slice(0, 36);
}
function generatePrime(size, options, callback) {
validateUint32(size, 'size', true);
if (typeof options === 'function') {
callback = options;
options = {};
}
validateCallback(callback);
validateObject(options, 'options');
const {
safe = false,
bigint = false,
} = options;
let {
add,
rem,
} = options;
validateBoolean(safe, 'options.safe');
validateBoolean(bigint, 'options.bigint');
if (add !== undefined) {
if (typeof add === 'bigint') {
add = Buffer.from(toHexPadded(add), 'hex');
} else if (!isAnyArrayBuffer(add) && !isArrayBufferView(add)) {
throw new ERR_INVALID_ARG_TYPE(
'options.add',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
add);
}
}
if (rem !== undefined) {
if (typeof rem === 'bigint') {
rem = Buffer.from(toHexPadded(rem), 'hex');
} else if (!isAnyArrayBuffer(rem) && !isArrayBufferView(rem)) {
throw new ERR_INVALID_ARG_TYPE(
'options.rem',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
rem);
}
}
const job = new RandomPrimeJob(kCryptoJobAsync, size, safe, add, rem);
job.ondone = (err, prime) => {
if (err) {
callback(err);
return;
}
callback(
undefined,
bigint ?
BigInt(`0x${Buffer.from(prime).toString('hex')}`) :
prime);
};
job.run();
}
function generatePrimeSync(size, options = {}) {
validateUint32(size, 'size', true);
validateObject(options, 'options');
const {
safe = false,
bigint = false,
} = options;
let {
add,
rem,
} = options;
validateBoolean(safe, 'options.safe');
validateBoolean(bigint, 'options.bigint');
if (add !== undefined) {
if (typeof add === 'bigint') {
add = Buffer.from(toHexPadded(add), 'hex');
} else if (!isAnyArrayBuffer(add) && !isArrayBufferView(add)) {
throw new ERR_INVALID_ARG_TYPE(
'options.add',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
add);
}
}
if (rem !== undefined) {
if (typeof rem === 'bigint') {
rem = Buffer.from(toHexPadded(rem), 'hex');
} else if (!isAnyArrayBuffer(rem) && !isArrayBufferView(rem)) {
throw new ERR_INVALID_ARG_TYPE(
'options.rem',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
rem);
}
}
const job = new RandomPrimeJob(kCryptoJobSync, size, safe, add, rem);
const [err, prime] = job.run();
if (err)
throw err;
return bigint ?
BigInt(`0x${Buffer.from(prime).toString('hex')}`) :
prime;
}
function toHexPadded(bigint) {
const hex = bigint.toString(16);
return hex.padStart(hex.length + (hex.length % 2), 0);
}
function checkPrime(candidate, options = {}, callback) {
if (typeof candidate === 'bigint')
candidate = Buffer.from(toHexPadded(candidate), 'hex');
if (!isAnyArrayBuffer(candidate) && !isArrayBufferView(candidate)) {
throw new ERR_INVALID_ARG_TYPE(
'candidate',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
candidate
);
}
if (typeof options === 'function') {
callback = options;
options = {};
}
validateCallback(callback);
validateObject(options, 'options');
const {
checks = 0,
} = options;
validateUint32(checks, 'options.checks');
const job = new CheckPrimeJob(kCryptoJobAsync, candidate, checks);
job.ondone = callback;
job.run();
}
function checkPrimeSync(candidate, options = {}) {
if (typeof candidate === 'bigint')
candidate = Buffer.from(toHexPadded(candidate), 'hex');
if (!isAnyArrayBuffer(candidate) && !isArrayBufferView(candidate)) {
throw new ERR_INVALID_ARG_TYPE(
'candidate',
[
'ArrayBuffer',
'TypedArray',
'Buffer',
'DataView',
'bigint',
],
candidate
);
}
validateObject(options, 'options');
const {
checks = 0,
} = options;
validateUint32(checks, 'options.checks');
const job = new CheckPrimeJob(kCryptoJobSync, candidate, checks);
const [err, result] = job.run();
if (err)
throw err;
return result;
}
module.exports = {
checkPrime,
checkPrimeSync,
randomBytes,
randomFill,
randomFillSync,
randomInt,
getRandomValues,
randomUUID,
generatePrime,
generatePrimeSync,
};

View File

@ -84,6 +84,7 @@ namespace node {
#if HAVE_OPENSSL
#define NODE_ASYNC_CRYPTO_PROVIDER_TYPES(V) \
V(CHECKPRIMEREQUEST) \
V(PBKDF2REQUEST) \
V(KEYPAIRGENREQUEST) \
V(KEYGENREQUEST) \
@ -92,6 +93,7 @@ namespace node {
V(DERIVEBITSREQUEST) \
V(HASHREQUEST) \
V(RANDOMBYTESREQUEST) \
V(RANDOMPRIMEREQUEST) \
V(SCRYPTREQUEST) \
V(SIGNREQUEST) \
V(TLSWRAP) \

View File

@ -7,14 +7,20 @@
#include "threadpoolwork-inl.h"
#include "v8.h"
#include <openssl/bn.h>
namespace node {
using v8::ArrayBuffer;
using v8::BackingStore;
using v8::False;
using v8::FunctionCallbackInfo;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::Nothing;
using v8::Object;
using v8::True;
using v8::Uint32;
using v8::Value;
@ -64,9 +70,170 @@ bool RandomBytesTraits::DeriveBits(
return RAND_bytes(params.buffer, params.size) != 0;
}
void RandomPrimeConfig::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackFieldWithSize("prime", prime ? bits * 8 : 0);
}
Maybe<bool> RandomPrimeTraits::EncodeOutput(
Environment* env,
const RandomPrimeConfig& params,
ByteSource* unused,
v8::Local<v8::Value>* result) {
size_t size = BN_num_bytes(params.prime.get());
std::shared_ptr<BackingStore> store =
ArrayBuffer::NewBackingStore(env->isolate(), size);
BN_bn2binpad(
params.prime.get(),
reinterpret_cast<unsigned char*>(store->Data()),
size);
*result = ArrayBuffer::New(env->isolate(), store);
return Just(true);
}
Maybe<bool> RandomPrimeTraits::AdditionalConfig(
CryptoJobMode mode,
const FunctionCallbackInfo<Value>& args,
unsigned int offset,
RandomPrimeConfig* params) {
ClearErrorOnReturn clear_error;
Environment* env = Environment::GetCurrent(args);
CHECK(args[offset]->IsUint32()); // Size
CHECK(args[offset + 1]->IsBoolean()); // Safe
const uint32_t size = args[offset].As<Uint32>()->Value();
bool safe = args[offset + 1]->IsTrue();
if (!args[offset + 2]->IsUndefined()) {
params->add.reset(BN_secure_new());
if (!params->add) {
THROW_ERR_CRYPTO_OPERATION_FAILED(env, "could not generate prime");
return Nothing<bool>();
}
ArrayBufferOrViewContents<unsigned char> add(args[offset + 2]);
BN_bin2bn(add.data(), add.size(), params->add.get());
if (!params->add) {
THROW_ERR_INVALID_ARG_VALUE(env, "invalid options.add");
return Nothing<bool>();
}
}
if (!args[offset + 3]->IsUndefined()) {
params->rem.reset(BN_secure_new());
if (!params->rem) {
THROW_ERR_CRYPTO_OPERATION_FAILED(env, "could not generate prime");
return Nothing<bool>();
}
ArrayBufferOrViewContents<unsigned char> rem(args[offset + 3]);
BN_bin2bn(rem.data(), rem.size(), params->rem.get());
if (!params->rem) {
THROW_ERR_INVALID_ARG_VALUE(env, "invalid options.rem");
return Nothing<bool>();
}
}
int bits = static_cast<int>(size);
if (bits < 0) {
THROW_ERR_OUT_OF_RANGE(env, "invalid size");
return Nothing<bool>();
}
params->bits = bits;
params->safe = safe;
params->prime.reset(BN_secure_new());
if (!params->prime) {
THROW_ERR_CRYPTO_OPERATION_FAILED(env, "could not generate prime");
return Nothing<bool>();
}
return Just(true);
}
bool RandomPrimeTraits::DeriveBits(
Environment* env,
const RandomPrimeConfig& params,
ByteSource* unused) {
CheckEntropy();
if (BN_generate_prime_ex(
params.prime.get(),
params.bits,
params.safe ? 1 : 0,
params.add.get(),
params.rem.get(),
nullptr) == 0) {
return false;
}
return true;
}
void CheckPrimeConfig::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackFieldWithSize(
"prime", candidate ? BN_num_bytes(candidate.get()) : 0);
}
Maybe<bool> CheckPrimeTraits::AdditionalConfig(
CryptoJobMode mode,
const FunctionCallbackInfo<Value>& args,
unsigned int offset,
CheckPrimeConfig* params) {
Environment* env = Environment::GetCurrent(args);
ArrayBufferOrViewContents<unsigned char> candidate(args[offset]);
params->candidate =
BignumPointer(BN_bin2bn(
candidate.data(),
candidate.size(),
nullptr));
CHECK(args[offset + 1]->IsUint32()); // Checks
const int checks = static_cast<int>(args[offset + 1].As<Uint32>()->Value());
if (checks < 0) {
THROW_ERR_OUT_OF_RANGE(env, "invalid options.checks");
return Nothing<bool>();
}
params->checks = checks;
return Just(true);
}
bool CheckPrimeTraits::DeriveBits(
Environment* env,
const CheckPrimeConfig& params,
ByteSource* out) {
BignumCtxPointer ctx(BN_CTX_new());
int ret = BN_is_prime_ex(
params.candidate.get(),
params.checks,
ctx.get(),
nullptr);
if (ret < 0) return false;
char* data = MallocOpenSSL<char>(1);
data[0] = ret;
*out = ByteSource::Allocated(data, 1);
return true;
}
Maybe<bool> CheckPrimeTraits::EncodeOutput(
Environment* env,
const CheckPrimeConfig& params,
ByteSource* out,
v8::Local<v8::Value>* result) {
*result = out->get()[0] ? True(env->isolate()) : False(env->isolate());
return Just(true);
}
namespace Random {
void Initialize(Environment* env, Local<Object> target) {
RandomBytesJob::Initialize(env, target);
RandomPrimeJob::Initialize(env, target);
CheckPrimeJob::Initialize(env, target);
}
} // namespace Random
} // namespace crypto

View File

@ -47,6 +47,79 @@ struct RandomBytesTraits final {
using RandomBytesJob = DeriveBitsJob<RandomBytesTraits>;
struct RandomPrimeConfig final : public MemoryRetainer {
BignumPointer prime;
BignumPointer rem;
BignumPointer add;
int bits;
bool safe;
void MemoryInfo(MemoryTracker* tracker) const override;
SET_MEMORY_INFO_NAME(RandomPrimeConfig);
SET_SELF_SIZE(RandomPrimeConfig);
};
struct RandomPrimeTraits final {
using AdditionalParameters = RandomPrimeConfig;
static constexpr const char* JobName = "RandomPrimeJob";
static constexpr AsyncWrap::ProviderType Provider =
AsyncWrap::PROVIDER_RANDOMPRIMEREQUEST;
static v8::Maybe<bool> AdditionalConfig(
CryptoJobMode mode,
const v8::FunctionCallbackInfo<v8::Value>& args,
unsigned int offset,
RandomPrimeConfig* params);
static bool DeriveBits(
Environment* env,
const RandomPrimeConfig& params,
ByteSource* out_);
static v8::Maybe<bool> EncodeOutput(
Environment* env,
const RandomPrimeConfig& params,
ByteSource* unused,
v8::Local<v8::Value>* result);
};
using RandomPrimeJob = DeriveBitsJob<RandomPrimeTraits>;
struct CheckPrimeConfig final : public MemoryRetainer {
BignumPointer candidate;
int checks = 1;
void MemoryInfo(MemoryTracker* tracker) const override;
SET_MEMORY_INFO_NAME(CheckPrimeConfig);
SET_SELF_SIZE(CheckPrimeConfig);
};
struct CheckPrimeTraits final {
using AdditionalParameters = CheckPrimeConfig;
static constexpr const char* JobName = "CheckPrimeJob";
static constexpr AsyncWrap::ProviderType Provider =
AsyncWrap::PROVIDER_CHECKPRIMEREQUEST;
static v8::Maybe<bool> AdditionalConfig(
CryptoJobMode mode,
const v8::FunctionCallbackInfo<v8::Value>& args,
unsigned int offset,
CheckPrimeConfig* params);
static bool DeriveBits(
Environment* env,
const CheckPrimeConfig& params,
ByteSource* out);
static v8::Maybe<bool> EncodeOutput(
Environment* env,
const CheckPrimeConfig& params,
ByteSource* out,
v8::Local<v8::Value>* result);
};
using CheckPrimeJob = DeriveBitsJob<CheckPrimeTraits>;
namespace Random {
void Initialize(Environment* env, v8::Local<v8::Object> target);
} // namespace Random

View File

@ -59,6 +59,7 @@ using EVPMDPointer = DeleteFnPtr<EVP_MD_CTX, EVP_MD_CTX_free>;
using RSAPointer = DeleteFnPtr<RSA, RSA_free>;
using ECPointer = DeleteFnPtr<EC_KEY, EC_KEY_free>;
using BignumPointer = DeleteFnPtr<BIGNUM, BN_free>;
using BignumCtxPointer = DeleteFnPtr<BN_CTX, BN_CTX_free>;
using NetscapeSPKIPointer = DeleteFnPtr<NETSCAPE_SPKI, NETSCAPE_SPKI_free>;
using ECGroupPointer = DeleteFnPtr<EC_GROUP, EC_GROUP_free>;
using ECPointPointer = DeleteFnPtr<EC_POINT, EC_POINT_free>;
@ -648,6 +649,7 @@ std::vector<T> CopyBuffer(v8::Local<v8::Value> buf) {
v8::MaybeLocal<v8::Value> EncodeBignum(
Environment* env,
const BIGNUM* bn,
int size,
v8::Local<v8::Value>* error);
v8::Maybe<bool> SetEncodedValue(

View File

@ -0,0 +1,195 @@
'use strict';
const common = require('../common');
if (!common.hasCrypto)
common.skip('missing crypto');
const assert = require('assert');
const {
generatePrime,
generatePrimeSync,
checkPrime,
checkPrimeSync,
} = require('crypto');
const { promisify } = require('util');
const pgeneratePrime = promisify(generatePrime);
const pCheckPrime = promisify(checkPrime);
['hello', false, {}, []].forEach((i) => {
assert.throws(() => generatePrime(i), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrimeSync(i), {
code: 'ERR_INVALID_ARG_TYPE'
});
});
['hello', false, 123].forEach((i) => {
assert.throws(() => generatePrime(80, i, common.mustNotCall()), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrimeSync(80, i), {
code: 'ERR_INVALID_ARG_TYPE'
});
});
['hello', false, 123].forEach((i) => {
assert.throws(() => generatePrime(80, {}), {
code: 'ERR_INVALID_CALLBACK'
});
});
[-1, 0].forEach((i) => {
assert.throws(() => generatePrime(i, common.mustNotCall()), {
code: 'ERR_OUT_OF_RANGE'
});
assert.throws(() => generatePrimeSync(i), {
code: 'ERR_OUT_OF_RANGE'
});
});
['test', -1, {}, []].forEach((i) => {
assert.throws(() => generatePrime(8, { safe: i }, common.mustNotCall()), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrime(8, { rem: i }, common.mustNotCall()), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrime(8, { add: i }, common.mustNotCall()), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrimeSync(8, { safe: i }), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrimeSync(8, { rem: i }), {
code: 'ERR_INVALID_ARG_TYPE'
});
assert.throws(() => generatePrimeSync(8, { add: i }), {
code: 'ERR_INVALID_ARG_TYPE'
});
});
generatePrime(80, common.mustSucceed((prime) => {
assert(checkPrimeSync(prime));
checkPrime(prime, common.mustSucceed((result) => {
assert(result);
}));
}));
assert(checkPrimeSync(generatePrimeSync(80)));
generatePrime(80, {}, common.mustSucceed((prime) => {
assert(checkPrimeSync(prime));
}));
assert(checkPrimeSync(generatePrimeSync(80, {})));
generatePrime(32, { safe: true }, common.mustSucceed((prime) => {
assert(checkPrimeSync(prime));
const buf = Buffer.from(prime);
const val = buf.readUInt32BE();
const check = (val - 1) / 2;
buf.writeUInt32BE(check);
assert(checkPrimeSync(buf));
}));
{
const prime = generatePrimeSync(32, { safe: true });
assert(checkPrimeSync(prime));
const buf = Buffer.from(prime);
const val = buf.readUInt32BE();
const check = (val - 1) / 2;
buf.writeUInt32BE(check);
assert(checkPrimeSync(buf));
}
const add = 12;
const rem = 11;
const add_buf = Buffer.from([add]);
const rem_buf = Buffer.from([rem]);
generatePrime(
32,
{ add: add_buf, rem: rem_buf },
common.mustSucceed((prime) => {
assert(checkPrimeSync(prime));
const buf = Buffer.from(prime);
const val = buf.readUInt32BE();
assert.strictEqual(val % add, rem);
}));
{
const prime = generatePrimeSync(32, { add: add_buf, rem: rem_buf });
assert(checkPrimeSync(prime));
const buf = Buffer.from(prime);
const val = buf.readUInt32BE();
assert.strictEqual(val % add, rem);
}
{
const prime = generatePrimeSync(32, { add: BigInt(add), rem: BigInt(rem) });
assert(checkPrimeSync(prime));
const buf = Buffer.from(prime);
const val = buf.readUInt32BE();
assert.strictEqual(val % add, rem);
}
[1, 'hello', {}, []].forEach((i) => {
assert.throws(() => checkPrime(i), {
code: 'ERR_INVALID_ARG_TYPE'
});
});
['hello', {}, []].forEach((i) => {
assert.throws(() => checkPrime(2, { checks: i }), {
code: 'ERR_INVALID_ARG_TYPE'
}, common.mustNotCall());
assert.throws(() => checkPrimeSync(2, { checks: i }), {
code: 'ERR_INVALID_ARG_TYPE'
});
});
assert(!checkPrimeSync(Buffer.from([0x1])));
assert(checkPrimeSync(Buffer.from([0x2])));
assert(checkPrimeSync(Buffer.from([0x3])));
assert(!checkPrimeSync(Buffer.from([0x4])));
assert(
!checkPrimeSync(
Buffer.from([0x1]),
{
fast: true,
trialDivision: true,
checks: 10
}));
(async function() {
const prime = await pgeneratePrime(36);
assert(await pCheckPrime(prime));
})().then(common.mustCall());
assert.throws(() => {
generatePrimeSync(32, { bigint: '' });
}, { code: 'ERR_INVALID_ARG_TYPE' });
assert.throws(() => {
generatePrime(32, { bigint: '' }, common.mustNotCall());
}, { code: 'ERR_INVALID_ARG_TYPE' });
{
const prime = generatePrimeSync(3, { bigint: true });
assert.strictEqual(typeof prime, 'bigint');
assert.strictEqual(prime, 7n);
assert(checkPrimeSync(prime));
checkPrime(prime, common.mustSucceed(assert));
}
{
generatePrime(3, { bigint: true }, common.mustSucceed((prime) => {
assert.strictEqual(typeof prime, 'bigint');
assert.strictEqual(prime, 7n);
assert(checkPrimeSync(prime));
checkPrime(prime, common.mustSucceed(assert));
}));
}

View File

@ -70,6 +70,8 @@ const { getSystemErrorName } = require('util');
delete providers.SIGINTWATCHDOG;
delete providers.WORKERHEAPSNAPSHOT;
delete providers.FIXEDSIZEBLOBCOPY;
delete providers.RANDOMPRIMEREQUEST;
delete providers.CHECKPRIMEREQUEST;
const objKeys = Object.keys(providers);
if (objKeys.length > 0)