crypto: add API for key pair generation

This adds support for RSA, DSA and EC key pair generation with a
variety of possible output formats etc.

PR-URL: https://github.com/nodejs/node/pull/22660
Fixes: https://github.com/nodejs/node/issues/15116
Reviewed-By: Matteo Collina <matteo.collina@gmail.com>
Reviewed-By: Anna Henningsen <anna@addaleax.net>
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Ujjwal Sharma <usharma1998@gmail.com>
Reviewed-By: Ben Noordhuis <info@bnoordhuis.nl>
This commit is contained in:
Tobias Nießen 2018-09-02 17:00:01 +02:00
parent df9abb638d
commit 8c502f54ce
No known key found for this signature in database
GPG Key ID: 718207F8FD156B70
10 changed files with 1457 additions and 0 deletions

View File

@ -1673,6 +1673,116 @@ Use [`crypto.getHashes()`][] to obtain an array of names of the available
signing algorithms. Optional `options` argument controls the
`stream.Writable` behavior.
### crypto.generateKeyPair(type, options, callback)
<!-- YAML
added: REPLACEME
-->
* `type`: {string} Must be `'rsa'`, `'dsa'` or `'ec'`.
* `options`: {Object}
- `modulusLength`: {number} Key size in bits (RSA, DSA).
- `publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`.
- `divisorLength`: {number} Size of `q` in bits (DSA).
- `namedCurve`: {string} Name of the curve to use (EC).
- `publicKeyEncoding`: {Object}
- `type`: {string} Must be one of `'pkcs1'` (RSA only) or `'spki'`.
- `format`: {string} Must be `'pem'` or `'der'`.
- `privateKeyEncoding`: {Object}
- `type`: {string} Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or
`'sec1'` (EC only).
- `format`: {string} Must be `'pem'` or `'der'`.
- `cipher`: {string} If specified, the private key will be encrypted with
the given `cipher` and `passphrase` using PKCS#5 v2.0 password based
encryption.
- `passphrase`: {string} The passphrase to use for encryption, see `cipher`.
* `callback`: {Function}
- `err`: {Error}
- `publicKey`: {string|Buffer}
- `privateKey`: {string|Buffer}
Generates a new asymmetric key pair of the given `type`. Only RSA, DSA and EC
are currently supported.
It is recommended to encode public keys as `'spki'` and private keys as
`'pkcs8'` with encryption:
```js
const { generateKeyPair } = require('crypto');
generateKeyPair('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret'
}
}, (err, publicKey, privateKey) => {
// Handle errors and use the generated key pair.
});
```
On completion, `callback` will be called with `err` set to `undefined` and
`publicKey` / `privateKey` representing the generated key pair. When PEM
encoding was selected, the result will be a string, otherwise it will be a
buffer containing the data encoded as DER. Note that Node.js itself does not
accept DER, it is supported for interoperability with other libraries such as
WebCrypto only.
### crypto.generateKeyPairSync(type, options)
<!-- YAML
added: REPLACEME
-->
* `type`: {string} Must be `'rsa'`, `'dsa'` or `'ec'`.
* `options`: {Object}
- `modulusLength`: {number} Key size in bits (RSA, DSA).
- `publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`.
- `divisorLength`: {number} Size of `q` in bits (DSA).
- `namedCurve`: {string} Name of the curve to use (EC).
- `publicKeyEncoding`: {Object}
- `type`: {string} Must be one of `'pkcs1'` (RSA only) or `'spki'`.
- `format`: {string} Must be `'pem'` or `'der'`.
- `privateKeyEncoding`: {Object}
- `type`: {string} Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or
`'sec1'` (EC only).
- `format`: {string} Must be `'pem'` or `'der'`.
- `cipher`: {string} If specified, the private key will be encrypted with
the given `cipher` and `passphrase` using PKCS#5 v2.0 password based
encryption.
- `passphrase`: {string} The passphrase to use for encryption, see `cipher`.
* Returns: {Object}
- `publicKey`: {string|Buffer}
- `privateKey`: {string|Buffer}
Generates a new asymmetric key pair of the given `type`. Only RSA, DSA and EC
are currently supported.
It is recommended to encode public keys as `'spki'` and private keys as
`'pkcs8'` with encryption:
```js
const { generateKeyPairSync } = require('crypto');
const { publicKey, privateKey } = generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-256-cbc',
passphrase: 'top secret'
}
});
```
The return value `{ publicKey, privateKey }` represents the generated key pair.
When PEM encoding was selected, the respective key will be a string, otherwise
it will be a buffer containing the data encoded as DER.
### crypto.getCiphers()
<!-- YAML
added: v0.9.3

View File

@ -729,6 +729,11 @@ be called no more than one time per instance of a `Hash` object.
[`hash.update()`][] failed for any reason. This should rarely, if ever, happen.
<a id="ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS"></a>
### ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS
The selected public or private key encoding is incompatible with other options.
<a id="ERR_CRYPTO_INVALID_DIGEST"></a>
### ERR_CRYPTO_INVALID_DIGEST

View File

@ -54,6 +54,10 @@ const {
scrypt,
scryptSync
} = require('internal/crypto/scrypt');
const {
generateKeyPair,
generateKeyPairSync
} = require('internal/crypto/keygen');
const {
DiffieHellman,
DiffieHellmanGroup,
@ -152,6 +156,8 @@ module.exports = exports = {
getHashes,
pbkdf2,
pbkdf2Sync,
generateKeyPair,
generateKeyPairSync,
privateDecrypt,
privateEncrypt,
publicDecrypt,

View File

@ -0,0 +1,238 @@
'use strict';
const { internalBinding } = require('internal/bootstrap/loaders');
const { AsyncWrap, Providers } = internalBinding('async_wrap');
const {
generateKeyPairRSA,
generateKeyPairDSA,
generateKeyPairEC,
OPENSSL_EC_NAMED_CURVE,
OPENSSL_EC_EXPLICIT_CURVE,
PK_ENCODING_PKCS1,
PK_ENCODING_PKCS8,
PK_ENCODING_SPKI,
PK_ENCODING_SEC1,
PK_FORMAT_DER,
PK_FORMAT_PEM
} = internalBinding('crypto');
const { isUint32 } = require('internal/validators');
const {
ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS,
ERR_INVALID_ARG_TYPE,
ERR_INVALID_ARG_VALUE,
ERR_INVALID_CALLBACK,
ERR_INVALID_OPT_VALUE
} = require('internal/errors').codes;
function generateKeyPair(type, options, callback) {
if (typeof options === 'function') {
callback = options;
options = undefined;
}
const impl = check(type, options);
if (typeof callback !== 'function')
throw new ERR_INVALID_CALLBACK();
const wrap = new AsyncWrap(Providers.KEYPAIRGENREQUEST);
wrap.ondone = (ex, pubkey, privkey) => {
if (ex) return callback.call(wrap, ex);
callback.call(wrap, null, pubkey, privkey);
};
handleError(impl, wrap);
}
function generateKeyPairSync(type, options) {
const impl = check(type, options);
return handleError(impl);
}
function handleError(impl, wrap) {
const ret = impl(wrap);
if (ret === undefined)
return; // async
const [err, publicKey, privateKey] = ret;
if (err !== undefined)
throw err;
return { publicKey, privateKey };
}
function parseKeyEncoding(keyType, options) {
const { publicKeyEncoding, privateKeyEncoding } = options;
if (publicKeyEncoding == null || typeof publicKeyEncoding !== 'object')
throw new ERR_INVALID_OPT_VALUE('publicKeyEncoding', publicKeyEncoding);
const { format: strPublicFormat, type: strPublicType } = publicKeyEncoding;
let publicType;
if (strPublicType === 'pkcs1') {
if (keyType !== 'rsa') {
throw new ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS(
strPublicType, 'can only be used for RSA keys');
}
publicType = PK_ENCODING_PKCS1;
} else if (strPublicType === 'spki') {
publicType = PK_ENCODING_SPKI;
} else {
throw new ERR_INVALID_OPT_VALUE('publicKeyEncoding.type', strPublicType);
}
let publicFormat;
if (strPublicFormat === 'der') {
publicFormat = PK_FORMAT_DER;
} else if (strPublicFormat === 'pem') {
publicFormat = PK_FORMAT_PEM;
} else {
throw new ERR_INVALID_OPT_VALUE('publicKeyEncoding.format',
strPublicFormat);
}
if (privateKeyEncoding == null || typeof privateKeyEncoding !== 'object')
throw new ERR_INVALID_OPT_VALUE('privateKeyEncoding', privateKeyEncoding);
const {
cipher,
passphrase,
format: strPrivateFormat,
type: strPrivateType
} = privateKeyEncoding;
let privateType;
if (strPrivateType === 'pkcs1') {
if (keyType !== 'rsa') {
throw new ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS(
strPrivateType, 'can only be used for RSA keys');
}
privateType = PK_ENCODING_PKCS1;
} else if (strPrivateType === 'pkcs8') {
privateType = PK_ENCODING_PKCS8;
} else if (strPrivateType === 'sec1') {
if (keyType !== 'ec') {
throw new ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS(
strPrivateType, 'can only be used for EC keys');
}
privateType = PK_ENCODING_SEC1;
} else {
throw new ERR_INVALID_OPT_VALUE('privateKeyEncoding.type', strPrivateType);
}
let privateFormat;
if (strPrivateFormat === 'der') {
privateFormat = PK_FORMAT_DER;
} else if (strPrivateFormat === 'pem') {
privateFormat = PK_FORMAT_PEM;
} else {
throw new ERR_INVALID_OPT_VALUE('privateKeyEncoding.format',
strPrivateFormat);
}
if (cipher != null) {
if (typeof cipher !== 'string')
throw new ERR_INVALID_OPT_VALUE('privateKeyEncoding.cipher', cipher);
if (privateType !== PK_ENCODING_PKCS8) {
throw new ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS(
strPrivateType, 'does not support encryption');
}
if (typeof passphrase !== 'string') {
throw new ERR_INVALID_OPT_VALUE('privateKeyEncoding.passphrase',
passphrase);
}
}
return {
cipher, passphrase, publicType, publicFormat, privateType, privateFormat
};
}
function check(type, options, callback) {
if (typeof type !== 'string')
throw new ERR_INVALID_ARG_TYPE('type', 'string', type);
if (options == null || typeof options !== 'object')
throw new ERR_INVALID_ARG_TYPE('options', 'object', options);
// These will be set after parsing the type and type-specific options to make
// the order a bit more intuitive.
let cipher, passphrase, publicType, publicFormat, privateType, privateFormat;
let impl;
switch (type) {
case 'rsa':
{
const { modulusLength } = options;
if (!isUint32(modulusLength))
throw new ERR_INVALID_OPT_VALUE('modulusLength', modulusLength);
let { publicExponent } = options;
if (publicExponent == null) {
publicExponent = 0x10001;
} else if (!isUint32(publicExponent)) {
throw new ERR_INVALID_OPT_VALUE('publicExponent', publicExponent);
}
impl = (wrap) => generateKeyPairRSA(modulusLength, publicExponent,
publicType, publicFormat,
privateType, privateFormat,
cipher, passphrase, wrap);
}
break;
case 'dsa':
{
const { modulusLength } = options;
if (!isUint32(modulusLength))
throw new ERR_INVALID_OPT_VALUE('modulusLength', modulusLength);
let { divisorLength } = options;
if (divisorLength == null) {
divisorLength = -1;
} else if (!isUint32(divisorLength)) {
throw new ERR_INVALID_OPT_VALUE('divisorLength', divisorLength);
}
impl = (wrap) => generateKeyPairDSA(modulusLength, divisorLength,
publicType, publicFormat,
privateType, privateFormat,
cipher, passphrase, wrap);
}
break;
case 'ec':
{
const { namedCurve } = options;
if (typeof namedCurve !== 'string')
throw new ERR_INVALID_OPT_VALUE('namedCurve', namedCurve);
let { paramEncoding } = options;
if (paramEncoding == null || paramEncoding === 'named')
paramEncoding = OPENSSL_EC_NAMED_CURVE;
else if (paramEncoding === 'explicit')
paramEncoding = OPENSSL_EC_EXPLICIT_CURVE;
else
throw new ERR_INVALID_OPT_VALUE('paramEncoding', paramEncoding);
impl = (wrap) => generateKeyPairEC(namedCurve, paramEncoding,
publicType, publicFormat,
privateType, privateFormat,
cipher, passphrase, wrap);
}
break;
default:
throw new ERR_INVALID_ARG_VALUE('type', type,
"must be one of 'rsa', 'dsa', 'ec'");
}
({
cipher,
passphrase,
publicType,
publicFormat,
privateType,
privateFormat
} = parseKeyEncoding(type, options));
return impl;
}
module.exports = { generateKeyPair, generateKeyPairSync };

View File

@ -509,6 +509,8 @@ E('ERR_CRYPTO_HASH_DIGEST_NO_UTF16', 'hash.digest() does not support UTF-16',
Error);
E('ERR_CRYPTO_HASH_FINALIZED', 'Digest already called', Error);
E('ERR_CRYPTO_HASH_UPDATE_FAILED', 'Hash update failed', Error);
E('ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS', 'The selected key encoding %s %s.',
Error);
E('ERR_CRYPTO_INVALID_DIGEST', 'Invalid digest: %s', TypeError);
E('ERR_CRYPTO_INVALID_STATE', 'Invalid state for operation %s', Error);
E('ERR_CRYPTO_PBKDF2_ERROR', 'PBKDF2 error', Error);

View File

@ -97,6 +97,7 @@
'lib/internal/crypto/cipher.js',
'lib/internal/crypto/diffiehellman.js',
'lib/internal/crypto/hash.js',
'lib/internal/crypto/keygen.js',
'lib/internal/crypto/pbkdf2.js',
'lib/internal/crypto/random.js',
'lib/internal/crypto/scrypt.js',

View File

@ -73,6 +73,7 @@ namespace node {
#if HAVE_OPENSSL
#define NODE_ASYNC_CRYPTO_PROVIDER_TYPES(V) \
V(PBKDF2REQUEST) \
V(KEYPAIRGENREQUEST) \
V(RANDOMBYTESREQUEST) \
V(SCRYPTREQUEST) \
V(TLSWRAP)

View File

@ -88,6 +88,7 @@ using v8::SideEffectType;
using v8::Signature;
using v8::String;
using v8::Uint32;
using v8::Undefined;
using v8::Value;
@ -4832,6 +4833,453 @@ void Scrypt(const FunctionCallbackInfo<Value>& args) {
#endif // OPENSSL_NO_SCRYPT
class KeyPairGenerationConfig {
public:
virtual EVPKeyCtxPointer Setup() = 0;
virtual bool Configure(const EVPKeyCtxPointer& ctx) {
return true;
}
};
class RSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
public:
RSAKeyPairGenerationConfig(unsigned int modulus_bits, unsigned int exponent)
: modulus_bits_(modulus_bits), exponent_(exponent) {}
EVPKeyCtxPointer Setup() override {
return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, nullptr));
}
bool Configure(const EVPKeyCtxPointer& ctx) override {
if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx.get(), modulus_bits_) <= 0)
return false;
// 0x10001 is the default RSA exponent.
if (exponent_ != 0x10001) {
BignumPointer bn(BN_new());
CHECK_NOT_NULL(bn.get());
CHECK(BN_set_word(bn.get(), exponent_));
if (EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx.get(), bn.get()) <= 0)
return false;
}
return true;
}
private:
const unsigned int modulus_bits_;
const unsigned int exponent_;
};
class DSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
public:
DSAKeyPairGenerationConfig(unsigned int modulus_bits, int divisor_bits)
: modulus_bits_(modulus_bits), divisor_bits_(divisor_bits) {}
EVPKeyCtxPointer Setup() override {
EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, nullptr));
if (!param_ctx)
return nullptr;
if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
return nullptr;
if (EVP_PKEY_CTX_set_dsa_paramgen_bits(param_ctx.get(), modulus_bits_) <= 0)
return nullptr;
if (divisor_bits_ != -1) {
if (EVP_PKEY_CTX_ctrl(param_ctx.get(), EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN,
EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, divisor_bits_,
nullptr) <= 0) {
return nullptr;
}
}
EVP_PKEY* params = nullptr;
if (EVP_PKEY_paramgen(param_ctx.get(), &params) <= 0)
return nullptr;
param_ctx.reset();
EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params, nullptr));
EVP_PKEY_free(params);
return key_ctx;
}
private:
const unsigned int modulus_bits_;
const int divisor_bits_;
};
class ECKeyPairGenerationConfig : public KeyPairGenerationConfig {
public:
ECKeyPairGenerationConfig(int curve_nid, int param_encoding)
: curve_nid_(curve_nid), param_encoding_(param_encoding) {}
EVPKeyCtxPointer Setup() override {
EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr));
if (!param_ctx)
return nullptr;
if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
return nullptr;
if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(param_ctx.get(),
curve_nid_) <= 0)
return nullptr;
if (EVP_PKEY_CTX_set_ec_param_enc(param_ctx.get(), param_encoding_) <= 0)
return nullptr;
EVP_PKEY* params = nullptr;
if (EVP_PKEY_paramgen(param_ctx.get(), &params) <= 0)
return nullptr;
param_ctx.reset();
EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params, nullptr));
EVP_PKEY_free(params);
return key_ctx;
}
private:
const int curve_nid_;
const int param_encoding_;
};
enum PKEncodingType {
// RSAPublicKey / RSAPrivateKey according to PKCS#1.
PK_ENCODING_PKCS1,
// PrivateKeyInfo or EncryptedPrivateKeyInfo according to PKCS#8.
PK_ENCODING_PKCS8,
// SubjectPublicKeyInfo according to X.509.
PK_ENCODING_SPKI,
// ECPrivateKey according to SEC1.
PK_ENCODING_SEC1
};
enum PKFormatType {
PK_FORMAT_DER,
PK_FORMAT_PEM
};
struct KeyPairEncodingConfig {
PKEncodingType type_;
PKFormatType format_;
};
typedef KeyPairEncodingConfig PublicKeyEncodingConfig;
struct PrivateKeyEncodingConfig : public KeyPairEncodingConfig {
const EVP_CIPHER* cipher_;
// This char* will be passed to OPENSSL_clear_free.
std::shared_ptr<char> passphrase_;
unsigned int passphrase_length_;
};
class GenerateKeyPairJob : public CryptoJob {
public:
GenerateKeyPairJob(Environment* env,
std::unique_ptr<KeyPairGenerationConfig> config,
PublicKeyEncodingConfig public_key_encoding,
PrivateKeyEncodingConfig private_key_encoding)
: CryptoJob(env),
config_(std::move(config)),
public_key_encoding_(public_key_encoding),
private_key_encoding_(private_key_encoding),
pkey_(nullptr) {}
inline void DoThreadPoolWork() override {
if (!GenerateKey())
errors_.Capture();
}
inline bool GenerateKey() {
// Make sure that the CSPRNG is properly seeded so the results are secure.
CheckEntropy();
// Create the key generation context.
EVPKeyCtxPointer ctx = config_->Setup();
if (!ctx)
return false;
// Initialize key generation.
if (EVP_PKEY_keygen_init(ctx.get()) <= 0)
return false;
// Configure key generation.
if (!config_->Configure(ctx))
return false;
// Generate the key.
EVP_PKEY* pkey = nullptr;
if (EVP_PKEY_keygen(ctx.get(), &pkey) != 1)
return false;
pkey_.reset(pkey);
return true;
}
inline void AfterThreadPoolWork() override {
Local<Value> args[3];
ToResult(&args[0], &args[1], &args[2]);
async_wrap->MakeCallback(env->ondone_string(), 3, args);
}
inline void ToResult(Local<Value>* err,
Local<Value>* pubkey,
Local<Value>* privkey) {
if (pkey_ && EncodeKeys(pubkey, privkey)) {
CHECK(errors_.empty());
*err = Undefined(env->isolate());
} else {
if (errors_.empty())
errors_.Capture();
CHECK(!errors_.empty());
*err = errors_.ToException(env);
*pubkey = Undefined(env->isolate());
*privkey = Undefined(env->isolate());
}
}
inline bool EncodeKeys(Local<Value>* pubkey, Local<Value>* privkey) {
EVP_PKEY* pkey = pkey_.get();
BIOPointer bio(BIO_new(BIO_s_mem()));
CHECK(bio);
// Encode the public key.
if (public_key_encoding_.type_ == PK_ENCODING_PKCS1) {
// PKCS#1 is only valid for RSA keys.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
if (public_key_encoding_.format_ == PK_FORMAT_PEM) {
// Encode PKCS#1 as PEM.
if (PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) != 1)
return false;
} else {
// Encode PKCS#1 as DER.
CHECK_EQ(public_key_encoding_.format_, PK_FORMAT_DER);
if (i2d_RSAPublicKey_bio(bio.get(), rsa.get()) != 1)
return false;
}
} else {
CHECK_EQ(public_key_encoding_.type_, PK_ENCODING_SPKI);
if (public_key_encoding_.format_ == PK_FORMAT_PEM) {
// Encode SPKI as PEM.
if (PEM_write_bio_PUBKEY(bio.get(), pkey) != 1)
return false;
} else {
// Encode SPKI as DER.
CHECK_EQ(public_key_encoding_.format_, PK_FORMAT_DER);
if (i2d_PUBKEY_bio(bio.get(), pkey) != 1)
return false;
}
}
// Convert the contents of the BIO to a JavaScript object.
BIOToStringOrBuffer(bio.get(), public_key_encoding_.format_, pubkey);
USE(BIO_reset(bio.get()));
// Now do the same for the private key (which is a bit more difficult).
if (private_key_encoding_.type_ == PK_ENCODING_PKCS1) {
// PKCS#1 is only permitted for RSA keys and without encryption.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
CHECK_NULL(private_key_encoding_.cipher_);
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
if (private_key_encoding_.format_ == PK_FORMAT_PEM) {
// Encode PKCS#1 as PEM.
if (PEM_write_bio_RSAPrivateKey(bio.get(), rsa.get(),
nullptr, nullptr, 0,
nullptr, nullptr) != 1)
return false;
} else {
// Encode PKCS#1 as DER.
CHECK_EQ(private_key_encoding_.format_, PK_FORMAT_DER);
if (i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1)
return false;
}
} else if (private_key_encoding_.type_ == PK_ENCODING_PKCS8) {
if (private_key_encoding_.format_ == PK_FORMAT_PEM) {
// Encode PKCS#8 as PEM.
if (PEM_write_bio_PKCS8PrivateKey(
bio.get(), pkey,
private_key_encoding_.cipher_,
private_key_encoding_.passphrase_.get(),
private_key_encoding_.passphrase_length_,
nullptr, nullptr) != 1)
return false;
} else {
// Encode PKCS#8 as DER.
CHECK_EQ(private_key_encoding_.format_, PK_FORMAT_DER);
if (i2d_PKCS8PrivateKey_bio(
bio.get(), pkey,
private_key_encoding_.cipher_,
private_key_encoding_.passphrase_.get(),
private_key_encoding_.passphrase_length_,
nullptr, nullptr) != 1)
return false;
}
} else {
CHECK_EQ(private_key_encoding_.type_, PK_ENCODING_SEC1);
// SEC1 is only permitted for EC keys and without encryption.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC);
CHECK_NULL(private_key_encoding_.cipher_);
ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey));
if (private_key_encoding_.format_ == PK_FORMAT_PEM) {
// Encode SEC1 as PEM.
if (PEM_write_bio_ECPrivateKey(bio.get(), ec_key.get(),
nullptr, nullptr, 0,
nullptr, nullptr) != 1)
return false;
} else {
// Encode SEC1 as DER.
CHECK_EQ(private_key_encoding_.format_, PK_FORMAT_DER);
if (i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1)
return false;
}
}
BIOToStringOrBuffer(bio.get(), private_key_encoding_.format_, privkey);
return true;
}
inline void BIOToStringOrBuffer(BIO* bio, PKFormatType format,
Local<Value>* out) const {
BUF_MEM* bptr;
BIO_get_mem_ptr(bio, &bptr);
if (format == PK_FORMAT_PEM) {
// PEM is an ASCII format, so we will return it as a string.
*out = String::NewFromUtf8(env->isolate(), bptr->data,
NewStringType::kNormal,
bptr->length).ToLocalChecked();
} else {
CHECK_EQ(format, PK_FORMAT_DER);
// DER is binary, return it as a buffer.
*out = Buffer::Copy(env, bptr->data, bptr->length).ToLocalChecked();
}
}
private:
CryptoErrorVector errors_;
std::unique_ptr<KeyPairGenerationConfig> config_;
PublicKeyEncodingConfig public_key_encoding_;
PrivateKeyEncodingConfig private_key_encoding_;
EVPKeyPointer pkey_;
};
void GenerateKeyPair(const FunctionCallbackInfo<Value>& args,
unsigned int n_opts,
std::unique_ptr<KeyPairGenerationConfig> config) {
Environment* env = Environment::GetCurrent(args);
PublicKeyEncodingConfig public_key_encoding;
PrivateKeyEncodingConfig private_key_encoding;
// Public key encoding: type (int) + pem (bool)
CHECK(args[n_opts]->IsInt32());
public_key_encoding.type_ = static_cast<PKEncodingType>(
args[n_opts].As<Int32>()->Value());
CHECK(args[n_opts + 1]->IsInt32());
public_key_encoding.format_ = static_cast<PKFormatType>(
args[n_opts + 1].As<Int32>()->Value());
// Private key encoding: type (int) + pem (bool) + cipher (optional, string) +
// passphrase (optional, string)
CHECK(args[n_opts + 2]->IsInt32());
private_key_encoding.type_ = static_cast<PKEncodingType>(
args[n_opts + 2].As<Int32>()->Value());
CHECK(args[n_opts + 1]->IsInt32());
private_key_encoding.format_ = static_cast<PKFormatType>(
args[n_opts + 3].As<Int32>()->Value());
if (args[n_opts + 4]->IsString()) {
String::Utf8Value cipher_name(env->isolate(),
args[n_opts + 4].As<String>());
private_key_encoding.cipher_ = EVP_get_cipherbyname(*cipher_name);
if (private_key_encoding.cipher_ == nullptr)
return env->ThrowError("Unknown cipher");
// We need to take ownership of the string and want to avoid creating an
// unnecessary copy in memory, that's why we are not using String::Utf8Value
// here.
CHECK(args[n_opts + 5]->IsString());
Local<String> passphrase = args[n_opts + 5].As<String>();
int len = passphrase->Utf8Length(env->isolate());
private_key_encoding.passphrase_length_ = len;
void* mem = OPENSSL_malloc(private_key_encoding.passphrase_length_ + 1);
CHECK_NOT_NULL(mem);
private_key_encoding.passphrase_.reset(static_cast<char*>(mem),
[len](char* p) {
OPENSSL_clear_free(p, len);
});
passphrase->WriteUtf8(env->isolate(),
private_key_encoding.passphrase_.get());
} else {
CHECK(args[n_opts + 5]->IsNullOrUndefined());
private_key_encoding.cipher_ = nullptr;
private_key_encoding.passphrase_length_ = 0;
}
std::unique_ptr<GenerateKeyPairJob> job(
new GenerateKeyPairJob(env, std::move(config), public_key_encoding,
private_key_encoding));
if (args[n_opts + 6]->IsObject())
return GenerateKeyPairJob::Run(std::move(job), args[n_opts + 6]);
env->PrintSyncTrace();
job->DoThreadPoolWork();
Local<Value> err, pubkey, privkey;
job->ToResult(&err, &pubkey, &privkey);
bool (*IsNotTrue)(Maybe<bool>) = [](Maybe<bool> maybe) {
return maybe.IsNothing() || !maybe.ToChecked();
};
Local<Array> ret = Array::New(env->isolate(), 3);
if (IsNotTrue(ret->Set(env->context(), 0, err)) ||
IsNotTrue(ret->Set(env->context(), 1, pubkey)) ||
IsNotTrue(ret->Set(env->context(), 2, privkey)))
return;
args.GetReturnValue().Set(ret);
}
void GenerateKeyPairRSA(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsUint32());
const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
CHECK(args[1]->IsUint32());
const uint32_t exponent = args[1].As<Uint32>()->Value();
std::unique_ptr<KeyPairGenerationConfig> config(
new RSAKeyPairGenerationConfig(modulus_bits, exponent));
GenerateKeyPair(args, 2, std::move(config));
}
void GenerateKeyPairDSA(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsUint32());
const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
CHECK(args[1]->IsInt32());
const int32_t divisor_bits = args[1].As<Int32>()->Value();
std::unique_ptr<KeyPairGenerationConfig> config(
new DSAKeyPairGenerationConfig(modulus_bits, divisor_bits));
GenerateKeyPair(args, 2, std::move(config));
}
void GenerateKeyPairEC(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsString());
String::Utf8Value curve_name(args.GetIsolate(), args[0].As<String>());
int curve_nid = EC_curve_nist2nid(*curve_name);
if (curve_nid == NID_undef)
curve_nid = OBJ_sn2nid(*curve_name);
// TODO(tniessen): Should we also support OBJ_ln2nid? (Other APIs don't.)
if (curve_nid == NID_undef) {
Environment* env = Environment::GetCurrent(args);
return env->ThrowTypeError("Invalid ECDH curve name");
}
CHECK(args[1]->IsUint32());
const uint32_t param_encoding = args[1].As<Int32>()->Value();
CHECK(param_encoding == OPENSSL_EC_NAMED_CURVE ||
param_encoding == OPENSSL_EC_EXPLICIT_CURVE);
std::unique_ptr<KeyPairGenerationConfig> config(
new ECKeyPairGenerationConfig(curve_nid, param_encoding));
GenerateKeyPair(args, 2, std::move(config));
}
void GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
@ -5242,6 +5690,17 @@ void Initialize(Local<Object> target,
#endif
env->SetMethod(target, "pbkdf2", PBKDF2);
env->SetMethod(target, "generateKeyPairRSA", GenerateKeyPairRSA);
env->SetMethod(target, "generateKeyPairDSA", GenerateKeyPairDSA);
env->SetMethod(target, "generateKeyPairEC", GenerateKeyPairEC);
NODE_DEFINE_CONSTANT(target, OPENSSL_EC_NAMED_CURVE);
NODE_DEFINE_CONSTANT(target, OPENSSL_EC_EXPLICIT_CURVE);
NODE_DEFINE_CONSTANT(target, PK_ENCODING_PKCS1);
NODE_DEFINE_CONSTANT(target, PK_ENCODING_PKCS8);
NODE_DEFINE_CONSTANT(target, PK_ENCODING_SPKI);
NODE_DEFINE_CONSTANT(target, PK_ENCODING_SEC1);
NODE_DEFINE_CONSTANT(target, PK_FORMAT_DER);
NODE_DEFINE_CONSTANT(target, PK_FORMAT_PEM);
env->SetMethod(target, "randomBytes", RandomBytes);
env->SetMethodNoSideEffect(target, "timingSafeEqual", TimingSafeEqual);
env->SetMethodNoSideEffect(target, "getSSLCiphers", GetSSLCiphers);

View File

@ -0,0 +1,634 @@
'use strict';
const common = require('../common');
if (!common.hasCrypto)
common.skip('missing crypto');
const assert = require('assert');
const {
createSign,
createVerify,
generateKeyPair,
generateKeyPairSync,
publicEncrypt,
privateDecrypt
} = require('crypto');
// Asserts that the size of the given key (in chars or bytes) is within 10% of
// the expected size.
function assertApproximateSize(key, expectedSize) {
const u = typeof key === 'string' ? 'chars' : 'bytes';
const min = Math.floor(0.9 * expectedSize);
const max = Math.ceil(1.1 * expectedSize);
assert(key.length >= min,
`Key (${key.length} ${u}) is shorter than expected (${min} ${u})`);
assert(key.length <= max,
`Key (${key.length} ${u}) is longer than expected (${max} ${u})`);
}
// Tests that a key pair can be used for encryption / decryption.
function testEncryptDecrypt(publicKey, privateKey) {
const message = 'Hello Node.js world!';
const plaintext = Buffer.from(message, 'utf8');
const ciphertext = publicEncrypt(publicKey, plaintext);
const received = privateDecrypt(privateKey, ciphertext);
assert.strictEqual(received.toString('utf8'), message);
}
// Tests that a key pair can be used for signing / verification.
function testSignVerify(publicKey, privateKey) {
const message = 'Hello Node.js world!';
const signature = createSign('SHA256').update(message)
.sign(privateKey, 'hex');
const okay = createVerify('SHA256').update(message)
.verify(publicKey, signature, 'hex');
assert(okay);
}
// Constructs a regular expression for a PEM-encoded key with the given label.
function getRegExpForPEM(label) {
const head = `\\-\\-\\-\\-\\-BEGIN ${label}\\-\\-\\-\\-\\-`;
const body = '([a-zA-Z0-9\\+/=]{64}\n)*[a-zA-Z0-9\\+/=]{1,64}';
const end = `\\-\\-\\-\\-\\-END ${label}\\-\\-\\-\\-\\-`;
return new RegExp(`^${head}\n${body}\n${end}\n$`);
}
const pkcs1PubExp = getRegExpForPEM('RSA PUBLIC KEY');
const pkcs1PrivExp = getRegExpForPEM('RSA PRIVATE KEY');
const spkiExp = getRegExpForPEM('PUBLIC KEY');
const pkcs8Exp = getRegExpForPEM('PRIVATE KEY');
const pkcs8EncExp = getRegExpForPEM('ENCRYPTED PRIVATE KEY');
const sec1Exp = getRegExpForPEM('EC PRIVATE KEY');
// Since our own APIs only accept PEM, not DER, we need to convert DER to PEM
// for testing.
function convertDERToPEM(label, der) {
const base64 = der.toString('base64');
const lines = [];
let i = 0;
while (i < base64.length) {
const n = Math.min(base64.length - i, 64);
lines.push(base64.substr(i, n));
i += n;
}
const body = lines.join('\n');
const r = `-----BEGIN ${label}-----\n${body}\n-----END ${label}-----\n`;
assert(getRegExpForPEM(label).test(r));
return r;
}
{
// To make the test faster, we will only test sync key generation once and
// with a relatively small key.
const ret = generateKeyPairSync('rsa', {
publicExponent: 0x10001,
modulusLength: 1024,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem'
}
});
assert.strictEqual(Object.keys(ret).length, 2);
const { publicKey, privateKey } = ret;
assert.strictEqual(typeof publicKey, 'string');
assert(pkcs1PubExp.test(publicKey));
assertApproximateSize(publicKey, 272);
assert.strictEqual(typeof privateKey, 'string');
assert(pkcs8Exp.test(privateKey));
assertApproximateSize(privateKey, 912);
testEncryptDecrypt(publicKey, privateKey);
testSignVerify(publicKey, privateKey);
}
{
// Test async RSA key generation.
generateKeyPair('rsa', {
publicExponent: 0x10001,
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'der'
},
privateKeyEncoding: {
type: 'pkcs1',
format: 'pem'
}
}, common.mustCall((err, publicKeyDER, privateKey) => {
assert.ifError(err);
// The public key is encoded as DER (which is binary) instead of PEM. We
// will still need to convert it to PEM for testing.
assert(Buffer.isBuffer(publicKeyDER));
const publicKey = convertDERToPEM('RSA PUBLIC KEY', publicKeyDER);
assertApproximateSize(publicKey, 720);
assert.strictEqual(typeof privateKey, 'string');
assert(pkcs1PrivExp.test(privateKey));
assertApproximateSize(privateKey, 3272);
testEncryptDecrypt(publicKey, privateKey);
testSignVerify(publicKey, privateKey);
}));
}
{
// Test async DSA key generation.
generateKeyPair('dsa', {
modulusLength: 2048,
divisorLength: 256,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'der',
cipher: 'aes-128-cbc',
passphrase: 'secret'
}
}, common.mustCall((err, publicKey, privateKeyDER) => {
assert.ifError(err);
assert.strictEqual(typeof publicKey, 'string');
assert(spkiExp.test(publicKey));
// The private key is DER-encoded.
assert(Buffer.isBuffer(privateKeyDER));
const privateKey = convertDERToPEM('ENCRYPTED PRIVATE KEY', privateKeyDER);
assertApproximateSize(publicKey, 1194);
assertApproximateSize(privateKey, 1054);
// Since the private key is encrypted, signing shouldn't work anymore.
assert.throws(() => {
testSignVerify(publicKey, privateKey);
}, /bad decrypt/);
// Signing should work with the correct password.
testSignVerify(publicKey, {
key: privateKey,
passphrase: 'secret'
});
}));
}
{
// Test async elliptic curve key generation, e.g. for ECDSA, with a SEC1
// private key.
generateKeyPair('ec', {
namedCurve: 'prime256v1',
paramEncoding: 'named',
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'sec1',
format: 'pem'
}
}, common.mustCall((err, publicKey, privateKey) => {
assert.ifError(err);
assert.strictEqual(typeof publicKey, 'string');
assert(spkiExp.test(publicKey));
assert.strictEqual(typeof privateKey, 'string');
assert(sec1Exp.test(privateKey));
testSignVerify(publicKey, privateKey);
}));
}
{
// Test async elliptic curve key generation, e.g. for ECDSA, with an encrypted
// private key.
generateKeyPair('ec', {
namedCurve: 'P-256',
paramEncoding: 'named',
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-128-cbc',
passphrase: 'top secret'
}
}, common.mustCall((err, publicKey, privateKey) => {
assert.ifError(err);
assert.strictEqual(typeof publicKey, 'string');
assert(spkiExp.test(publicKey));
assert.strictEqual(typeof privateKey, 'string');
assert(pkcs8EncExp.test(privateKey));
// Since the private key is encrypted, signing shouldn't work anymore.
assert.throws(() => {
testSignVerify(publicKey, privateKey);
}, /bad decrypt/);
testSignVerify(publicKey, {
key: privateKey,
passphrase: 'top secret'
});
}));
}
{
// Test invalid key types.
for (const type of [undefined, null, 0]) {
common.expectsError(() => generateKeyPairSync(type, {}), {
type: TypeError,
code: 'ERR_INVALID_ARG_TYPE',
message: 'The "type" argument must be of type string. Received type ' +
typeof type
});
}
common.expectsError(() => generateKeyPairSync('rsa2', {}), {
type: TypeError,
code: 'ERR_INVALID_ARG_VALUE',
message: "The argument 'type' must be one of " +
"'rsa', 'dsa', 'ec'. Received 'rsa2'"
});
}
{
// Missing / invalid publicKeyEncoding.
for (const enc of [undefined, null, 0, 'a', true]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: enc,
privateKeyEncoding: {
type: 'pkcs1',
format: 'pem'
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${enc}" is invalid for option "publicKeyEncoding"`
});
}
// Missing publicKeyEncoding.type.
for (const type of [undefined, null, 0, true, {}]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type,
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs1',
format: 'pem'
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${type}" is invalid for option ` +
'"publicKeyEncoding.type"'
});
}
// Missing / invalid publicKeyEncoding.format.
for (const format of [undefined, null, 0, false, 'a', {}]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format
},
privateKeyEncoding: {
type: 'pkcs1',
format: 'pem'
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${format}" is invalid for option ` +
'"publicKeyEncoding.format"'
});
}
// Missing / invalid privateKeyEncoding.
for (const enc of [undefined, null, 0, 'a', true]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: enc
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${enc}" is invalid for option "privateKeyEncoding"`
});
}
// Missing / invalid privateKeyEncoding.type.
for (const type of [undefined, null, 0, true, {}]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type,
format: 'pem'
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${type}" is invalid for option ` +
'"privateKeyEncoding.type"'
});
}
// Missing / invalid privateKeyEncoding.format.
for (const format of [undefined, null, 0, false, 'a', {}]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs1',
format
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${format}" is invalid for option ` +
'"privateKeyEncoding.format"'
});
}
// cipher of invalid type.
for (const cipher of [0, true, {}]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs1',
format: 'pem',
cipher
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${cipher}" is invalid for option ` +
'"privateKeyEncoding.cipher"'
});
}
// Invalid cipher.
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'foo',
passphrase: 'secret'
}
}), {
type: Error,
message: 'Unknown cipher'
});
// cipher, but no valid passphrase.
for (const passphrase of [undefined, null, 5, false, true]) {
common.expectsError(() => generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: {
type: 'pkcs1',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem',
cipher: 'aes-128-cbc',
passphrase
}
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${passphrase}" is invalid for option ` +
'"privateKeyEncoding.passphrase"'
});
}
// Test invalid callbacks.
for (const cb of [undefined, null, 0, {}]) {
common.expectsError(() => generateKeyPair('rsa', {
modulusLength: 4096,
publicKeyEncoding: { type: 'pkcs1', format: 'pem' },
privateKeyEncoding: { type: 'pkcs1', format: 'pem' }
}, cb), {
type: TypeError,
code: 'ERR_INVALID_CALLBACK'
});
}
}
// Test RSA parameters.
{
// Test invalid modulus lengths.
for (const modulusLength of [undefined, null, 'a', true, {}, [], 512.1, -1]) {
common.expectsError(() => generateKeyPair('rsa', {
modulusLength
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${modulusLength}" is invalid for option ` +
'"modulusLength"'
});
}
// Test invalid exponents.
for (const publicExponent of ['a', true, {}, [], 3.5, -1]) {
common.expectsError(() => generateKeyPair('rsa', {
modulusLength: 4096,
publicExponent
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${publicExponent}" is invalid for option ` +
'"publicExponent"'
});
}
}
// Test DSA parameters.
{
// Test invalid modulus lengths.
for (const modulusLength of [undefined, null, 'a', true, {}, [], 4096.1]) {
common.expectsError(() => generateKeyPair('dsa', {
modulusLength
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${modulusLength}" is invalid for option ` +
'"modulusLength"'
});
}
// Test invalid divisor lengths.
for (const divisorLength of ['a', true, {}, [], 4096.1]) {
common.expectsError(() => generateKeyPair('dsa', {
modulusLength: 2048,
divisorLength
}), {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${divisorLength}" is invalid for option ` +
'"divisorLength"'
});
}
}
// Test EC parameters.
{
// Test invalid curves.
common.expectsError(() => {
generateKeyPairSync('ec', {
namedCurve: 'abcdef',
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type: 'sec1', format: 'pem' }
});
}, {
type: TypeError,
message: 'Invalid ECDH curve name'
});
// It should recognize both NIST and standard curve names.
generateKeyPair('ec', {
namedCurve: 'P-256',
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type: 'pkcs8', format: 'pem' }
}, common.mustCall((err, publicKey, privateKey) => {
assert.ifError(err);
}));
generateKeyPair('ec', {
namedCurve: 'secp192k1',
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type: 'pkcs8', format: 'pem' }
}, common.mustCall((err, publicKey, privateKey) => {
assert.ifError(err);
}));
}
// Test invalid key encoding types.
{
// Invalid public key type.
for (const type of ['foo', 'pkcs8', 'sec1']) {
common.expectsError(() => {
generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: { type, format: 'pem' },
privateKeyEncoding: { type: 'pkcs8', format: 'pem' }
});
}, {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${type}" is invalid for option ` +
'"publicKeyEncoding.type"'
});
}
// Invalid private key type.
for (const type of ['foo', 'spki']) {
common.expectsError(() => {
generateKeyPairSync('rsa', {
modulusLength: 4096,
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type, format: 'pem' }
});
}, {
type: TypeError,
code: 'ERR_INVALID_OPT_VALUE',
message: `The value "${type}" is invalid for option ` +
'"privateKeyEncoding.type"'
});
}
// Key encoding doesn't match key type.
for (const type of ['dsa', 'ec']) {
common.expectsError(() => {
generateKeyPairSync(type, {
modulusLength: 4096,
namedCurve: 'P-256',
publicKeyEncoding: { type: 'pkcs1', format: 'pem' },
privateKeyEncoding: { type: 'pkcs8', format: 'pem' }
});
}, {
type: Error,
code: 'ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS',
message: 'The selected key encoding pkcs1 can only be used for RSA keys.'
});
common.expectsError(() => {
generateKeyPairSync(type, {
modulusLength: 4096,
namedCurve: 'P-256',
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type: 'pkcs1', format: 'pem' }
});
}, {
type: Error,
code: 'ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS',
message: 'The selected key encoding pkcs1 can only be used for RSA keys.'
});
}
for (const type of ['rsa', 'dsa']) {
common.expectsError(() => {
generateKeyPairSync(type, {
modulusLength: 4096,
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: { type: 'sec1', format: 'pem' }
});
}, {
type: Error,
code: 'ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS',
message: 'The selected key encoding sec1 can only be used for EC keys.'
});
}
// Attempting to encrypt a non-PKCS#8 key.
for (const type of ['pkcs1', 'sec1']) {
common.expectsError(() => {
generateKeyPairSync(type === 'pkcs1' ? 'rsa' : 'ec', {
modulusLength: 4096,
namedCurve: 'P-256',
publicKeyEncoding: { type: 'spki', format: 'pem' },
privateKeyEncoding: {
type,
format: 'pem',
cipher: 'aes-128-cbc',
passphrase: 'hello'
}
});
}, {
type: Error,
code: 'ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS',
message: `The selected key encoding ${type} does not support encryption.`
});
}
}

View File

@ -46,6 +46,7 @@ const { getSystemErrorName } = require('util');
delete providers.WORKER;
if (!common.isMainThread)
delete providers.INSPECTORJSBINDING;
delete providers.KEYPAIRGENREQUEST;
const objKeys = Object.keys(providers);
if (objKeys.length > 0)