mirror of
https://github.com/nodejs/node.git
synced 2024-11-21 10:59:27 +00:00
crypto: Add crypto.DEFAULT_ENCODING (defaults to 'buffer')
This is a flag to make it easier for users to upgrade through the breaking crypto change, and easier for us to switch it back if it's a problem. Explicitly set default encoding to 'buffer' in other tests, in case it ever changes back.
This commit is contained in:
parent
4266f5cf2e
commit
76b0bdf720
@ -5,11 +5,12 @@
|
||||
|
||||
Use `require('crypto')` to access this module.
|
||||
|
||||
The crypto module requires OpenSSL to be available on the underlying platform.
|
||||
It offers a way of encapsulating secure credentials to be used as part
|
||||
of a secure HTTPS net or http connection.
|
||||
The crypto module requires OpenSSL to be available on the underlying
|
||||
platform. It offers a way of encapsulating secure credentials to be
|
||||
used as part of a secure HTTPS net or http connection.
|
||||
|
||||
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.
|
||||
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher,
|
||||
decipher, sign and verify methods.
|
||||
|
||||
|
||||
## crypto.getCiphers()
|
||||
@ -34,30 +35,38 @@ Example:
|
||||
|
||||
## crypto.createCredentials(details)
|
||||
|
||||
Creates a credentials object, with the optional details being a dictionary with keys:
|
||||
Creates a credentials object, with the optional details being a
|
||||
dictionary with keys:
|
||||
|
||||
* `pfx` : A string or buffer holding the PFX or PKCS12 encoded private key, certificate and CA certificates
|
||||
* `pfx` : A string or buffer holding the PFX or PKCS12 encoded private
|
||||
key, certificate and CA certificates
|
||||
* `key` : A string holding the PEM encoded private key
|
||||
* `passphrase` : A string of passphrase for the private key or pfx
|
||||
* `cert` : A string holding the PEM encoded certificate
|
||||
* `ca` : Either a string or list of strings of PEM encoded CA certificates to trust.
|
||||
* `crl` : Either a string or list of strings of PEM encoded CRLs (Certificate Revocation List)
|
||||
* `ciphers`: A string describing the ciphers to use or exclude. Consult
|
||||
<http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT> for details
|
||||
on the format.
|
||||
* `ca` : Either a string or list of strings of PEM encoded CA
|
||||
certificates to trust.
|
||||
* `crl` : Either a string or list of strings of PEM encoded CRLs
|
||||
(Certificate Revocation List)
|
||||
* `ciphers`: A string describing the ciphers to use or exclude.
|
||||
Consult
|
||||
<http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT>
|
||||
for details on the format.
|
||||
|
||||
If no 'ca' details are given, then node.js will use the default publicly trusted list of CAs as given in
|
||||
If no 'ca' details are given, then node.js will use the default
|
||||
publicly trusted list of CAs as given in
|
||||
<http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt>.
|
||||
|
||||
|
||||
## crypto.createHash(algorithm)
|
||||
|
||||
Creates and returns a hash object, a cryptographic hash with the given algorithm
|
||||
which can be used to generate hash digests.
|
||||
Creates and returns a hash object, a cryptographic hash with the given
|
||||
algorithm which can be used to generate hash digests.
|
||||
|
||||
`algorithm` is dependent on the available algorithms supported by the version
|
||||
of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`, `'sha256'`, `'sha512'`, etc.
|
||||
On recent releases, `openssl list-message-digest-algorithms` will display the available digest algorithms.
|
||||
`algorithm` is dependent on the available algorithms supported by the
|
||||
version of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`,
|
||||
`'sha256'`, `'sha512'`, etc. On recent releases, `openssl
|
||||
list-message-digest-algorithms` will display the available digest
|
||||
algorithms.
|
||||
|
||||
Example: this program that takes the sha1 sum of a file
|
||||
|
||||
@ -85,27 +94,29 @@ Returned by `crypto.createHash`.
|
||||
|
||||
### hash.update(data, [input_encoding])
|
||||
|
||||
Updates the hash content with the given `data`, the encoding of which is given
|
||||
in `input_encoding` and can be `'buffer'`, `'utf8'`, `'ascii'` or `'binary'`.
|
||||
Defaults to `'buffer'`.
|
||||
Updates the hash content with the given `data`, the encoding of which
|
||||
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
|
||||
`'binary'`. If no encoding is provided, then a buffer is expected.
|
||||
|
||||
This can be called many times with new data as it is streamed.
|
||||
|
||||
### hash.digest([encoding])
|
||||
|
||||
Calculates the digest of all of the passed data to be hashed.
|
||||
The `encoding` can be `'buffer'`, `'hex'`, `'binary'` or `'base64'`.
|
||||
Defaults to `'buffer'`.
|
||||
Calculates the digest of all of the passed data to be hashed. The
|
||||
`encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding
|
||||
is provided, then a buffer is returned.
|
||||
|
||||
Note: `hash` object can not be used after `digest()` method been called.
|
||||
Note: `hash` object can not be used after `digest()` method been
|
||||
called.
|
||||
|
||||
|
||||
## crypto.createHmac(algorithm, key)
|
||||
|
||||
Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key.
|
||||
Creates and returns a hmac object, a cryptographic hmac with the given
|
||||
algorithm and key.
|
||||
|
||||
`algorithm` is dependent on the available algorithms supported by OpenSSL - see createHash above.
|
||||
`key` is the hmac key to be used.
|
||||
`algorithm` is dependent on the available algorithms supported by
|
||||
OpenSSL - see createHash above. `key` is the hmac key to be used.
|
||||
|
||||
## Class: Hmac
|
||||
|
||||
@ -115,38 +126,40 @@ Returned by `crypto.createHmac`.
|
||||
|
||||
### hmac.update(data)
|
||||
|
||||
Update the hmac content with the given `data`.
|
||||
This can be called many times with new data as it is streamed.
|
||||
Update the hmac content with the given `data`. This can be called
|
||||
many times with new data as it is streamed.
|
||||
|
||||
### hmac.digest([encoding])
|
||||
|
||||
Calculates the digest of all of the passed data to the hmac.
|
||||
The `encoding` can be `'buffer'`, `'hex'`, `'binary'` or `'base64'`.
|
||||
Defaults to `'buffer'`.
|
||||
Calculates the digest of all of the passed data to the hmac. The
|
||||
`encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding
|
||||
is provided, then a buffer is returned.
|
||||
|
||||
Note: `hmac` object can not be used after `digest()` method been called.
|
||||
Note: `hmac` object can not be used after `digest()` method been
|
||||
called.
|
||||
|
||||
|
||||
## crypto.createCipher(algorithm, password)
|
||||
|
||||
Creates and returns a cipher object, with the given algorithm and password.
|
||||
Creates and returns a cipher object, with the given algorithm and
|
||||
password.
|
||||
|
||||
`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc.
|
||||
On recent releases, `openssl list-cipher-algorithms` will display the
|
||||
available cipher algorithms.
|
||||
`password` is used to derive key and IV, which must be a `'binary'` encoded
|
||||
string or a [buffer](buffer.html).
|
||||
`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
|
||||
recent releases, `openssl list-cipher-algorithms` will display the
|
||||
available cipher algorithms. `password` is used to derive key and IV,
|
||||
which must be a `'binary'` encoded string or a [buffer](buffer.html).
|
||||
|
||||
## crypto.createCipheriv(algorithm, key, iv)
|
||||
|
||||
Creates and returns a cipher object, with the given algorithm, key and iv.
|
||||
Creates and returns a cipher object, with the given algorithm, key and
|
||||
iv.
|
||||
|
||||
`algorithm` is the same as the argument to `createCipher()`.
|
||||
`key` is the raw key used by the algorithm.
|
||||
`iv` is an [initialization
|
||||
`algorithm` is the same as the argument to `createCipher()`. `key` is
|
||||
the raw key used by the algorithm. `iv` is an [initialization
|
||||
vector](http://en.wikipedia.org/wiki/Initialization_vector).
|
||||
|
||||
`key` and `iv` must be `'binary'` encoded strings or [buffers](buffer.html).
|
||||
`key` and `iv` must be `'binary'` encoded strings or
|
||||
[buffers](buffer.html).
|
||||
|
||||
## Class: Cipher
|
||||
|
||||
@ -157,38 +170,43 @@ Returned by `crypto.createCipher` and `crypto.createCipheriv`.
|
||||
### cipher.update(data, [input_encoding], [output_encoding])
|
||||
|
||||
Updates the cipher with `data`, the encoding of which is given in
|
||||
`input_encoding` and can be `'buffer'`, `'utf8'`, `'ascii'` or `'binary'`.
|
||||
Defaults to `'buffer'`.
|
||||
`input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`. If no
|
||||
encoding is provided, then a buffer is expected.
|
||||
|
||||
The `output_encoding` specifies the output format of the enciphered data,
|
||||
and can be `'buffer'`, `'binary'`, `'base64'` or `'hex'`. Defaults to
|
||||
`'buffer'`.
|
||||
The `output_encoding` specifies the output format of the enciphered
|
||||
data, and can be `'binary'`, `'base64'` or `'hex'`. If no encoding is
|
||||
provided, then a buffer iis returned.
|
||||
|
||||
Returns the enciphered contents, and can be called many times with new data as it is streamed.
|
||||
Returns the enciphered contents, and can be called many times with new
|
||||
data as it is streamed.
|
||||
|
||||
### cipher.final([output_encoding])
|
||||
|
||||
Returns any remaining enciphered contents, with `output_encoding` being one of:
|
||||
`'buffer'`, `'binary'`, `'base64'` or `'hex'`. Defaults to `'buffer'`.
|
||||
Returns any remaining enciphered contents, with `output_encoding`
|
||||
being one of: `'binary'`, `'base64'` or `'hex'`. If no encoding is
|
||||
provided, then a buffer is returned.
|
||||
|
||||
Note: `cipher` object can not be used after `final()` method been called.
|
||||
Note: `cipher` object can not be used after `final()` method been
|
||||
called.
|
||||
|
||||
### cipher.setAutoPadding(auto_padding=true)
|
||||
|
||||
You can disable automatic padding of the input data to block size. If `auto_padding` is false,
|
||||
the length of the entire input data must be a multiple of the cipher's block size or `final` will fail.
|
||||
Useful for non-standard padding, e.g. using `0x0` instead of PKCS padding. You must call this before `cipher.final`.
|
||||
You can disable automatic padding of the input data to block size. If
|
||||
`auto_padding` is false, the length of the entire input data must be a
|
||||
multiple of the cipher's block size or `final` will fail. Useful for
|
||||
non-standard padding, e.g. using `0x0` instead of PKCS padding. You
|
||||
must call this before `cipher.final`.
|
||||
|
||||
|
||||
## crypto.createDecipher(algorithm, password)
|
||||
|
||||
Creates and returns a decipher object, with the given algorithm and key.
|
||||
This is the mirror of the [createCipher()][] above.
|
||||
Creates and returns a decipher object, with the given algorithm and
|
||||
key. This is the mirror of the [createCipher()][] above.
|
||||
|
||||
## crypto.createDecipheriv(algorithm, key, iv)
|
||||
|
||||
Creates and returns a decipher object, with the given algorithm, key and iv.
|
||||
This is the mirror of the [createCipheriv()][] above.
|
||||
Creates and returns a decipher object, with the given algorithm, key
|
||||
and iv. This is the mirror of the [createCipheriv()][] above.
|
||||
|
||||
## Class: Decipher
|
||||
|
||||
@ -198,33 +216,36 @@ Returned by `crypto.createDecipher` and `crypto.createDecipheriv`.
|
||||
|
||||
### decipher.update(data, [input_encoding], [output_encoding])
|
||||
|
||||
Updates the decipher with `data`, which is encoded in `'buffer'`, `'binary'`,
|
||||
`'base64'` or `'hex'`. Defaults to `'buffer'`.
|
||||
Updates the decipher with `data`, which is encoded in `'binary'`,
|
||||
`'base64'` or `'hex'`. If no encoding is provided, then a buffer is
|
||||
expected.
|
||||
|
||||
The `output_decoding` specifies in what format to return the deciphered
|
||||
plaintext: `'buffer'`, `'binary'`, `'ascii'` or `'utf8'`.
|
||||
Defaults to `'buffer'`.
|
||||
The `output_decoding` specifies in what format to return the
|
||||
deciphered plaintext: `'binary'`, `'ascii'` or `'utf8'`. If no
|
||||
encoding is provided, then a buffer is returned.
|
||||
|
||||
### decipher.final([output_encoding])
|
||||
|
||||
Returns any remaining plaintext which is deciphered,
|
||||
with `output_encoding` being one of: `'buffer'`, `'binary'`, `'ascii'` or
|
||||
`'utf8'`.
|
||||
Defaults to `'buffer'`.
|
||||
Returns any remaining plaintext which is deciphered, with
|
||||
`output_encoding` being one of: `'binary'`, `'ascii'` or `'utf8'`. If
|
||||
no encoding is provided, then a buffer is returned.
|
||||
|
||||
Note: `decipher` object can not be used after `final()` method been called.
|
||||
Note: `decipher` object can not be used after `final()` method been
|
||||
called.
|
||||
|
||||
### decipher.setAutoPadding(auto_padding=true)
|
||||
|
||||
You can disable auto padding if the data has been encrypted without standard block padding to prevent
|
||||
`decipher.final` from checking and removing it. Can only work if the input data's length is a multiple of the
|
||||
ciphers block size. You must call this before streaming data to `decipher.update`.
|
||||
You can disable auto padding if the data has been encrypted without
|
||||
standard block padding to prevent `decipher.final` from checking and
|
||||
removing it. Can only work if the input data's length is a multiple of
|
||||
the ciphers block size. You must call this before streaming data to
|
||||
`decipher.update`.
|
||||
|
||||
## crypto.createSign(algorithm)
|
||||
|
||||
Creates and returns a signing object, with the given algorithm.
|
||||
On recent OpenSSL releases, `openssl list-public-key-algorithms` will display
|
||||
the available signing algorithms. Examples are `'RSA-SHA256'`.
|
||||
Creates and returns a signing object, with the given algorithm. On
|
||||
recent OpenSSL releases, `openssl list-public-key-algorithms` will
|
||||
display the available signing algorithms. Examples are `'RSA-SHA256'`.
|
||||
|
||||
## Class: Signer
|
||||
|
||||
@ -234,18 +255,21 @@ Returned by `crypto.createSign`.
|
||||
|
||||
### signer.update(data)
|
||||
|
||||
Updates the signer object with data.
|
||||
This can be called many times with new data as it is streamed.
|
||||
Updates the signer object with data. This can be called many times
|
||||
with new data as it is streamed.
|
||||
|
||||
### signer.sign(private_key, [output_format])
|
||||
|
||||
Calculates the signature on all the updated data passed through the signer.
|
||||
`private_key` is a string containing the PEM encoded private key for signing.
|
||||
Calculates the signature on all the updated data passed through the
|
||||
signer. `private_key` is a string containing the PEM encoded private
|
||||
key for signing.
|
||||
|
||||
Returns the signature in `output_format` which can be `'buffer'`, `'binary'`,
|
||||
`'hex'` or `'base64'`. Defaults to `'buffer'`.
|
||||
Returns the signature in `output_format` which can be `'binary'`,
|
||||
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
|
||||
returned.
|
||||
|
||||
Note: `signer` object can not be used after `sign()` method been called.
|
||||
Note: `signer` object can not be used after `sign()` method been
|
||||
called.
|
||||
|
||||
## crypto.createVerify(algorithm)
|
||||
|
||||
@ -260,32 +284,34 @@ Returned by `crypto.createVerify`.
|
||||
|
||||
### verifier.update(data)
|
||||
|
||||
Updates the verifier object with data.
|
||||
This can be called many times with new data as it is streamed.
|
||||
Updates the verifier object with data. This can be called many times
|
||||
with new data as it is streamed.
|
||||
|
||||
### verifier.verify(object, signature, [signature_format])
|
||||
|
||||
Verifies the signed data by using the `object` and `signature`. `object` is a
|
||||
string containing a PEM encoded object, which can be one of RSA public key,
|
||||
DSA public key, or X.509 certificate. `signature` is the previously calculated
|
||||
signature for the data, in the `signature_format` which can be `'buffer'`,
|
||||
`'binary'`, `'hex'` or `'base64'`. Defaults to `'buffer'`.
|
||||
Verifies the signed data by using the `object` and `signature`.
|
||||
`object` is a string containing a PEM encoded object, which can be
|
||||
one of RSA public key, DSA public key, or X.509 certificate.
|
||||
`signature` is the previously calculated signature for the data, in
|
||||
the `signature_format` which can be `'binary'`, `'hex'` or `'base64'`.
|
||||
If no encoding is specified, then a buffer is expected.
|
||||
|
||||
Returns true or false depending on the validity of the signature for the data and public key.
|
||||
Returns true or false depending on the validity of the signature for
|
||||
the data and public key.
|
||||
|
||||
Note: `verifier` object can not be used after `verify()` method been called.
|
||||
Note: `verifier` object can not be used after `verify()` method been
|
||||
called.
|
||||
|
||||
## crypto.createDiffieHellman(prime_length)
|
||||
|
||||
Creates a Diffie-Hellman key exchange object and generates a prime of the
|
||||
given bit length. The generator used is `2`.
|
||||
Creates a Diffie-Hellman key exchange object and generates a prime of
|
||||
the given bit length. The generator used is `2`.
|
||||
|
||||
## crypto.createDiffieHellman(prime, [encoding])
|
||||
|
||||
Creates a Diffie-Hellman key exchange object using the supplied prime. The
|
||||
generator used is `2`. Encoding can be `'buffer'`, `'binary'`, `'hex'`, or
|
||||
`'base64'`.
|
||||
Defaults to `'buffer'`.
|
||||
Creates a Diffie-Hellman key exchange object using the supplied prime.
|
||||
The generator used is `2`. Encoding can be `'binary'`, `'hex'`, or
|
||||
`'base64'`. If no encoding is specified, then a buffer is expected.
|
||||
|
||||
## Class: DiffieHellman
|
||||
|
||||
@ -295,65 +321,70 @@ Returned by `crypto.createDiffieHellman`.
|
||||
|
||||
### diffieHellman.generateKeys([encoding])
|
||||
|
||||
Generates private and public Diffie-Hellman key values, and returns the
|
||||
public key in the specified encoding. This key should be transferred to the
|
||||
other party. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
|
||||
Defaults to `'buffer'`.
|
||||
Generates private and public Diffie-Hellman key values, and returns
|
||||
the public key in the specified encoding. This key should be
|
||||
transferred to the other party. Encoding can be `'binary'`, `'hex'`,
|
||||
or `'base64'`. If no encoding is provided, then a buffer is returned.
|
||||
|
||||
### diffieHellman.computeSecret(other_public_key, [input_encoding], [output_encoding])
|
||||
|
||||
Computes the shared secret using `other_public_key` as the other party's
|
||||
public key and returns the computed shared secret. Supplied key is
|
||||
interpreted using specified `input_encoding`, and secret is encoded using
|
||||
specified `output_encoding`. Encodings can be `'buffer'`, `'binary'`, `'hex'`,
|
||||
or `'base64'`. The input encoding defaults to `'buffer'`.
|
||||
If no output encoding is given, the input encoding is used as output encoding.
|
||||
Computes the shared secret using `other_public_key` as the other
|
||||
party's public key and returns the computed shared secret. Supplied
|
||||
key is interpreted using specified `input_encoding`, and secret is
|
||||
encoded using specified `output_encoding`. Encodings can be
|
||||
`'binary'`, `'hex'`, or `'base64'`. If the input encoding is not
|
||||
provided, then a buffer is expected.
|
||||
|
||||
If no output encoding is given, then a buffer is returned.
|
||||
|
||||
### diffieHellman.getPrime([encoding])
|
||||
|
||||
Returns the Diffie-Hellman prime in the specified encoding, which can be
|
||||
`'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
|
||||
Returns the Diffie-Hellman prime in the specified encoding, which can
|
||||
be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
|
||||
then a buffer is returned.
|
||||
|
||||
### diffieHellman.getGenerator([encoding])
|
||||
|
||||
Returns the Diffie-Hellman prime in the specified encoding, which can be
|
||||
`'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
|
||||
Returns the Diffie-Hellman prime in the specified encoding, which can
|
||||
be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
|
||||
then a buffer is returned.
|
||||
|
||||
### diffieHellman.getPublicKey([encoding])
|
||||
|
||||
Returns the Diffie-Hellman public key in the specified encoding, which can
|
||||
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
|
||||
Returns the Diffie-Hellman public key in the specified encoding, which
|
||||
can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
|
||||
then a buffer is returned.
|
||||
|
||||
### diffieHellman.getPrivateKey([encoding])
|
||||
|
||||
Returns the Diffie-Hellman private key in the specified encoding, which can
|
||||
be `'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to
|
||||
`'buffer'`.
|
||||
Returns the Diffie-Hellman private key in the specified encoding,
|
||||
which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is
|
||||
provided, then a buffer is returned.
|
||||
|
||||
### diffieHellman.setPublicKey(public_key, [encoding])
|
||||
|
||||
Sets the Diffie-Hellman public key. Key encoding can be `'buffer', ``'binary'`,
|
||||
`'hex'` or `'base64'`. Defaults to `'buffer'`.
|
||||
Sets the Diffie-Hellman public key. Key encoding can be `'binary'`,
|
||||
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
|
||||
expected.
|
||||
|
||||
### diffieHellman.setPrivateKey(public_key, [encoding])
|
||||
|
||||
Sets the Diffie-Hellman private key. Key encoding can be `'buffer'`, `'binary'`,
|
||||
`'hex'` or `'base64'`. Defaults to `'buffer'`.
|
||||
Sets the Diffie-Hellman private key. Key encoding can be `'binary'`,
|
||||
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
|
||||
expected.
|
||||
|
||||
## crypto.getDiffieHellman(group_name)
|
||||
|
||||
Creates a predefined Diffie-Hellman key exchange object.
|
||||
The supported groups are: `'modp1'`, `'modp2'`, `'modp5'`
|
||||
(defined in [RFC 2412][])
|
||||
and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'`
|
||||
(defined in [RFC 3526][]).
|
||||
The returned object mimics the interface of objects created by
|
||||
[crypto.createDiffieHellman()][] above, but
|
||||
will not allow to change the keys (with
|
||||
[diffieHellman.setPublicKey()][] for example).
|
||||
The advantage of using this routine is that the parties don't have to
|
||||
generate nor exchange group modulus beforehand, saving both processor and
|
||||
communication time.
|
||||
Creates a predefined Diffie-Hellman key exchange object. The
|
||||
supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC
|
||||
2412][]) and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`,
|
||||
`'modp18'` (defined in [RFC 3526][]). The returned object mimics the
|
||||
interface of objects created by [crypto.createDiffieHellman()][]
|
||||
above, but will not allow to change the keys (with
|
||||
[diffieHellman.setPublicKey()][] for example). The advantage of using
|
||||
this routine is that the parties don't have to generate nor exchange
|
||||
group modulus beforehand, saving both processor and communication
|
||||
time.
|
||||
|
||||
Example (obtaining a shared secret):
|
||||
|
||||
@ -398,32 +429,46 @@ Generates cryptographically strong pseudo-random data. Usage:
|
||||
// handle error
|
||||
}
|
||||
|
||||
## Proposed API Changes in Future Versions of Node
|
||||
## crypto.DEFAULT_ENCODING
|
||||
|
||||
The default encoding to use for functions that can take either strings
|
||||
or buffers. The default value is `'buffer'`, which makes it default
|
||||
to using Buffer objects. This is here to make the crypto module more
|
||||
easily compatible with legacy programs that expected `'binary'` to be
|
||||
the default encoding.
|
||||
|
||||
Note that new programs will probably expect buffers, so only use this
|
||||
as a temporary measure.
|
||||
|
||||
## Recent API Changes
|
||||
|
||||
The Crypto module was added to Node before there was the concept of a
|
||||
unified Stream API, and before there were Buffer objects for handling
|
||||
binary data.
|
||||
|
||||
As such, the streaming classes don't have the typical methods found on
|
||||
other Node classes, and many methods accept and return Binary-encoded
|
||||
strings by default rather than Buffers.
|
||||
other Node classes, and many methods accepted and returned
|
||||
Binary-encoded strings by default rather than Buffers. This was
|
||||
changed to use Buffers by default instead.
|
||||
|
||||
A future version of node will make Buffers the default data type.
|
||||
This will be a breaking change for some use cases, but not all.
|
||||
This is a breaking change for some use cases, but not all.
|
||||
|
||||
For example, if you currently use the default arguments to the Sign
|
||||
class, and then pass the results to the Verify class, without ever
|
||||
inspecting the data, then it will continue to work as before. Where
|
||||
you now get a binary string and then present the binary string to the
|
||||
Verify object, you'll get a Buffer, and present the Buffer to the
|
||||
Verify object.
|
||||
you once got a binary string and then presented the binary string to
|
||||
the Verify object, you'll now get a Buffer, and present the Buffer to
|
||||
the Verify object.
|
||||
|
||||
However, if you are doing things with the string data that will not
|
||||
However, if you were doing things with the string data that will not
|
||||
work properly on Buffers (such as, concatenating them, storing in
|
||||
databases, etc.), or you are passing binary strings to the crypto
|
||||
functions without an encoding argument, then you will need to start
|
||||
providing encoding arguments to specify which encoding you'd like to
|
||||
use.
|
||||
use. To switch to the previous style of using binary strings by
|
||||
default, set the `crypto.DEFAULT_ENCODING` field to 'binary'. Note
|
||||
that new programs will probably expect buffers, so only use this as a
|
||||
temporary measure.
|
||||
|
||||
Also, a Streaming API will be provided, but this will be done in such
|
||||
a way as to preserve the legacy API surface.
|
||||
|
@ -19,6 +19,10 @@
|
||||
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
||||
// USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
// Note: In 0.8 and before, crypto functions all defaulted to using
|
||||
// binary-encoded strings rather than buffers.
|
||||
|
||||
exports.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
try {
|
||||
var binding = process.binding('crypto');
|
||||
@ -137,15 +141,17 @@ function Hash(algorithm) {
|
||||
}
|
||||
|
||||
Hash.prototype.update = function(data, encoding) {
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding === 'buffer')
|
||||
encoding = null;
|
||||
if (encoding || typeof data === 'string')
|
||||
if (typeof data === 'string')
|
||||
data = new Buffer(data, encoding);
|
||||
this._binding.update(data);
|
||||
return this;
|
||||
};
|
||||
|
||||
Hash.prototype.digest = function(outputEncoding) {
|
||||
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
|
||||
var result = this._binding.digest('buffer');
|
||||
if (outputEncoding && outputEncoding !== 'buffer')
|
||||
result = result.toString(outputEncoding);
|
||||
@ -191,6 +197,8 @@ function Cipher(cipher, password) {
|
||||
}
|
||||
|
||||
Cipher.prototype.update = function(data, inputEncoding, outputEncoding) {
|
||||
inputEncoding = inputEncoding || exports.DEFAULT_ENCODING;
|
||||
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
|
||||
if (inputEncoding && inputEncoding !== 'buffer')
|
||||
data = new Buffer(data, inputEncoding);
|
||||
|
||||
@ -205,6 +213,7 @@ Cipher.prototype.update = function(data, inputEncoding, outputEncoding) {
|
||||
};
|
||||
|
||||
Cipher.prototype.final = function(outputEncoding) {
|
||||
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
|
||||
var ret = this._binding.final('buffer');
|
||||
|
||||
if (outputEncoding && outputEncoding !== 'buffer') {
|
||||
@ -296,6 +305,7 @@ Sign.prototype.sign = function(key, encoding) {
|
||||
if (typeof key === 'string')
|
||||
key = new Buffer(key, 'binary');
|
||||
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
var ret = this._binding.sign(key, 'buffer');
|
||||
if (encoding && encoding !== 'buffer')
|
||||
ret = ret.toString(encoding);
|
||||
@ -319,6 +329,7 @@ Verify.prototype.verify = function(object, signature, sigEncoding) {
|
||||
if (typeof object === 'string')
|
||||
object = new Buffer(object, 'binary');
|
||||
|
||||
sigEncoding = sigEncoding || exports.DEFAULT_ENCODING;
|
||||
if (sigEncoding === 'buffer')
|
||||
sigEncoding = null;
|
||||
if (sigEncoding || typeof signature === 'string')
|
||||
@ -336,9 +347,10 @@ function DiffieHellman(sizeOrKey, encoding) {
|
||||
if (!sizeOrKey)
|
||||
this._binding = new binding.DiffieHellman();
|
||||
else {
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding === 'buffer')
|
||||
encoding = null;
|
||||
if (encoding || typeof sizeOrKey === 'string')
|
||||
if (typeof sizeOrKey === 'string')
|
||||
sizeOrKey = new Buffer(sizeOrKey, encoding);
|
||||
this._binding = new binding.DiffieHellman(sizeOrKey, 'buffer');
|
||||
}
|
||||
@ -346,12 +358,15 @@ function DiffieHellman(sizeOrKey, encoding) {
|
||||
|
||||
DiffieHellman.prototype.generateKeys = function(encoding) {
|
||||
var keys = this._binding.generateKeys('buffer');
|
||||
if (encoding)
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding && encoding !== 'buffer')
|
||||
keys = keys.toString(encoding);
|
||||
return keys;
|
||||
};
|
||||
|
||||
DiffieHellman.prototype.computeSecret = function(key, inEnc, outEnc) {
|
||||
inEnc = inEnc || exports.DEFAULT_ENCODING;
|
||||
outEnc = outEnc || exports.DEFAULT_ENCODING;
|
||||
if (inEnc === 'buffer')
|
||||
inEnc = null;
|
||||
if (outEnc === 'buffer')
|
||||
@ -366,6 +381,7 @@ DiffieHellman.prototype.computeSecret = function(key, inEnc, outEnc) {
|
||||
|
||||
DiffieHellman.prototype.getPrime = function(encoding) {
|
||||
var prime = this._binding.getPrime('buffer');
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding && encoding !== 'buffer')
|
||||
prime = prime.toString(encoding);
|
||||
return prime;
|
||||
@ -373,6 +389,7 @@ DiffieHellman.prototype.getPrime = function(encoding) {
|
||||
|
||||
DiffieHellman.prototype.getGenerator = function(encoding) {
|
||||
var generator = this._binding.getGenerator('buffer');
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding && encoding !== 'buffer')
|
||||
generator = generator.toString(encoding);
|
||||
return generator;
|
||||
@ -380,6 +397,7 @@ DiffieHellman.prototype.getGenerator = function(encoding) {
|
||||
|
||||
DiffieHellman.prototype.getPublicKey = function(encoding) {
|
||||
var key = this._binding.getPublicKey('buffer');
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding && encoding !== 'buffer')
|
||||
key = key.toString(encoding);
|
||||
return key;
|
||||
@ -387,12 +405,14 @@ DiffieHellman.prototype.getPublicKey = function(encoding) {
|
||||
|
||||
DiffieHellman.prototype.getPrivateKey = function(encoding) {
|
||||
var key = this._binding.getPrivateKey('buffer');
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding && encoding !== 'buffer')
|
||||
key = key.toString(encoding);
|
||||
return key;
|
||||
};
|
||||
|
||||
DiffieHellman.prototype.setPublicKey = function(key, encoding) {
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding === 'buffer')
|
||||
encoding = null;
|
||||
if (encoding || typeof key === 'string')
|
||||
@ -402,6 +422,7 @@ DiffieHellman.prototype.setPublicKey = function(key, encoding) {
|
||||
};
|
||||
|
||||
DiffieHellman.prototype.setPrivateKey = function(key, encoding) {
|
||||
encoding = encoding || exports.DEFAULT_ENCODING;
|
||||
if (encoding === 'buffer')
|
||||
encoding = null;
|
||||
if (encoding || typeof key === 'string')
|
||||
@ -445,7 +466,22 @@ exports.pbkdf2 = function(password, salt, iterations, keylen, callback) {
|
||||
password = new Buffer(password, 'binary');
|
||||
if (typeof salt === 'string')
|
||||
salt = new Buffer(salt, 'binary');
|
||||
return binding.PBKDF2(password, salt, iterations, keylen, callback);
|
||||
|
||||
if (exports.DEFAULT_ENCODING === 'buffer')
|
||||
return binding.PBKDF2(password, salt, iterations, keylen, callback);
|
||||
|
||||
// at this point, we need to handle encodings.
|
||||
var encoding = exports.DEFAULT_ENCODING;
|
||||
if (callback) {
|
||||
binding.PBKDF2(password, salt, iterations, keylen, function(er, ret) {
|
||||
if (ret)
|
||||
ret = ret.toString(encoding);
|
||||
callback(er, ret);
|
||||
});
|
||||
} else {
|
||||
var ret = binding.PBKDF2(password, salt, iterations, keylen);
|
||||
return ret.toString(encoding);
|
||||
}
|
||||
};
|
||||
|
||||
exports.pbkdf2Sync = function(password, salt, iterations, keylen) {
|
||||
|
690
test/simple/test-crypto-binary-default.js
Normal file
690
test/simple/test-crypto-binary-default.js
Normal file
@ -0,0 +1,690 @@
|
||||
// Copyright Joyent, Inc. and other Node contributors.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the
|
||||
// "Software"), to deal in the Software without restriction, including
|
||||
// without limitation the rights to use, copy, modify, merge, publish,
|
||||
// distribute, sublicense, and/or sell copies of the Software, and to permit
|
||||
// persons to whom the Software is furnished to do so, subject to the
|
||||
// following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included
|
||||
// in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
|
||||
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
||||
// USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
// This is the same as test/simple/test-crypto, but from before the shift
|
||||
// to use buffers by default.
|
||||
|
||||
|
||||
var common = require('../common');
|
||||
var assert = require('assert');
|
||||
|
||||
try {
|
||||
var crypto = require('crypto');
|
||||
} catch (e) {
|
||||
console.log('Not compiled with OPENSSL support.');
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'binary';
|
||||
|
||||
var fs = require('fs');
|
||||
var path = require('path');
|
||||
|
||||
// Test Certificates
|
||||
var caPem = fs.readFileSync(common.fixturesDir + '/test_ca.pem', 'ascii');
|
||||
var certPem = fs.readFileSync(common.fixturesDir + '/test_cert.pem', 'ascii');
|
||||
var certPfx = fs.readFileSync(common.fixturesDir + '/test_cert.pfx');
|
||||
var keyPem = fs.readFileSync(common.fixturesDir + '/test_key.pem', 'ascii');
|
||||
var rsaPubPem = fs.readFileSync(common.fixturesDir + '/test_rsa_pubkey.pem',
|
||||
'ascii');
|
||||
var rsaKeyPem = fs.readFileSync(common.fixturesDir + '/test_rsa_privkey.pem',
|
||||
'ascii');
|
||||
|
||||
try {
|
||||
var credentials = crypto.createCredentials(
|
||||
{key: keyPem,
|
||||
cert: certPem,
|
||||
ca: caPem});
|
||||
} catch (e) {
|
||||
console.log('Not compiled with OPENSSL support.');
|
||||
process.exit();
|
||||
}
|
||||
|
||||
// PFX tests
|
||||
assert.doesNotThrow(function() {
|
||||
crypto.createCredentials({pfx:certPfx, passphrase:'sample'});
|
||||
});
|
||||
|
||||
assert.throws(function() {
|
||||
crypto.createCredentials({pfx:certPfx});
|
||||
}, 'mac verify failure');
|
||||
|
||||
assert.throws(function() {
|
||||
crypto.createCredentials({pfx:certPfx, passphrase:'test'});
|
||||
}, 'mac verify failure');
|
||||
|
||||
assert.throws(function() {
|
||||
crypto.createCredentials({pfx:'sample', passphrase:'test'});
|
||||
}, 'not enough data');
|
||||
|
||||
// Test HMAC
|
||||
var h1 = crypto.createHmac('sha1', 'Node')
|
||||
.update('some data')
|
||||
.update('to hmac')
|
||||
.digest('hex');
|
||||
assert.equal(h1, '19fd6e1ba73d9ed2224dd5094a71babe85d9a892', 'test HMAC');
|
||||
|
||||
// Test HMAC-SHA-* (rfc 4231 Test Cases)
|
||||
var rfc4231 = [
|
||||
{
|
||||
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
|
||||
data: new Buffer('4869205468657265', 'hex'), // 'Hi There'
|
||||
hmac: {
|
||||
sha224: '896fb1128abbdf196832107cd49df33f47b4b1169912ba4f53684b22',
|
||||
sha256:
|
||||
'b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c' +
|
||||
'2e32cff7',
|
||||
sha384:
|
||||
'afd03944d84895626b0825f4ab46907f15f9dadbe4101ec682aa034c' +
|
||||
'7cebc59cfaea9ea9076ede7f4af152e8b2fa9cb6',
|
||||
sha512:
|
||||
'87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b305' +
|
||||
'45e17cdedaa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f170' +
|
||||
'2e696c203a126854'
|
||||
}
|
||||
},
|
||||
{
|
||||
key: new Buffer('4a656665', 'hex'), // 'Jefe'
|
||||
data: new Buffer('7768617420646f2079612077616e7420666f72206e6f74686' +
|
||||
'96e673f', 'hex'), // 'what do ya want for nothing?'
|
||||
hmac: {
|
||||
sha224: 'a30e01098bc6dbbf45690f3a7e9e6d0f8bbea2a39e6148008fd05e44',
|
||||
sha256:
|
||||
'5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b9' +
|
||||
'64ec3843',
|
||||
sha384:
|
||||
'af45d2e376484031617f78d2b58a6b1b9c7ef464f5a01b47e42ec373' +
|
||||
'6322445e8e2240ca5e69e2c78b3239ecfab21649',
|
||||
sha512:
|
||||
'164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7' +
|
||||
'ea2505549758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b' +
|
||||
'636e070a38bce737'
|
||||
}
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
|
||||
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' +
|
||||
'ddddddddddddddddddddddddddddddddddddddddddddddddddd',
|
||||
'hex'),
|
||||
hmac: {
|
||||
sha224: '7fb3cb3588c6c1f6ffa9694d7d6ad2649365b0c1f65d69d1ec8333ea',
|
||||
sha256:
|
||||
'773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514' +
|
||||
'ced565fe',
|
||||
sha384:
|
||||
'88062608d3e6ad8a0aa2ace014c8a86f0aa635d947ac9febe83ef4e5' +
|
||||
'5966144b2a5ab39dc13814b94e3ab6e101a34f27',
|
||||
sha512:
|
||||
'fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33' +
|
||||
'b2279d39bf3e848279a722c806b485a47e67c807b946a337bee89426' +
|
||||
'74278859e13292fb'
|
||||
}
|
||||
},
|
||||
{
|
||||
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
|
||||
'hex'),
|
||||
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
|
||||
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd',
|
||||
'hex'),
|
||||
hmac: {
|
||||
sha224: '6c11506874013cac6a2abc1bb382627cec6a90d86efc012de7afec5a',
|
||||
sha256:
|
||||
'82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff4' +
|
||||
'6729665b',
|
||||
sha384:
|
||||
'3e8a69b7783c25851933ab6290af6ca77a9981480850009cc5577c6e' +
|
||||
'1f573b4e6801dd23c4a7d679ccf8a386c674cffb',
|
||||
sha512:
|
||||
'b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050' +
|
||||
'361ee3dba91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2d' +
|
||||
'e2adebeb10a298dd'
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
|
||||
// 'Test With Truncation'
|
||||
data: new Buffer('546573742057697468205472756e636174696f6e', 'hex'),
|
||||
hmac: {
|
||||
sha224: '0e2aea68a90c8d37c988bcdb9fca6fa8',
|
||||
sha256: 'a3b6167473100ee06e0c796c2955552b',
|
||||
sha384: '3abf34c3503b2a23a46efc619baef897',
|
||||
sha512: '415fad6271580a531d4179bc891d87a6'
|
||||
},
|
||||
truncate: true
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaa', 'hex'),
|
||||
// 'Test Using Larger Than Block-Size Key - Hash Key First'
|
||||
data: new Buffer('54657374205573696e67204c6172676572205468616e20426' +
|
||||
'c6f636b2d53697a65204b6579202d2048617368204b657920' +
|
||||
'4669727374', 'hex'),
|
||||
hmac: {
|
||||
sha224: '95e9a0db962095adaebe9b2d6f0dbce2d499f112f2d2b7273fa6870e',
|
||||
sha256:
|
||||
'60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f' +
|
||||
'0ee37f54',
|
||||
sha384:
|
||||
'4ece084485813e9088d2c63a041bc5b44f9ef1012a2b588f3cd11f05' +
|
||||
'033ac4c60c2ef6ab4030fe8296248df163f44952',
|
||||
sha512:
|
||||
'80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b0137' +
|
||||
'83f8f3526b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec' +
|
||||
'8b915a985d786598'
|
||||
}
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaa', 'hex'),
|
||||
// 'This is a test using a larger than block-size key and a larger ' +
|
||||
// 'than block-size data. The key needs to be hashed before being ' +
|
||||
// 'used by the HMAC algorithm.'
|
||||
data: new Buffer('5468697320697320612074657374207573696e672061206c6' +
|
||||
'172676572207468616e20626c6f636b2d73697a65206b6579' +
|
||||
'20616e642061206c6172676572207468616e20626c6f636b2' +
|
||||
'd73697a6520646174612e20546865206b6579206e65656473' +
|
||||
'20746f20626520686173686564206265666f7265206265696' +
|
||||
'e6720757365642062792074686520484d414320616c676f72' +
|
||||
'6974686d2e', 'hex'),
|
||||
hmac: {
|
||||
sha224: '3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1',
|
||||
sha256:
|
||||
'9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f5153' +
|
||||
'5c3a35e2',
|
||||
sha384:
|
||||
'6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82' +
|
||||
'461e99c5a678cc31e799176d3860e6110c46523e',
|
||||
sha512:
|
||||
'e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d' +
|
||||
'20cdc944b6022cac3c4982b10d5eeb55c3e4de15134676fb6de04460' +
|
||||
'65c97440fa8c6a58'
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
for (var i = 0, l = rfc4231.length; i < l; i++) {
|
||||
for (var hash in rfc4231[i]['hmac']) {
|
||||
var result = crypto.createHmac(hash, rfc4231[i]['key'])
|
||||
.update(rfc4231[i]['data'])
|
||||
.digest('hex');
|
||||
if (rfc4231[i]['truncate']) {
|
||||
result = result.substr(0, 32); // first 128 bits == 32 hex chars
|
||||
}
|
||||
assert.equal(rfc4231[i]['hmac'][hash],
|
||||
result,
|
||||
'Test HMAC-' + hash + ': Test case ' + (i + 1) + ' rfc 4231');
|
||||
}
|
||||
}
|
||||
|
||||
// Test HMAC-MD5/SHA1 (rfc 2202 Test Cases)
|
||||
var rfc2202_md5 = [
|
||||
{
|
||||
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
|
||||
data: 'Hi There',
|
||||
hmac: '9294727a3638bb1c13f48ef8158bfc9d'
|
||||
},
|
||||
{
|
||||
key: 'Jefe',
|
||||
data: 'what do ya want for nothing?',
|
||||
hmac: '750c783e6ab0b503eaa86e310a5db738'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
|
||||
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' +
|
||||
'ddddddddddddddddddddddddddddddddddddddddddddddddddd',
|
||||
'hex'),
|
||||
hmac: '56be34521d144c88dbb8c733f0e8b3f6'
|
||||
},
|
||||
{
|
||||
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
|
||||
'hex'),
|
||||
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
|
||||
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' +
|
||||
'cdcdcdcdcd',
|
||||
'hex'),
|
||||
hmac: '697eaf0aca3a3aea3a75164746ffaa79'
|
||||
},
|
||||
{
|
||||
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
|
||||
data: 'Test With Truncation',
|
||||
hmac: '56461ef2342edc00f9bab995690efd4c'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaa',
|
||||
'hex'),
|
||||
data: 'Test Using Larger Than Block-Size Key - Hash Key First',
|
||||
hmac: '6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaa',
|
||||
'hex'),
|
||||
data:
|
||||
'Test Using Larger Than Block-Size Key and Larger Than One ' +
|
||||
'Block-Size Data',
|
||||
hmac: '6f630fad67cda0ee1fb1f562db3aa53e'
|
||||
}
|
||||
];
|
||||
var rfc2202_sha1 = [
|
||||
{
|
||||
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
|
||||
data: 'Hi There',
|
||||
hmac: 'b617318655057264e28bc0b6fb378c8ef146be00'
|
||||
},
|
||||
{
|
||||
key: 'Jefe',
|
||||
data: 'what do ya want for nothing?',
|
||||
hmac: 'effcdf6ae5eb2fa2d27416d5f184df9c259a7c79'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
|
||||
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddd' +
|
||||
'ddddddddddddddddddddddddddddddddddddddddddddd' +
|
||||
'dddddddddd',
|
||||
'hex'),
|
||||
hmac: '125d7342b9ac11cd91a39af48aa17b4f63f175d3'
|
||||
},
|
||||
{
|
||||
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
|
||||
'hex'),
|
||||
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
|
||||
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' +
|
||||
'cdcdcdcdcd',
|
||||
'hex'),
|
||||
hmac: '4c9007f4026250c6bc8414f9bf50c86c2d7235da'
|
||||
},
|
||||
{
|
||||
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
|
||||
data: 'Test With Truncation',
|
||||
hmac: '4c1a03424b55e07fe7f27be1d58bb9324a9a5a04'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaa',
|
||||
'hex'),
|
||||
data: 'Test Using Larger Than Block-Size Key - Hash Key First',
|
||||
hmac: 'aa4ae5e15272d00e95705637ce8a3b55ed402112'
|
||||
},
|
||||
{
|
||||
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
|
||||
'aaaaaaaaaaaaaaaaaaaaaa',
|
||||
'hex'),
|
||||
data:
|
||||
'Test Using Larger Than Block-Size Key and Larger Than One ' +
|
||||
'Block-Size Data',
|
||||
hmac: 'e8e99d0f45237d786d6bbaa7965c7808bbff1a91'
|
||||
}
|
||||
];
|
||||
|
||||
for (var i = 0, l = rfc2202_md5.length; i < l; i++) {
|
||||
assert.equal(rfc2202_md5[i]['hmac'],
|
||||
crypto.createHmac('md5', rfc2202_md5[i]['key'])
|
||||
.update(rfc2202_md5[i]['data'])
|
||||
.digest('hex'),
|
||||
'Test HMAC-MD5 : Test case ' + (i + 1) + ' rfc 2202');
|
||||
}
|
||||
for (var i = 0, l = rfc2202_sha1.length; i < l; i++) {
|
||||
assert.equal(rfc2202_sha1[i]['hmac'],
|
||||
crypto.createHmac('sha1', rfc2202_sha1[i]['key'])
|
||||
.update(rfc2202_sha1[i]['data'])
|
||||
.digest('hex'),
|
||||
'Test HMAC-SHA1 : Test case ' + (i + 1) + ' rfc 2202');
|
||||
}
|
||||
|
||||
// Test hashing
|
||||
var a0 = crypto.createHash('sha1').update('Test123').digest('hex');
|
||||
var a1 = crypto.createHash('md5').update('Test123').digest('binary');
|
||||
var a2 = crypto.createHash('sha256').update('Test123').digest('base64');
|
||||
var a3 = crypto.createHash('sha512').update('Test123').digest(); // binary
|
||||
var a4 = crypto.createHash('sha1').update('Test123').digest('buffer');
|
||||
|
||||
assert.equal(a0, '8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'Test SHA1');
|
||||
assert.equal(a1, 'h\u00ea\u00cb\u0097\u00d8o\fF!\u00fa+\u000e\u0017\u00ca' +
|
||||
'\u00bd\u008c', 'Test MD5 as binary');
|
||||
assert.equal(a2, '2bX1jws4GYKTlxhloUB09Z66PoJZW+y+hq5R8dnx9l4=',
|
||||
'Test SHA256 as base64');
|
||||
|
||||
assert.equal(a3, '\u00c1(4\u00f1\u0003\u001fd\u0097!O\'\u00d4C/&Qz\u00d4' +
|
||||
'\u0094\u0015l\u00b8\u008dQ+\u00db\u001d\u00c4\u00b5}\u00b2' +
|
||||
'\u00d6\u0092\u00a3\u00df\u00a2i\u00a1\u009b\n\n*\u000f' +
|
||||
'\u00d7\u00d6\u00a2\u00a8\u0085\u00e3<\u0083\u009c\u0093' +
|
||||
'\u00c2\u0006\u00da0\u00a1\u00879(G\u00ed\'',
|
||||
'Test SHA512 as assumed binary');
|
||||
|
||||
assert.deepEqual(a4,
|
||||
new Buffer('8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'hex'),
|
||||
'Test SHA1');
|
||||
|
||||
// Test multiple updates to same hash
|
||||
var h1 = crypto.createHash('sha1').update('Test123').digest('hex');
|
||||
var h2 = crypto.createHash('sha1').update('Test').update('123').digest('hex');
|
||||
assert.equal(h1, h2, 'multipled updates');
|
||||
|
||||
// Test hashing for binary files
|
||||
var fn = path.join(common.fixturesDir, 'sample.png');
|
||||
var sha1Hash = crypto.createHash('sha1');
|
||||
var fileStream = fs.createReadStream(fn);
|
||||
fileStream.on('data', function(data) {
|
||||
sha1Hash.update(data);
|
||||
});
|
||||
fileStream.on('close', function() {
|
||||
assert.equal(sha1Hash.digest('hex'),
|
||||
'22723e553129a336ad96e10f6aecdf0f45e4149e',
|
||||
'Test SHA1 of sample.png');
|
||||
});
|
||||
|
||||
// Issue #2227: unknown digest method should throw an error.
|
||||
assert.throws(function() {
|
||||
crypto.createHash('xyzzy');
|
||||
});
|
||||
|
||||
// Test signing and verifying
|
||||
var s1 = crypto.createSign('RSA-SHA1')
|
||||
.update('Test123')
|
||||
.sign(keyPem, 'base64');
|
||||
var verified = crypto.createVerify('RSA-SHA1')
|
||||
.update('Test')
|
||||
.update('123')
|
||||
.verify(certPem, s1, 'base64');
|
||||
assert.strictEqual(verified, true, 'sign and verify (base 64)');
|
||||
|
||||
var s2 = crypto.createSign('RSA-SHA256')
|
||||
.update('Test123')
|
||||
.sign(keyPem); // binary
|
||||
var verified = crypto.createVerify('RSA-SHA256')
|
||||
.update('Test')
|
||||
.update('123')
|
||||
.verify(certPem, s2); // binary
|
||||
assert.strictEqual(verified, true, 'sign and verify (binary)');
|
||||
|
||||
var s3 = crypto.createSign('RSA-SHA1')
|
||||
.update('Test123')
|
||||
.sign(keyPem, 'buffer');
|
||||
var verified = crypto.createVerify('RSA-SHA1')
|
||||
.update('Test')
|
||||
.update('123')
|
||||
.verify(certPem, s3);
|
||||
assert.strictEqual(verified, true, 'sign and verify (buffer)');
|
||||
|
||||
|
||||
function testCipher1(key) {
|
||||
// Test encryption and decryption
|
||||
var plaintext = 'Keep this a secret? No! Tell everyone about node.js!';
|
||||
var cipher = crypto.createCipher('aes192', key);
|
||||
|
||||
// encrypt plaintext which is in utf8 format
|
||||
// to a ciphertext which will be in hex
|
||||
var ciph = cipher.update(plaintext, 'utf8', 'hex');
|
||||
// Only use binary or hex, not base64.
|
||||
ciph += cipher.final('hex');
|
||||
|
||||
var decipher = crypto.createDecipher('aes192', key);
|
||||
var txt = decipher.update(ciph, 'hex', 'utf8');
|
||||
txt += decipher.final('utf8');
|
||||
|
||||
assert.equal(txt, plaintext, 'encryption and decryption');
|
||||
}
|
||||
|
||||
|
||||
function testCipher2(key) {
|
||||
// encryption and decryption with Base64
|
||||
// reported in https://github.com/joyent/node/issues/738
|
||||
var plaintext =
|
||||
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
|
||||
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
|
||||
'jAfaFg**';
|
||||
var cipher = crypto.createCipher('aes256', key);
|
||||
|
||||
// encrypt plaintext which is in utf8 format
|
||||
// to a ciphertext which will be in Base64
|
||||
var ciph = cipher.update(plaintext, 'utf8', 'base64');
|
||||
ciph += cipher.final('base64');
|
||||
|
||||
var decipher = crypto.createDecipher('aes256', key);
|
||||
var txt = decipher.update(ciph, 'base64', 'utf8');
|
||||
txt += decipher.final('utf8');
|
||||
|
||||
assert.equal(txt, plaintext, 'encryption and decryption with Base64');
|
||||
}
|
||||
|
||||
|
||||
function testCipher3(key, iv) {
|
||||
// Test encyrption and decryption with explicit key and iv
|
||||
var plaintext =
|
||||
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
|
||||
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
|
||||
'jAfaFg**';
|
||||
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
|
||||
var ciph = cipher.update(plaintext, 'utf8', 'hex');
|
||||
ciph += cipher.final('hex');
|
||||
|
||||
var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
|
||||
var txt = decipher.update(ciph, 'hex', 'utf8');
|
||||
txt += decipher.final('utf8');
|
||||
|
||||
assert.equal(txt, plaintext, 'encryption and decryption with key and iv');
|
||||
}
|
||||
|
||||
|
||||
function testCipher4(key, iv) {
|
||||
// Test encyrption and decryption with explicit key and iv
|
||||
var plaintext =
|
||||
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
|
||||
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
|
||||
'jAfaFg**';
|
||||
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
|
||||
var ciph = cipher.update(plaintext, 'utf8', 'buffer');
|
||||
ciph = Buffer.concat([ciph, cipher.final('buffer')]);
|
||||
|
||||
var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
|
||||
var txt = decipher.update(ciph, 'buffer', 'utf8');
|
||||
txt += decipher.final('utf8');
|
||||
|
||||
assert.equal(txt, plaintext, 'encryption and decryption with key and iv');
|
||||
}
|
||||
|
||||
|
||||
testCipher1('MySecretKey123');
|
||||
testCipher1(new Buffer('MySecretKey123'));
|
||||
|
||||
testCipher2('0123456789abcdef');
|
||||
testCipher2(new Buffer('0123456789abcdef'));
|
||||
|
||||
testCipher3('0123456789abcd0123456789', '12345678');
|
||||
testCipher3('0123456789abcd0123456789', new Buffer('12345678'));
|
||||
testCipher3(new Buffer('0123456789abcd0123456789'), '12345678');
|
||||
testCipher3(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));
|
||||
|
||||
testCipher4(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));
|
||||
|
||||
|
||||
// update() should only take buffers / strings
|
||||
assert.throws(function() {
|
||||
crypto.createHash('sha1').update({foo: 'bar'});
|
||||
}, /buffer/);
|
||||
|
||||
|
||||
// Test Diffie-Hellman with two parties sharing a secret,
|
||||
// using various encodings as we go along
|
||||
var dh1 = crypto.createDiffieHellman(256);
|
||||
var p1 = dh1.getPrime('buffer');
|
||||
var dh2 = crypto.createDiffieHellman(p1, 'base64');
|
||||
var key1 = dh1.generateKeys();
|
||||
var key2 = dh2.generateKeys('hex');
|
||||
var secret1 = dh1.computeSecret(key2, 'hex', 'base64');
|
||||
var secret2 = dh2.computeSecret(key1, 'binary', 'buffer');
|
||||
|
||||
assert.equal(secret1, secret2.toString('base64'));
|
||||
|
||||
// Create "another dh1" using generated keys from dh1,
|
||||
// and compute secret again
|
||||
var dh3 = crypto.createDiffieHellman(p1, 'buffer');
|
||||
var privkey1 = dh1.getPrivateKey();
|
||||
dh3.setPublicKey(key1);
|
||||
dh3.setPrivateKey(privkey1);
|
||||
|
||||
assert.equal(dh1.getPrime(), dh3.getPrime());
|
||||
assert.equal(dh1.getGenerator(), dh3.getGenerator());
|
||||
assert.equal(dh1.getPublicKey(), dh3.getPublicKey());
|
||||
assert.equal(dh1.getPrivateKey(), dh3.getPrivateKey());
|
||||
|
||||
var secret3 = dh3.computeSecret(key2, 'hex', 'base64');
|
||||
|
||||
assert.equal(secret1, secret3);
|
||||
|
||||
// https://github.com/joyent/node/issues/2338
|
||||
assert.throws(function() {
|
||||
var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
|
||||
'020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
|
||||
'4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
|
||||
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
|
||||
crypto.createDiffieHellman(p, 'hex');
|
||||
});
|
||||
|
||||
// Test RSA key signing/verification
|
||||
var rsaSign = crypto.createSign('RSA-SHA1');
|
||||
var rsaVerify = crypto.createVerify('RSA-SHA1');
|
||||
assert.ok(rsaSign);
|
||||
assert.ok(rsaVerify);
|
||||
|
||||
rsaSign.update(rsaPubPem);
|
||||
var rsaSignature = rsaSign.sign(rsaKeyPem, 'hex');
|
||||
assert.equal(rsaSignature,
|
||||
'5c50e3145c4e2497aadb0eabc83b342d0b0021ece0d4c4a064b7c' +
|
||||
'8f020d7e2688b122bfb54c724ac9ee169f83f66d2fe90abeb95e8' +
|
||||
'e1290e7e177152a4de3d944cf7d4883114a20ed0f78e70e25ef0f' +
|
||||
'60f06b858e6af42a2f276ede95bbc6bc9a9bbdda15bd663186a6f' +
|
||||
'40819a7af19e577bb2efa5e579a1f5ce8a0d4ca8b8f6');
|
||||
|
||||
rsaVerify.update(rsaPubPem);
|
||||
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
|
||||
|
||||
|
||||
//
|
||||
// Test RSA signing and verification
|
||||
//
|
||||
(function() {
|
||||
var privateKey = fs.readFileSync(
|
||||
common.fixturesDir + '/test_rsa_privkey_2.pem');
|
||||
|
||||
var publicKey = fs.readFileSync(
|
||||
common.fixturesDir + '/test_rsa_pubkey_2.pem');
|
||||
|
||||
var input = 'I AM THE WALRUS';
|
||||
|
||||
var signature =
|
||||
'79d59d34f56d0e94aa6a3e306882b52ed4191f07521f25f505a078dc2f89' +
|
||||
'396e0c8ac89e996fde5717f4cb89199d8fec249961fcb07b74cd3d2a4ffa' +
|
||||
'235417b69618e4bcd76b97e29975b7ce862299410e1b522a328e44ac9bb2' +
|
||||
'8195e0268da7eda23d9825ac43c724e86ceeee0d0d4465678652ccaf6501' +
|
||||
'0ddfb299bedeb1ad';
|
||||
|
||||
var sign = crypto.createSign('RSA-SHA256');
|
||||
sign.update(input);
|
||||
|
||||
var output = sign.sign(privateKey, 'hex');
|
||||
assert.equal(output, signature);
|
||||
|
||||
var verify = crypto.createVerify('RSA-SHA256');
|
||||
verify.update(input);
|
||||
|
||||
assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
|
||||
})();
|
||||
|
||||
|
||||
//
|
||||
// Test DSA signing and verification
|
||||
//
|
||||
(function() {
|
||||
var privateKey = fs.readFileSync(
|
||||
common.fixturesDir + '/test_dsa_privkey.pem');
|
||||
|
||||
var publicKey = fs.readFileSync(
|
||||
common.fixturesDir + '/test_dsa_pubkey.pem');
|
||||
|
||||
var input = 'I AM THE WALRUS';
|
||||
|
||||
// DSA signatures vary across runs so there is no static string to verify
|
||||
// against
|
||||
var sign = crypto.createSign('DSS1');
|
||||
sign.update(input);
|
||||
var signature = sign.sign(privateKey, 'hex');
|
||||
|
||||
var verify = crypto.createVerify('DSS1');
|
||||
verify.update(input);
|
||||
|
||||
assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
|
||||
})();
|
||||
|
||||
|
||||
//
|
||||
// Test PBKDF2 with RFC 6070 test vectors (except #4)
|
||||
//
|
||||
function testPBKDF2(password, salt, iterations, keylen, expected) {
|
||||
var actual = crypto.pbkdf2(password, salt, iterations, keylen);
|
||||
assert.equal(actual, expected);
|
||||
|
||||
crypto.pbkdf2(password, salt, iterations, keylen, function(err, actual) {
|
||||
assert.equal(actual, expected);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
testPBKDF2('password', 'salt', 1, 20,
|
||||
'\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9\xb5\x24' +
|
||||
'\xaf\x60\x12\x06\x2f\xe0\x37\xa6');
|
||||
|
||||
testPBKDF2('password', 'salt', 2, 20,
|
||||
'\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e\xd9\x2a' +
|
||||
'\xce\x1d\x41\xf0\xd8\xde\x89\x57');
|
||||
|
||||
testPBKDF2('password', 'salt', 4096, 20,
|
||||
'\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad\x49\xd9\x26' +
|
||||
'\xf7\x21\xd0\x65\xa4\x29\xc1');
|
||||
|
||||
testPBKDF2('passwordPASSWORDpassword',
|
||||
'saltSALTsaltSALTsaltSALTsaltSALTsalt',
|
||||
4096,
|
||||
25,
|
||||
'\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8\xd8\x36\x62' +
|
||||
'\xc0\xe4\x4a\x8b\x29\x1a\x96\x4c\xf2\xf0\x70\x38');
|
||||
|
||||
testPBKDF2('pass\0word', 'sa\0lt', 4096, 16,
|
||||
'\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37\xd7\xf0\x34' +
|
||||
'\x25\xe0\xc3');
|
@ -32,6 +32,8 @@ try {
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
// Testing whether EVP_CipherInit_ex is functioning correctly.
|
||||
// Reference: bug#1997
|
||||
|
||||
|
@ -29,6 +29,8 @@ try {
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
function aes256(decipherFinal) {
|
||||
var iv = new Buffer('00000000000000000000000000000000', 'hex');
|
||||
var key = new Buffer('0123456789abcdef0123456789abcdef' +
|
||||
|
@ -29,6 +29,8 @@ try {
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
|
||||
/*
|
||||
* Input data
|
||||
|
@ -29,6 +29,8 @@ try {
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
// bump, we register a lot of exit listeners
|
||||
process.setMaxListeners(256);
|
||||
|
||||
|
@ -32,6 +32,8 @@ try {
|
||||
process.exit();
|
||||
}
|
||||
|
||||
crypto.DEFAULT_ENCODING = 'buffer';
|
||||
|
||||
var fs = require('fs');
|
||||
var path = require('path');
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user