crypto: Add crypto.DEFAULT_ENCODING (defaults to 'buffer')

This is a flag to make it easier for users to upgrade through the
breaking crypto change, and easier for us to switch it back if it's a
problem.

Explicitly set default encoding to 'buffer' in other tests, in case it
ever changes back.
This commit is contained in:
isaacs 2012-10-22 10:37:20 -07:00
parent 4266f5cf2e
commit 76b0bdf720
8 changed files with 928 additions and 147 deletions

View File

@ -5,11 +5,12 @@
Use `require('crypto')` to access this module.
The crypto module requires OpenSSL to be available on the underlying platform.
It offers a way of encapsulating secure credentials to be used as part
of a secure HTTPS net or http connection.
The crypto module requires OpenSSL to be available on the underlying
platform. It offers a way of encapsulating secure credentials to be
used as part of a secure HTTPS net or http connection.
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher,
decipher, sign and verify methods.
## crypto.getCiphers()
@ -34,30 +35,38 @@ Example:
## crypto.createCredentials(details)
Creates a credentials object, with the optional details being a dictionary with keys:
Creates a credentials object, with the optional details being a
dictionary with keys:
* `pfx` : A string or buffer holding the PFX or PKCS12 encoded private key, certificate and CA certificates
* `pfx` : A string or buffer holding the PFX or PKCS12 encoded private
key, certificate and CA certificates
* `key` : A string holding the PEM encoded private key
* `passphrase` : A string of passphrase for the private key or pfx
* `cert` : A string holding the PEM encoded certificate
* `ca` : Either a string or list of strings of PEM encoded CA certificates to trust.
* `crl` : Either a string or list of strings of PEM encoded CRLs (Certificate Revocation List)
* `ciphers`: A string describing the ciphers to use or exclude. Consult
<http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT> for details
on the format.
* `ca` : Either a string or list of strings of PEM encoded CA
certificates to trust.
* `crl` : Either a string or list of strings of PEM encoded CRLs
(Certificate Revocation List)
* `ciphers`: A string describing the ciphers to use or exclude.
Consult
<http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT>
for details on the format.
If no 'ca' details are given, then node.js will use the default publicly trusted list of CAs as given in
If no 'ca' details are given, then node.js will use the default
publicly trusted list of CAs as given in
<http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt>.
## crypto.createHash(algorithm)
Creates and returns a hash object, a cryptographic hash with the given algorithm
which can be used to generate hash digests.
Creates and returns a hash object, a cryptographic hash with the given
algorithm which can be used to generate hash digests.
`algorithm` is dependent on the available algorithms supported by the version
of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`, `'sha256'`, `'sha512'`, etc.
On recent releases, `openssl list-message-digest-algorithms` will display the available digest algorithms.
`algorithm` is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`,
`'sha256'`, `'sha512'`, etc. On recent releases, `openssl
list-message-digest-algorithms` will display the available digest
algorithms.
Example: this program that takes the sha1 sum of a file
@ -85,27 +94,29 @@ Returned by `crypto.createHash`.
### hash.update(data, [input_encoding])
Updates the hash content with the given `data`, the encoding of which is given
in `input_encoding` and can be `'buffer'`, `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'buffer'`.
Updates the hash content with the given `data`, the encoding of which
is given in `input_encoding` and can be `'utf8'`, `'ascii'` or
`'binary'`. If no encoding is provided, then a buffer is expected.
This can be called many times with new data as it is streamed.
### hash.digest([encoding])
Calculates the digest of all of the passed data to be hashed.
The `encoding` can be `'buffer'`, `'hex'`, `'binary'` or `'base64'`.
Defaults to `'buffer'`.
Calculates the digest of all of the passed data to be hashed. The
`encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding
is provided, then a buffer is returned.
Note: `hash` object can not be used after `digest()` method been called.
Note: `hash` object can not be used after `digest()` method been
called.
## crypto.createHmac(algorithm, key)
Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key.
Creates and returns a hmac object, a cryptographic hmac with the given
algorithm and key.
`algorithm` is dependent on the available algorithms supported by OpenSSL - see createHash above.
`key` is the hmac key to be used.
`algorithm` is dependent on the available algorithms supported by
OpenSSL - see createHash above. `key` is the hmac key to be used.
## Class: Hmac
@ -115,38 +126,40 @@ Returned by `crypto.createHmac`.
### hmac.update(data)
Update the hmac content with the given `data`.
This can be called many times with new data as it is streamed.
Update the hmac content with the given `data`. This can be called
many times with new data as it is streamed.
### hmac.digest([encoding])
Calculates the digest of all of the passed data to the hmac.
The `encoding` can be `'buffer'`, `'hex'`, `'binary'` or `'base64'`.
Defaults to `'buffer'`.
Calculates the digest of all of the passed data to the hmac. The
`encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding
is provided, then a buffer is returned.
Note: `hmac` object can not be used after `digest()` method been called.
Note: `hmac` object can not be used after `digest()` method been
called.
## crypto.createCipher(algorithm, password)
Creates and returns a cipher object, with the given algorithm and password.
Creates and returns a cipher object, with the given algorithm and
password.
`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc.
On recent releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
`password` is used to derive key and IV, which must be a `'binary'` encoded
string or a [buffer](buffer.html).
`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
recent releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms. `password` is used to derive key and IV,
which must be a `'binary'` encoded string or a [buffer](buffer.html).
## crypto.createCipheriv(algorithm, key, iv)
Creates and returns a cipher object, with the given algorithm, key and iv.
Creates and returns a cipher object, with the given algorithm, key and
iv.
`algorithm` is the same as the argument to `createCipher()`.
`key` is the raw key used by the algorithm.
`iv` is an [initialization
`algorithm` is the same as the argument to `createCipher()`. `key` is
the raw key used by the algorithm. `iv` is an [initialization
vector](http://en.wikipedia.org/wiki/Initialization_vector).
`key` and `iv` must be `'binary'` encoded strings or [buffers](buffer.html).
`key` and `iv` must be `'binary'` encoded strings or
[buffers](buffer.html).
## Class: Cipher
@ -157,38 +170,43 @@ Returned by `crypto.createCipher` and `crypto.createCipheriv`.
### cipher.update(data, [input_encoding], [output_encoding])
Updates the cipher with `data`, the encoding of which is given in
`input_encoding` and can be `'buffer'`, `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'buffer'`.
`input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`. If no
encoding is provided, then a buffer is expected.
The `output_encoding` specifies the output format of the enciphered data,
and can be `'buffer'`, `'binary'`, `'base64'` or `'hex'`. Defaults to
`'buffer'`.
The `output_encoding` specifies the output format of the enciphered
data, and can be `'binary'`, `'base64'` or `'hex'`. If no encoding is
provided, then a buffer iis returned.
Returns the enciphered contents, and can be called many times with new data as it is streamed.
Returns the enciphered contents, and can be called many times with new
data as it is streamed.
### cipher.final([output_encoding])
Returns any remaining enciphered contents, with `output_encoding` being one of:
`'buffer'`, `'binary'`, `'base64'` or `'hex'`. Defaults to `'buffer'`.
Returns any remaining enciphered contents, with `output_encoding`
being one of: `'binary'`, `'base64'` or `'hex'`. If no encoding is
provided, then a buffer is returned.
Note: `cipher` object can not be used after `final()` method been called.
Note: `cipher` object can not be used after `final()` method been
called.
### cipher.setAutoPadding(auto_padding=true)
You can disable automatic padding of the input data to block size. If `auto_padding` is false,
the length of the entire input data must be a multiple of the cipher's block size or `final` will fail.
Useful for non-standard padding, e.g. using `0x0` instead of PKCS padding. You must call this before `cipher.final`.
You can disable automatic padding of the input data to block size. If
`auto_padding` is false, the length of the entire input data must be a
multiple of the cipher's block size or `final` will fail. Useful for
non-standard padding, e.g. using `0x0` instead of PKCS padding. You
must call this before `cipher.final`.
## crypto.createDecipher(algorithm, password)
Creates and returns a decipher object, with the given algorithm and key.
This is the mirror of the [createCipher()][] above.
Creates and returns a decipher object, with the given algorithm and
key. This is the mirror of the [createCipher()][] above.
## crypto.createDecipheriv(algorithm, key, iv)
Creates and returns a decipher object, with the given algorithm, key and iv.
This is the mirror of the [createCipheriv()][] above.
Creates and returns a decipher object, with the given algorithm, key
and iv. This is the mirror of the [createCipheriv()][] above.
## Class: Decipher
@ -198,33 +216,36 @@ Returned by `crypto.createDecipher` and `crypto.createDecipheriv`.
### decipher.update(data, [input_encoding], [output_encoding])
Updates the decipher with `data`, which is encoded in `'buffer'`, `'binary'`,
`'base64'` or `'hex'`. Defaults to `'buffer'`.
Updates the decipher with `data`, which is encoded in `'binary'`,
`'base64'` or `'hex'`. If no encoding is provided, then a buffer is
expected.
The `output_decoding` specifies in what format to return the deciphered
plaintext: `'buffer'`, `'binary'`, `'ascii'` or `'utf8'`.
Defaults to `'buffer'`.
The `output_decoding` specifies in what format to return the
deciphered plaintext: `'binary'`, `'ascii'` or `'utf8'`. If no
encoding is provided, then a buffer is returned.
### decipher.final([output_encoding])
Returns any remaining plaintext which is deciphered,
with `output_encoding` being one of: `'buffer'`, `'binary'`, `'ascii'` or
`'utf8'`.
Defaults to `'buffer'`.
Returns any remaining plaintext which is deciphered, with
`output_encoding` being one of: `'binary'`, `'ascii'` or `'utf8'`. If
no encoding is provided, then a buffer is returned.
Note: `decipher` object can not be used after `final()` method been called.
Note: `decipher` object can not be used after `final()` method been
called.
### decipher.setAutoPadding(auto_padding=true)
You can disable auto padding if the data has been encrypted without standard block padding to prevent
`decipher.final` from checking and removing it. Can only work if the input data's length is a multiple of the
ciphers block size. You must call this before streaming data to `decipher.update`.
You can disable auto padding if the data has been encrypted without
standard block padding to prevent `decipher.final` from checking and
removing it. Can only work if the input data's length is a multiple of
the ciphers block size. You must call this before streaming data to
`decipher.update`.
## crypto.createSign(algorithm)
Creates and returns a signing object, with the given algorithm.
On recent OpenSSL releases, `openssl list-public-key-algorithms` will display
the available signing algorithms. Examples are `'RSA-SHA256'`.
Creates and returns a signing object, with the given algorithm. On
recent OpenSSL releases, `openssl list-public-key-algorithms` will
display the available signing algorithms. Examples are `'RSA-SHA256'`.
## Class: Signer
@ -234,18 +255,21 @@ Returned by `crypto.createSign`.
### signer.update(data)
Updates the signer object with data.
This can be called many times with new data as it is streamed.
Updates the signer object with data. This can be called many times
with new data as it is streamed.
### signer.sign(private_key, [output_format])
Calculates the signature on all the updated data passed through the signer.
`private_key` is a string containing the PEM encoded private key for signing.
Calculates the signature on all the updated data passed through the
signer. `private_key` is a string containing the PEM encoded private
key for signing.
Returns the signature in `output_format` which can be `'buffer'`, `'binary'`,
`'hex'` or `'base64'`. Defaults to `'buffer'`.
Returns the signature in `output_format` which can be `'binary'`,
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
returned.
Note: `signer` object can not be used after `sign()` method been called.
Note: `signer` object can not be used after `sign()` method been
called.
## crypto.createVerify(algorithm)
@ -260,32 +284,34 @@ Returned by `crypto.createVerify`.
### verifier.update(data)
Updates the verifier object with data.
This can be called many times with new data as it is streamed.
Updates the verifier object with data. This can be called many times
with new data as it is streamed.
### verifier.verify(object, signature, [signature_format])
Verifies the signed data by using the `object` and `signature`. `object` is a
string containing a PEM encoded object, which can be one of RSA public key,
DSA public key, or X.509 certificate. `signature` is the previously calculated
signature for the data, in the `signature_format` which can be `'buffer'`,
`'binary'`, `'hex'` or `'base64'`. Defaults to `'buffer'`.
Verifies the signed data by using the `object` and `signature`.
`object` is a string containing a PEM encoded object, which can be
one of RSA public key, DSA public key, or X.509 certificate.
`signature` is the previously calculated signature for the data, in
the `signature_format` which can be `'binary'`, `'hex'` or `'base64'`.
If no encoding is specified, then a buffer is expected.
Returns true or false depending on the validity of the signature for the data and public key.
Returns true or false depending on the validity of the signature for
the data and public key.
Note: `verifier` object can not be used after `verify()` method been called.
Note: `verifier` object can not be used after `verify()` method been
called.
## crypto.createDiffieHellman(prime_length)
Creates a Diffie-Hellman key exchange object and generates a prime of the
given bit length. The generator used is `2`.
Creates a Diffie-Hellman key exchange object and generates a prime of
the given bit length. The generator used is `2`.
## crypto.createDiffieHellman(prime, [encoding])
Creates a Diffie-Hellman key exchange object using the supplied prime. The
generator used is `2`. Encoding can be `'buffer'`, `'binary'`, `'hex'`, or
`'base64'`.
Defaults to `'buffer'`.
Creates a Diffie-Hellman key exchange object using the supplied prime.
The generator used is `2`. Encoding can be `'binary'`, `'hex'`, or
`'base64'`. If no encoding is specified, then a buffer is expected.
## Class: DiffieHellman
@ -295,65 +321,70 @@ Returned by `crypto.createDiffieHellman`.
### diffieHellman.generateKeys([encoding])
Generates private and public Diffie-Hellman key values, and returns the
public key in the specified encoding. This key should be transferred to the
other party. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
Defaults to `'buffer'`.
Generates private and public Diffie-Hellman key values, and returns
the public key in the specified encoding. This key should be
transferred to the other party. Encoding can be `'binary'`, `'hex'`,
or `'base64'`. If no encoding is provided, then a buffer is returned.
### diffieHellman.computeSecret(other_public_key, [input_encoding], [output_encoding])
Computes the shared secret using `other_public_key` as the other party's
public key and returns the computed shared secret. Supplied key is
interpreted using specified `input_encoding`, and secret is encoded using
specified `output_encoding`. Encodings can be `'buffer'`, `'binary'`, `'hex'`,
or `'base64'`. The input encoding defaults to `'buffer'`.
If no output encoding is given, the input encoding is used as output encoding.
Computes the shared secret using `other_public_key` as the other
party's public key and returns the computed shared secret. Supplied
key is interpreted using specified `input_encoding`, and secret is
encoded using specified `output_encoding`. Encodings can be
`'binary'`, `'hex'`, or `'base64'`. If the input encoding is not
provided, then a buffer is expected.
If no output encoding is given, then a buffer is returned.
### diffieHellman.getPrime([encoding])
Returns the Diffie-Hellman prime in the specified encoding, which can be
`'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
Returns the Diffie-Hellman prime in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
then a buffer is returned.
### diffieHellman.getGenerator([encoding])
Returns the Diffie-Hellman prime in the specified encoding, which can be
`'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
Returns the Diffie-Hellman prime in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
then a buffer is returned.
### diffieHellman.getPublicKey([encoding])
Returns the Diffie-Hellman public key in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'buffer'`.
Returns the Diffie-Hellman public key in the specified encoding, which
can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided,
then a buffer is returned.
### diffieHellman.getPrivateKey([encoding])
Returns the Diffie-Hellman private key in the specified encoding, which can
be `'buffer'`, `'binary'`, `'hex'`, or `'base64'`. Defaults to
`'buffer'`.
Returns the Diffie-Hellman private key in the specified encoding,
which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is
provided, then a buffer is returned.
### diffieHellman.setPublicKey(public_key, [encoding])
Sets the Diffie-Hellman public key. Key encoding can be `'buffer', ``'binary'`,
`'hex'` or `'base64'`. Defaults to `'buffer'`.
Sets the Diffie-Hellman public key. Key encoding can be `'binary'`,
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
expected.
### diffieHellman.setPrivateKey(public_key, [encoding])
Sets the Diffie-Hellman private key. Key encoding can be `'buffer'`, `'binary'`,
`'hex'` or `'base64'`. Defaults to `'buffer'`.
Sets the Diffie-Hellman private key. Key encoding can be `'binary'`,
`'hex'` or `'base64'`. If no encoding is provided, then a buffer is
expected.
## crypto.getDiffieHellman(group_name)
Creates a predefined Diffie-Hellman key exchange object.
The supported groups are: `'modp1'`, `'modp2'`, `'modp5'`
(defined in [RFC 2412][])
and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'`
(defined in [RFC 3526][]).
The returned object mimics the interface of objects created by
[crypto.createDiffieHellman()][] above, but
will not allow to change the keys (with
[diffieHellman.setPublicKey()][] for example).
The advantage of using this routine is that the parties don't have to
generate nor exchange group modulus beforehand, saving both processor and
communication time.
Creates a predefined Diffie-Hellman key exchange object. The
supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC
2412][]) and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`,
`'modp18'` (defined in [RFC 3526][]). The returned object mimics the
interface of objects created by [crypto.createDiffieHellman()][]
above, but will not allow to change the keys (with
[diffieHellman.setPublicKey()][] for example). The advantage of using
this routine is that the parties don't have to generate nor exchange
group modulus beforehand, saving both processor and communication
time.
Example (obtaining a shared secret):
@ -398,32 +429,46 @@ Generates cryptographically strong pseudo-random data. Usage:
// handle error
}
## Proposed API Changes in Future Versions of Node
## crypto.DEFAULT_ENCODING
The default encoding to use for functions that can take either strings
or buffers. The default value is `'buffer'`, which makes it default
to using Buffer objects. This is here to make the crypto module more
easily compatible with legacy programs that expected `'binary'` to be
the default encoding.
Note that new programs will probably expect buffers, so only use this
as a temporary measure.
## Recent API Changes
The Crypto module was added to Node before there was the concept of a
unified Stream API, and before there were Buffer objects for handling
binary data.
As such, the streaming classes don't have the typical methods found on
other Node classes, and many methods accept and return Binary-encoded
strings by default rather than Buffers.
other Node classes, and many methods accepted and returned
Binary-encoded strings by default rather than Buffers. This was
changed to use Buffers by default instead.
A future version of node will make Buffers the default data type.
This will be a breaking change for some use cases, but not all.
This is a breaking change for some use cases, but not all.
For example, if you currently use the default arguments to the Sign
class, and then pass the results to the Verify class, without ever
inspecting the data, then it will continue to work as before. Where
you now get a binary string and then present the binary string to the
Verify object, you'll get a Buffer, and present the Buffer to the
Verify object.
you once got a binary string and then presented the binary string to
the Verify object, you'll now get a Buffer, and present the Buffer to
the Verify object.
However, if you are doing things with the string data that will not
However, if you were doing things with the string data that will not
work properly on Buffers (such as, concatenating them, storing in
databases, etc.), or you are passing binary strings to the crypto
functions without an encoding argument, then you will need to start
providing encoding arguments to specify which encoding you'd like to
use.
use. To switch to the previous style of using binary strings by
default, set the `crypto.DEFAULT_ENCODING` field to 'binary'. Note
that new programs will probably expect buffers, so only use this as a
temporary measure.
Also, a Streaming API will be provided, but this will be done in such
a way as to preserve the legacy API surface.

View File

@ -19,6 +19,10 @@
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// Note: In 0.8 and before, crypto functions all defaulted to using
// binary-encoded strings rather than buffers.
exports.DEFAULT_ENCODING = 'buffer';
try {
var binding = process.binding('crypto');
@ -137,15 +141,17 @@ function Hash(algorithm) {
}
Hash.prototype.update = function(data, encoding) {
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding === 'buffer')
encoding = null;
if (encoding || typeof data === 'string')
if (typeof data === 'string')
data = new Buffer(data, encoding);
this._binding.update(data);
return this;
};
Hash.prototype.digest = function(outputEncoding) {
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
var result = this._binding.digest('buffer');
if (outputEncoding && outputEncoding !== 'buffer')
result = result.toString(outputEncoding);
@ -191,6 +197,8 @@ function Cipher(cipher, password) {
}
Cipher.prototype.update = function(data, inputEncoding, outputEncoding) {
inputEncoding = inputEncoding || exports.DEFAULT_ENCODING;
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
if (inputEncoding && inputEncoding !== 'buffer')
data = new Buffer(data, inputEncoding);
@ -205,6 +213,7 @@ Cipher.prototype.update = function(data, inputEncoding, outputEncoding) {
};
Cipher.prototype.final = function(outputEncoding) {
outputEncoding = outputEncoding || exports.DEFAULT_ENCODING;
var ret = this._binding.final('buffer');
if (outputEncoding && outputEncoding !== 'buffer') {
@ -296,6 +305,7 @@ Sign.prototype.sign = function(key, encoding) {
if (typeof key === 'string')
key = new Buffer(key, 'binary');
encoding = encoding || exports.DEFAULT_ENCODING;
var ret = this._binding.sign(key, 'buffer');
if (encoding && encoding !== 'buffer')
ret = ret.toString(encoding);
@ -319,6 +329,7 @@ Verify.prototype.verify = function(object, signature, sigEncoding) {
if (typeof object === 'string')
object = new Buffer(object, 'binary');
sigEncoding = sigEncoding || exports.DEFAULT_ENCODING;
if (sigEncoding === 'buffer')
sigEncoding = null;
if (sigEncoding || typeof signature === 'string')
@ -336,9 +347,10 @@ function DiffieHellman(sizeOrKey, encoding) {
if (!sizeOrKey)
this._binding = new binding.DiffieHellman();
else {
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding === 'buffer')
encoding = null;
if (encoding || typeof sizeOrKey === 'string')
if (typeof sizeOrKey === 'string')
sizeOrKey = new Buffer(sizeOrKey, encoding);
this._binding = new binding.DiffieHellman(sizeOrKey, 'buffer');
}
@ -346,12 +358,15 @@ function DiffieHellman(sizeOrKey, encoding) {
DiffieHellman.prototype.generateKeys = function(encoding) {
var keys = this._binding.generateKeys('buffer');
if (encoding)
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding && encoding !== 'buffer')
keys = keys.toString(encoding);
return keys;
};
DiffieHellman.prototype.computeSecret = function(key, inEnc, outEnc) {
inEnc = inEnc || exports.DEFAULT_ENCODING;
outEnc = outEnc || exports.DEFAULT_ENCODING;
if (inEnc === 'buffer')
inEnc = null;
if (outEnc === 'buffer')
@ -366,6 +381,7 @@ DiffieHellman.prototype.computeSecret = function(key, inEnc, outEnc) {
DiffieHellman.prototype.getPrime = function(encoding) {
var prime = this._binding.getPrime('buffer');
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding && encoding !== 'buffer')
prime = prime.toString(encoding);
return prime;
@ -373,6 +389,7 @@ DiffieHellman.prototype.getPrime = function(encoding) {
DiffieHellman.prototype.getGenerator = function(encoding) {
var generator = this._binding.getGenerator('buffer');
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding && encoding !== 'buffer')
generator = generator.toString(encoding);
return generator;
@ -380,6 +397,7 @@ DiffieHellman.prototype.getGenerator = function(encoding) {
DiffieHellman.prototype.getPublicKey = function(encoding) {
var key = this._binding.getPublicKey('buffer');
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding && encoding !== 'buffer')
key = key.toString(encoding);
return key;
@ -387,12 +405,14 @@ DiffieHellman.prototype.getPublicKey = function(encoding) {
DiffieHellman.prototype.getPrivateKey = function(encoding) {
var key = this._binding.getPrivateKey('buffer');
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding && encoding !== 'buffer')
key = key.toString(encoding);
return key;
};
DiffieHellman.prototype.setPublicKey = function(key, encoding) {
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding === 'buffer')
encoding = null;
if (encoding || typeof key === 'string')
@ -402,6 +422,7 @@ DiffieHellman.prototype.setPublicKey = function(key, encoding) {
};
DiffieHellman.prototype.setPrivateKey = function(key, encoding) {
encoding = encoding || exports.DEFAULT_ENCODING;
if (encoding === 'buffer')
encoding = null;
if (encoding || typeof key === 'string')
@ -445,7 +466,22 @@ exports.pbkdf2 = function(password, salt, iterations, keylen, callback) {
password = new Buffer(password, 'binary');
if (typeof salt === 'string')
salt = new Buffer(salt, 'binary');
return binding.PBKDF2(password, salt, iterations, keylen, callback);
if (exports.DEFAULT_ENCODING === 'buffer')
return binding.PBKDF2(password, salt, iterations, keylen, callback);
// at this point, we need to handle encodings.
var encoding = exports.DEFAULT_ENCODING;
if (callback) {
binding.PBKDF2(password, salt, iterations, keylen, function(er, ret) {
if (ret)
ret = ret.toString(encoding);
callback(er, ret);
});
} else {
var ret = binding.PBKDF2(password, salt, iterations, keylen);
return ret.toString(encoding);
}
};
exports.pbkdf2Sync = function(password, salt, iterations, keylen) {

View File

@ -0,0 +1,690 @@
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// This is the same as test/simple/test-crypto, but from before the shift
// to use buffers by default.
var common = require('../common');
var assert = require('assert');
try {
var crypto = require('crypto');
} catch (e) {
console.log('Not compiled with OPENSSL support.');
process.exit();
}
crypto.DEFAULT_ENCODING = 'binary';
var fs = require('fs');
var path = require('path');
// Test Certificates
var caPem = fs.readFileSync(common.fixturesDir + '/test_ca.pem', 'ascii');
var certPem = fs.readFileSync(common.fixturesDir + '/test_cert.pem', 'ascii');
var certPfx = fs.readFileSync(common.fixturesDir + '/test_cert.pfx');
var keyPem = fs.readFileSync(common.fixturesDir + '/test_key.pem', 'ascii');
var rsaPubPem = fs.readFileSync(common.fixturesDir + '/test_rsa_pubkey.pem',
'ascii');
var rsaKeyPem = fs.readFileSync(common.fixturesDir + '/test_rsa_privkey.pem',
'ascii');
try {
var credentials = crypto.createCredentials(
{key: keyPem,
cert: certPem,
ca: caPem});
} catch (e) {
console.log('Not compiled with OPENSSL support.');
process.exit();
}
// PFX tests
assert.doesNotThrow(function() {
crypto.createCredentials({pfx:certPfx, passphrase:'sample'});
});
assert.throws(function() {
crypto.createCredentials({pfx:certPfx});
}, 'mac verify failure');
assert.throws(function() {
crypto.createCredentials({pfx:certPfx, passphrase:'test'});
}, 'mac verify failure');
assert.throws(function() {
crypto.createCredentials({pfx:'sample', passphrase:'test'});
}, 'not enough data');
// Test HMAC
var h1 = crypto.createHmac('sha1', 'Node')
.update('some data')
.update('to hmac')
.digest('hex');
assert.equal(h1, '19fd6e1ba73d9ed2224dd5094a71babe85d9a892', 'test HMAC');
// Test HMAC-SHA-* (rfc 4231 Test Cases)
var rfc4231 = [
{
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
data: new Buffer('4869205468657265', 'hex'), // 'Hi There'
hmac: {
sha224: '896fb1128abbdf196832107cd49df33f47b4b1169912ba4f53684b22',
sha256:
'b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c' +
'2e32cff7',
sha384:
'afd03944d84895626b0825f4ab46907f15f9dadbe4101ec682aa034c' +
'7cebc59cfaea9ea9076ede7f4af152e8b2fa9cb6',
sha512:
'87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b305' +
'45e17cdedaa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f170' +
'2e696c203a126854'
}
},
{
key: new Buffer('4a656665', 'hex'), // 'Jefe'
data: new Buffer('7768617420646f2079612077616e7420666f72206e6f74686' +
'96e673f', 'hex'), // 'what do ya want for nothing?'
hmac: {
sha224: 'a30e01098bc6dbbf45690f3a7e9e6d0f8bbea2a39e6148008fd05e44',
sha256:
'5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b9' +
'64ec3843',
sha384:
'af45d2e376484031617f78d2b58a6b1b9c7ef464f5a01b47e42ec373' +
'6322445e8e2240ca5e69e2c78b3239ecfab21649',
sha512:
'164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7' +
'ea2505549758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b' +
'636e070a38bce737'
}
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' +
'ddddddddddddddddddddddddddddddddddddddddddddddddddd',
'hex'),
hmac: {
sha224: '7fb3cb3588c6c1f6ffa9694d7d6ad2649365b0c1f65d69d1ec8333ea',
sha256:
'773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514' +
'ced565fe',
sha384:
'88062608d3e6ad8a0aa2ace014c8a86f0aa635d947ac9febe83ef4e5' +
'5966144b2a5ab39dc13814b94e3ab6e101a34f27',
sha512:
'fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33' +
'b2279d39bf3e848279a722c806b485a47e67c807b946a337bee89426' +
'74278859e13292fb'
}
},
{
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
'hex'),
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd',
'hex'),
hmac: {
sha224: '6c11506874013cac6a2abc1bb382627cec6a90d86efc012de7afec5a',
sha256:
'82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff4' +
'6729665b',
sha384:
'3e8a69b7783c25851933ab6290af6ca77a9981480850009cc5577c6e' +
'1f573b4e6801dd23c4a7d679ccf8a386c674cffb',
sha512:
'b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050' +
'361ee3dba91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2d' +
'e2adebeb10a298dd'
}
},
{
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
// 'Test With Truncation'
data: new Buffer('546573742057697468205472756e636174696f6e', 'hex'),
hmac: {
sha224: '0e2aea68a90c8d37c988bcdb9fca6fa8',
sha256: 'a3b6167473100ee06e0c796c2955552b',
sha384: '3abf34c3503b2a23a46efc619baef897',
sha512: '415fad6271580a531d4179bc891d87a6'
},
truncate: true
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaa', 'hex'),
// 'Test Using Larger Than Block-Size Key - Hash Key First'
data: new Buffer('54657374205573696e67204c6172676572205468616e20426' +
'c6f636b2d53697a65204b6579202d2048617368204b657920' +
'4669727374', 'hex'),
hmac: {
sha224: '95e9a0db962095adaebe9b2d6f0dbce2d499f112f2d2b7273fa6870e',
sha256:
'60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f' +
'0ee37f54',
sha384:
'4ece084485813e9088d2c63a041bc5b44f9ef1012a2b588f3cd11f05' +
'033ac4c60c2ef6ab4030fe8296248df163f44952',
sha512:
'80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b0137' +
'83f8f3526b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec' +
'8b915a985d786598'
}
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaa', 'hex'),
// 'This is a test using a larger than block-size key and a larger ' +
// 'than block-size data. The key needs to be hashed before being ' +
// 'used by the HMAC algorithm.'
data: new Buffer('5468697320697320612074657374207573696e672061206c6' +
'172676572207468616e20626c6f636b2d73697a65206b6579' +
'20616e642061206c6172676572207468616e20626c6f636b2' +
'd73697a6520646174612e20546865206b6579206e65656473' +
'20746f20626520686173686564206265666f7265206265696' +
'e6720757365642062792074686520484d414320616c676f72' +
'6974686d2e', 'hex'),
hmac: {
sha224: '3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1',
sha256:
'9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f5153' +
'5c3a35e2',
sha384:
'6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82' +
'461e99c5a678cc31e799176d3860e6110c46523e',
sha512:
'e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d' +
'20cdc944b6022cac3c4982b10d5eeb55c3e4de15134676fb6de04460' +
'65c97440fa8c6a58'
}
}
];
for (var i = 0, l = rfc4231.length; i < l; i++) {
for (var hash in rfc4231[i]['hmac']) {
var result = crypto.createHmac(hash, rfc4231[i]['key'])
.update(rfc4231[i]['data'])
.digest('hex');
if (rfc4231[i]['truncate']) {
result = result.substr(0, 32); // first 128 bits == 32 hex chars
}
assert.equal(rfc4231[i]['hmac'][hash],
result,
'Test HMAC-' + hash + ': Test case ' + (i + 1) + ' rfc 4231');
}
}
// Test HMAC-MD5/SHA1 (rfc 2202 Test Cases)
var rfc2202_md5 = [
{
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
data: 'Hi There',
hmac: '9294727a3638bb1c13f48ef8158bfc9d'
},
{
key: 'Jefe',
data: 'what do ya want for nothing?',
hmac: '750c783e6ab0b503eaa86e310a5db738'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' +
'ddddddddddddddddddddddddddddddddddddddddddddddddddd',
'hex'),
hmac: '56be34521d144c88dbb8c733f0e8b3f6'
},
{
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
'hex'),
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' +
'cdcdcdcdcd',
'hex'),
hmac: '697eaf0aca3a3aea3a75164746ffaa79'
},
{
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
data: 'Test With Truncation',
hmac: '56461ef2342edc00f9bab995690efd4c'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaa',
'hex'),
data: 'Test Using Larger Than Block-Size Key - Hash Key First',
hmac: '6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaa',
'hex'),
data:
'Test Using Larger Than Block-Size Key and Larger Than One ' +
'Block-Size Data',
hmac: '6f630fad67cda0ee1fb1f562db3aa53e'
}
];
var rfc2202_sha1 = [
{
key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'),
data: 'Hi There',
hmac: 'b617318655057264e28bc0b6fb378c8ef146be00'
},
{
key: 'Jefe',
data: 'what do ya want for nothing?',
hmac: 'effcdf6ae5eb2fa2d27416d5f184df9c259a7c79'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'),
data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddd' +
'ddddddddddddddddddddddddddddddddddddddddddddd' +
'dddddddddd',
'hex'),
hmac: '125d7342b9ac11cd91a39af48aa17b4f63f175d3'
},
{
key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819',
'hex'),
data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' +
'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' +
'cdcdcdcdcd',
'hex'),
hmac: '4c9007f4026250c6bc8414f9bf50c86c2d7235da'
},
{
key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'),
data: 'Test With Truncation',
hmac: '4c1a03424b55e07fe7f27be1d58bb9324a9a5a04'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaa',
'hex'),
data: 'Test Using Larger Than Block-Size Key - Hash Key First',
hmac: 'aa4ae5e15272d00e95705637ce8a3b55ed402112'
},
{
key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' +
'aaaaaaaaaaaaaaaaaaaaaa',
'hex'),
data:
'Test Using Larger Than Block-Size Key and Larger Than One ' +
'Block-Size Data',
hmac: 'e8e99d0f45237d786d6bbaa7965c7808bbff1a91'
}
];
for (var i = 0, l = rfc2202_md5.length; i < l; i++) {
assert.equal(rfc2202_md5[i]['hmac'],
crypto.createHmac('md5', rfc2202_md5[i]['key'])
.update(rfc2202_md5[i]['data'])
.digest('hex'),
'Test HMAC-MD5 : Test case ' + (i + 1) + ' rfc 2202');
}
for (var i = 0, l = rfc2202_sha1.length; i < l; i++) {
assert.equal(rfc2202_sha1[i]['hmac'],
crypto.createHmac('sha1', rfc2202_sha1[i]['key'])
.update(rfc2202_sha1[i]['data'])
.digest('hex'),
'Test HMAC-SHA1 : Test case ' + (i + 1) + ' rfc 2202');
}
// Test hashing
var a0 = crypto.createHash('sha1').update('Test123').digest('hex');
var a1 = crypto.createHash('md5').update('Test123').digest('binary');
var a2 = crypto.createHash('sha256').update('Test123').digest('base64');
var a3 = crypto.createHash('sha512').update('Test123').digest(); // binary
var a4 = crypto.createHash('sha1').update('Test123').digest('buffer');
assert.equal(a0, '8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'Test SHA1');
assert.equal(a1, 'h\u00ea\u00cb\u0097\u00d8o\fF!\u00fa+\u000e\u0017\u00ca' +
'\u00bd\u008c', 'Test MD5 as binary');
assert.equal(a2, '2bX1jws4GYKTlxhloUB09Z66PoJZW+y+hq5R8dnx9l4=',
'Test SHA256 as base64');
assert.equal(a3, '\u00c1(4\u00f1\u0003\u001fd\u0097!O\'\u00d4C/&Qz\u00d4' +
'\u0094\u0015l\u00b8\u008dQ+\u00db\u001d\u00c4\u00b5}\u00b2' +
'\u00d6\u0092\u00a3\u00df\u00a2i\u00a1\u009b\n\n*\u000f' +
'\u00d7\u00d6\u00a2\u00a8\u0085\u00e3<\u0083\u009c\u0093' +
'\u00c2\u0006\u00da0\u00a1\u00879(G\u00ed\'',
'Test SHA512 as assumed binary');
assert.deepEqual(a4,
new Buffer('8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'hex'),
'Test SHA1');
// Test multiple updates to same hash
var h1 = crypto.createHash('sha1').update('Test123').digest('hex');
var h2 = crypto.createHash('sha1').update('Test').update('123').digest('hex');
assert.equal(h1, h2, 'multipled updates');
// Test hashing for binary files
var fn = path.join(common.fixturesDir, 'sample.png');
var sha1Hash = crypto.createHash('sha1');
var fileStream = fs.createReadStream(fn);
fileStream.on('data', function(data) {
sha1Hash.update(data);
});
fileStream.on('close', function() {
assert.equal(sha1Hash.digest('hex'),
'22723e553129a336ad96e10f6aecdf0f45e4149e',
'Test SHA1 of sample.png');
});
// Issue #2227: unknown digest method should throw an error.
assert.throws(function() {
crypto.createHash('xyzzy');
});
// Test signing and verifying
var s1 = crypto.createSign('RSA-SHA1')
.update('Test123')
.sign(keyPem, 'base64');
var verified = crypto.createVerify('RSA-SHA1')
.update('Test')
.update('123')
.verify(certPem, s1, 'base64');
assert.strictEqual(verified, true, 'sign and verify (base 64)');
var s2 = crypto.createSign('RSA-SHA256')
.update('Test123')
.sign(keyPem); // binary
var verified = crypto.createVerify('RSA-SHA256')
.update('Test')
.update('123')
.verify(certPem, s2); // binary
assert.strictEqual(verified, true, 'sign and verify (binary)');
var s3 = crypto.createSign('RSA-SHA1')
.update('Test123')
.sign(keyPem, 'buffer');
var verified = crypto.createVerify('RSA-SHA1')
.update('Test')
.update('123')
.verify(certPem, s3);
assert.strictEqual(verified, true, 'sign and verify (buffer)');
function testCipher1(key) {
// Test encryption and decryption
var plaintext = 'Keep this a secret? No! Tell everyone about node.js!';
var cipher = crypto.createCipher('aes192', key);
// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in hex
var ciph = cipher.update(plaintext, 'utf8', 'hex');
// Only use binary or hex, not base64.
ciph += cipher.final('hex');
var decipher = crypto.createDecipher('aes192', key);
var txt = decipher.update(ciph, 'hex', 'utf8');
txt += decipher.final('utf8');
assert.equal(txt, plaintext, 'encryption and decryption');
}
function testCipher2(key) {
// encryption and decryption with Base64
// reported in https://github.com/joyent/node/issues/738
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipher('aes256', key);
// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in Base64
var ciph = cipher.update(plaintext, 'utf8', 'base64');
ciph += cipher.final('base64');
var decipher = crypto.createDecipher('aes256', key);
var txt = decipher.update(ciph, 'base64', 'utf8');
txt += decipher.final('utf8');
assert.equal(txt, plaintext, 'encryption and decryption with Base64');
}
function testCipher3(key, iv) {
// Test encyrption and decryption with explicit key and iv
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
var ciph = cipher.update(plaintext, 'utf8', 'hex');
ciph += cipher.final('hex');
var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
var txt = decipher.update(ciph, 'hex', 'utf8');
txt += decipher.final('utf8');
assert.equal(txt, plaintext, 'encryption and decryption with key and iv');
}
function testCipher4(key, iv) {
// Test encyrption and decryption with explicit key and iv
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
var ciph = cipher.update(plaintext, 'utf8', 'buffer');
ciph = Buffer.concat([ciph, cipher.final('buffer')]);
var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
var txt = decipher.update(ciph, 'buffer', 'utf8');
txt += decipher.final('utf8');
assert.equal(txt, plaintext, 'encryption and decryption with key and iv');
}
testCipher1('MySecretKey123');
testCipher1(new Buffer('MySecretKey123'));
testCipher2('0123456789abcdef');
testCipher2(new Buffer('0123456789abcdef'));
testCipher3('0123456789abcd0123456789', '12345678');
testCipher3('0123456789abcd0123456789', new Buffer('12345678'));
testCipher3(new Buffer('0123456789abcd0123456789'), '12345678');
testCipher3(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));
testCipher4(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));
// update() should only take buffers / strings
assert.throws(function() {
crypto.createHash('sha1').update({foo: 'bar'});
}, /buffer/);
// Test Diffie-Hellman with two parties sharing a secret,
// using various encodings as we go along
var dh1 = crypto.createDiffieHellman(256);
var p1 = dh1.getPrime('buffer');
var dh2 = crypto.createDiffieHellman(p1, 'base64');
var key1 = dh1.generateKeys();
var key2 = dh2.generateKeys('hex');
var secret1 = dh1.computeSecret(key2, 'hex', 'base64');
var secret2 = dh2.computeSecret(key1, 'binary', 'buffer');
assert.equal(secret1, secret2.toString('base64'));
// Create "another dh1" using generated keys from dh1,
// and compute secret again
var dh3 = crypto.createDiffieHellman(p1, 'buffer');
var privkey1 = dh1.getPrivateKey();
dh3.setPublicKey(key1);
dh3.setPrivateKey(privkey1);
assert.equal(dh1.getPrime(), dh3.getPrime());
assert.equal(dh1.getGenerator(), dh3.getGenerator());
assert.equal(dh1.getPublicKey(), dh3.getPublicKey());
assert.equal(dh1.getPrivateKey(), dh3.getPrivateKey());
var secret3 = dh3.computeSecret(key2, 'hex', 'base64');
assert.equal(secret1, secret3);
// https://github.com/joyent/node/issues/2338
assert.throws(function() {
var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
'020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
'4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
crypto.createDiffieHellman(p, 'hex');
});
// Test RSA key signing/verification
var rsaSign = crypto.createSign('RSA-SHA1');
var rsaVerify = crypto.createVerify('RSA-SHA1');
assert.ok(rsaSign);
assert.ok(rsaVerify);
rsaSign.update(rsaPubPem);
var rsaSignature = rsaSign.sign(rsaKeyPem, 'hex');
assert.equal(rsaSignature,
'5c50e3145c4e2497aadb0eabc83b342d0b0021ece0d4c4a064b7c' +
'8f020d7e2688b122bfb54c724ac9ee169f83f66d2fe90abeb95e8' +
'e1290e7e177152a4de3d944cf7d4883114a20ed0f78e70e25ef0f' +
'60f06b858e6af42a2f276ede95bbc6bc9a9bbdda15bd663186a6f' +
'40819a7af19e577bb2efa5e579a1f5ce8a0d4ca8b8f6');
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
//
// Test RSA signing and verification
//
(function() {
var privateKey = fs.readFileSync(
common.fixturesDir + '/test_rsa_privkey_2.pem');
var publicKey = fs.readFileSync(
common.fixturesDir + '/test_rsa_pubkey_2.pem');
var input = 'I AM THE WALRUS';
var signature =
'79d59d34f56d0e94aa6a3e306882b52ed4191f07521f25f505a078dc2f89' +
'396e0c8ac89e996fde5717f4cb89199d8fec249961fcb07b74cd3d2a4ffa' +
'235417b69618e4bcd76b97e29975b7ce862299410e1b522a328e44ac9bb2' +
'8195e0268da7eda23d9825ac43c724e86ceeee0d0d4465678652ccaf6501' +
'0ddfb299bedeb1ad';
var sign = crypto.createSign('RSA-SHA256');
sign.update(input);
var output = sign.sign(privateKey, 'hex');
assert.equal(output, signature);
var verify = crypto.createVerify('RSA-SHA256');
verify.update(input);
assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
})();
//
// Test DSA signing and verification
//
(function() {
var privateKey = fs.readFileSync(
common.fixturesDir + '/test_dsa_privkey.pem');
var publicKey = fs.readFileSync(
common.fixturesDir + '/test_dsa_pubkey.pem');
var input = 'I AM THE WALRUS';
// DSA signatures vary across runs so there is no static string to verify
// against
var sign = crypto.createSign('DSS1');
sign.update(input);
var signature = sign.sign(privateKey, 'hex');
var verify = crypto.createVerify('DSS1');
verify.update(input);
assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
})();
//
// Test PBKDF2 with RFC 6070 test vectors (except #4)
//
function testPBKDF2(password, salt, iterations, keylen, expected) {
var actual = crypto.pbkdf2(password, salt, iterations, keylen);
assert.equal(actual, expected);
crypto.pbkdf2(password, salt, iterations, keylen, function(err, actual) {
assert.equal(actual, expected);
});
}
testPBKDF2('password', 'salt', 1, 20,
'\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9\xb5\x24' +
'\xaf\x60\x12\x06\x2f\xe0\x37\xa6');
testPBKDF2('password', 'salt', 2, 20,
'\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e\xd9\x2a' +
'\xce\x1d\x41\xf0\xd8\xde\x89\x57');
testPBKDF2('password', 'salt', 4096, 20,
'\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad\x49\xd9\x26' +
'\xf7\x21\xd0\x65\xa4\x29\xc1');
testPBKDF2('passwordPASSWORDpassword',
'saltSALTsaltSALTsaltSALTsaltSALTsalt',
4096,
25,
'\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8\xd8\x36\x62' +
'\xc0\xe4\x4a\x8b\x29\x1a\x96\x4c\xf2\xf0\x70\x38');
testPBKDF2('pass\0word', 'sa\0lt', 4096, 16,
'\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37\xd7\xf0\x34' +
'\x25\xe0\xc3');

View File

@ -32,6 +32,8 @@ try {
process.exit();
}
crypto.DEFAULT_ENCODING = 'buffer';
// Testing whether EVP_CipherInit_ex is functioning correctly.
// Reference: bug#1997

View File

@ -29,6 +29,8 @@ try {
process.exit();
}
crypto.DEFAULT_ENCODING = 'buffer';
function aes256(decipherFinal) {
var iv = new Buffer('00000000000000000000000000000000', 'hex');
var key = new Buffer('0123456789abcdef0123456789abcdef' +

View File

@ -29,6 +29,8 @@ try {
process.exit();
}
crypto.DEFAULT_ENCODING = 'buffer';
/*
* Input data

View File

@ -29,6 +29,8 @@ try {
process.exit();
}
crypto.DEFAULT_ENCODING = 'buffer';
// bump, we register a lot of exit listeners
process.setMaxListeners(256);

View File

@ -32,6 +32,8 @@ try {
process.exit();
}
crypto.DEFAULT_ENCODING = 'buffer';
var fs = require('fs');
var path = require('path');