std/streams/conversion.ts

601 lines
17 KiB
TypeScript

// Copyright 2018-2022 the Deno authors. All rights reserved. MIT license.
import { Buffer } from "../io/buffer.ts";
const DEFAULT_CHUNK_SIZE = 16_640;
const DEFAULT_BUFFER_SIZE = 32 * 1024;
function isCloser(value: unknown): value is Deno.Closer {
return typeof value === "object" && value != null && "close" in value &&
// deno-lint-ignore no-explicit-any
typeof (value as Record<string, any>)["close"] === "function";
}
/** Create a `Deno.Reader` from an iterable of `Uint8Array`s.
*
* ```ts
* import { readerFromIterable, copy } from "./conversion.ts";
*
* const file = await Deno.open("metrics.txt", { write: true });
* const reader = readerFromIterable((async function* () {
* while (true) {
* await new Promise((r) => setTimeout(r, 1000));
* const message = `data: ${JSON.stringify(Deno.metrics())}\n\n`;
* yield new TextEncoder().encode(message);
* }
* })());
* await copy(reader, file);
* ```
*/
export function readerFromIterable(
iterable: Iterable<Uint8Array> | AsyncIterable<Uint8Array>,
): Deno.Reader {
const iterator: Iterator<Uint8Array> | AsyncIterator<Uint8Array> =
(iterable as AsyncIterable<Uint8Array>)[Symbol.asyncIterator]?.() ??
(iterable as Iterable<Uint8Array>)[Symbol.iterator]?.();
const buffer = new Buffer();
return {
async read(p: Uint8Array): Promise<number | null> {
if (buffer.length == 0) {
const result = await iterator.next();
if (result.done) {
return null;
} else {
if (result.value.byteLength <= p.byteLength) {
p.set(result.value);
return result.value.byteLength;
}
p.set(result.value.subarray(0, p.byteLength));
await writeAll(buffer, result.value.subarray(p.byteLength));
return p.byteLength;
}
} else {
const n = await buffer.read(p);
if (n == null) {
return this.read(p);
}
return n;
}
},
};
}
/** Create a `Writer` from a `WritableStreamDefaultWriter`. */
export function writerFromStreamWriter(
streamWriter: WritableStreamDefaultWriter<Uint8Array>,
): Deno.Writer {
return {
async write(p: Uint8Array): Promise<number> {
await streamWriter.ready;
await streamWriter.write(p);
return p.length;
},
};
}
/** Create a `Reader` from a `ReadableStreamDefaultReader`. */
export function readerFromStreamReader(
streamReader: ReadableStreamDefaultReader<Uint8Array>,
): Deno.Reader {
const buffer = new Buffer();
return {
async read(p: Uint8Array): Promise<number | null> {
if (buffer.empty()) {
const res = await streamReader.read();
if (res.done) {
return null; // EOF
}
await writeAll(buffer, res.value);
}
return buffer.read(p);
},
};
}
export interface WritableStreamFromWriterOptions {
/**
* If the `writer` is also a `Deno.Closer`, automatically close the `writer`
* when the stream is closed, aborted, or a write error occurs.
*
* Defaults to `true`. */
autoClose?: boolean;
}
/** Create a `WritableStream` from a `Writer`. */
export function writableStreamFromWriter(
writer: Deno.Writer,
options: WritableStreamFromWriterOptions = {},
): WritableStream<Uint8Array> {
const { autoClose = true } = options;
return new WritableStream({
async write(chunk, controller) {
try {
await writeAll(writer, chunk);
} catch (e) {
controller.error(e);
if (isCloser(writer) && autoClose) {
writer.close();
}
}
},
close() {
if (isCloser(writer) && autoClose) {
writer.close();
}
},
abort() {
if (isCloser(writer) && autoClose) {
writer.close();
}
},
});
}
/** Create a `ReadableStream` from any kind of iterable.
*
* ```ts
* import { readableStreamFromIterable } from "./conversion.ts";
*
* const r1 = readableStreamFromIterable(["foo, bar, baz"]);
* const r2 = readableStreamFromIterable(async function* () {
* await new Promise(((r) => setTimeout(r, 1000)));
* yield "foo";
* await new Promise(((r) => setTimeout(r, 1000)));
* yield "bar";
* await new Promise(((r) => setTimeout(r, 1000)));
* yield "baz";
* }());
* ```
*
* If the produced iterator (`iterable[Symbol.asyncIterator]()` or
* `iterable[Symbol.iterator]()`) is a generator, or more specifically is found
* to have a `.throw()` method on it, that will be called upon
* `readableStream.cancel()`. This is the case for the second input type above:
*
* ```ts
* import { readableStreamFromIterable } from "./conversion.ts";
*
* const r3 = readableStreamFromIterable(async function* () {
* try {
* yield "foo";
* } catch (error) {
* console.log(error); // Error: Cancelled by consumer.
* }
* }());
* const reader = r3.getReader();
* console.log(await reader.read()); // { value: "foo", done: false }
* await reader.cancel(new Error("Cancelled by consumer."));
* ```
*/
export function readableStreamFromIterable<T>(
iterable: Iterable<T> | AsyncIterable<T>,
): ReadableStream<T> {
const iterator: Iterator<T> | AsyncIterator<T> =
(iterable as AsyncIterable<T>)[Symbol.asyncIterator]?.() ??
(iterable as Iterable<T>)[Symbol.iterator]?.();
return new ReadableStream({
async pull(controller) {
const { value, done } = await iterator.next();
if (done) {
controller.close();
} else {
controller.enqueue(value);
}
},
async cancel(reason) {
if (typeof iterator.throw == "function") {
try {
await iterator.throw(reason);
} catch { /* `iterator.throw()` always throws on site. We catch it. */ }
}
},
});
}
/**
* Convert the generator function into a TransformStream.
*
* ```ts
* import { readableStreamFromIterable, toTransformStream } from "./conversion.ts";
*
* const readable = readableStreamFromIterable([0, 1, 2])
* .pipeThrough(toTransformStream(async function* (src) {
* for await (const chunk of src) {
* yield chunk * 100;
* }
* }));
*
* for await (const chunk of readable) {
* console.log(chunk);
* }
* // output: 0, 100, 200
* ```
*
* @param transformer A function to transform.
* @param writableStrategy An object that optionally defines a queuing strategy for the stream.
* @param readableStrategy An object that optionally defines a queuing strategy for the stream.
*/
export function toTransformStream<I, O>(
transformer: (src: ReadableStream<I>) => Iterable<O> | AsyncIterable<O>,
writableStrategy?: QueuingStrategy<I>,
readableStrategy?: QueuingStrategy<O>,
): TransformStream<I, O> {
const {
writable,
readable,
} = new TransformStream<I, I>(undefined, writableStrategy);
const iterable = transformer(readable);
const iterator: Iterator<O> | AsyncIterator<O> =
(iterable as AsyncIterable<O>)[Symbol.asyncIterator]?.() ??
(iterable as Iterable<O>)[Symbol.iterator]?.();
return {
writable,
readable: new ReadableStream<O>({
async pull(controller) {
let result: IteratorResult<O>;
try {
result = await iterator.next();
} catch (error) {
// Propagate error to stream from iterator
// If the stream status is "errored", it will be thrown, but ignore.
await readable.cancel(error).catch(() => {});
controller.error(error);
return;
}
if (result.done) {
controller.close();
return;
}
controller.enqueue(result.value);
},
async cancel(reason) {
// Propagate cancellation to readable and iterator
if (typeof iterator.throw == "function") {
try {
await iterator.throw(reason);
} catch {
/* `iterator.throw()` always throws on site. We catch it. */
}
}
await readable.cancel(reason);
},
}, readableStrategy),
};
}
export interface ReadableStreamFromReaderOptions {
/** If the `reader` is also a `Deno.Closer`, automatically close the `reader`
* when `EOF` is encountered, or a read error occurs.
*
* Defaults to `true`. */
autoClose?: boolean;
/** The size of chunks to allocate to read, the default is ~16KiB, which is
* the maximum size that Deno operations can currently support. */
chunkSize?: number;
/** The queuing strategy to create the `ReadableStream` with. */
strategy?: { highWaterMark?: number | undefined; size?: undefined };
}
/**
* Create a `ReadableStream<Uint8Array>` from from a `Deno.Reader`.
*
* When the pull algorithm is called on the stream, a chunk from the reader
* will be read. When `null` is returned from the reader, the stream will be
* closed along with the reader (if it is also a `Deno.Closer`).
*
* An example converting a `Deno.FsFile` into a readable stream:
*
* ```ts
* import { readableStreamFromReader } from "./mod.ts";
*
* const file = await Deno.open("./file.txt", { read: true });
* const fileStream = readableStreamFromReader(file);
* ```
*/
export function readableStreamFromReader(
reader: Deno.Reader | (Deno.Reader & Deno.Closer),
options: ReadableStreamFromReaderOptions = {},
): ReadableStream<Uint8Array> {
const {
autoClose = true,
chunkSize = DEFAULT_CHUNK_SIZE,
strategy,
} = options;
return new ReadableStream({
async pull(controller) {
const chunk = new Uint8Array(chunkSize);
try {
const read = await reader.read(chunk);
if (read === null) {
if (isCloser(reader) && autoClose) {
reader.close();
}
controller.close();
return;
}
controller.enqueue(chunk.subarray(0, read));
} catch (e) {
controller.error(e);
if (isCloser(reader)) {
reader.close();
}
}
},
cancel() {
if (isCloser(reader) && autoClose) {
reader.close();
}
},
}, strategy);
}
/** Read Reader `r` until EOF (`null`) and resolve to the content as
* Uint8Array`.
*
* ```ts
* import { Buffer } from "../io/buffer.ts";
* import { readAll } from "./conversion.ts";
*
* // Example from stdin
* const stdinContent = await readAll(Deno.stdin);
*
* // Example from file
* const file = await Deno.open("my_file.txt", {read: true});
* const myFileContent = await readAll(file);
* Deno.close(file.rid);
*
* // Example from buffer
* const myData = new Uint8Array(100);
* // ... fill myData array with data
* const reader = new Buffer(myData.buffer);
* const bufferContent = await readAll(reader);
* ```
*/
export async function readAll(r: Deno.Reader): Promise<Uint8Array> {
const buf = new Buffer();
await buf.readFrom(r);
return buf.bytes();
}
/** Synchronously reads Reader `r` until EOF (`null`) and returns the content
* as `Uint8Array`.
*
* ```ts
* import { Buffer } from "../io/buffer.ts";
* import { readAllSync } from "./conversion.ts";
*
* // Example from stdin
* const stdinContent = readAllSync(Deno.stdin);
*
* // Example from file
* const file = Deno.openSync("my_file.txt", {read: true});
* const myFileContent = readAllSync(file);
* Deno.close(file.rid);
*
* // Example from buffer
* const myData = new Uint8Array(100);
* // ... fill myData array with data
* const reader = new Buffer(myData.buffer);
* const bufferContent = readAllSync(reader);
* ```
*/
export function readAllSync(r: Deno.ReaderSync): Uint8Array {
const buf = new Buffer();
buf.readFromSync(r);
return buf.bytes();
}
/** Write all the content of the array buffer (`arr`) to the writer (`w`).
*
* ```ts
* import { Buffer } from "../io/buffer.ts";
* import { writeAll } from "./conversion.ts";
* // Example writing to stdout
* let contentBytes = new TextEncoder().encode("Hello World");
* await writeAll(Deno.stdout, contentBytes);
*
* // Example writing to file
* contentBytes = new TextEncoder().encode("Hello World");
* const file = await Deno.open('test.file', {write: true});
* await writeAll(file, contentBytes);
* Deno.close(file.rid);
*
* // Example writing to buffer
* contentBytes = new TextEncoder().encode("Hello World");
* const writer = new Buffer();
* await writeAll(writer, contentBytes);
* console.log(writer.bytes().length); // 11
* ```
*/
export async function writeAll(w: Deno.Writer, arr: Uint8Array) {
let nwritten = 0;
while (nwritten < arr.length) {
nwritten += await w.write(arr.subarray(nwritten));
}
}
/** Synchronously write all the content of the array buffer (`arr`) to the
* writer (`w`).
*
* ```ts
* import { Buffer } from "../io/buffer.ts";
* import { writeAllSync } from "./conversion.ts";
*
* // Example writing to stdout
* let contentBytes = new TextEncoder().encode("Hello World");
* writeAllSync(Deno.stdout, contentBytes);
*
* // Example writing to file
* contentBytes = new TextEncoder().encode("Hello World");
* const file = Deno.openSync('test.file', {write: true});
* writeAllSync(file, contentBytes);
* Deno.close(file.rid);
*
* // Example writing to buffer
* contentBytes = new TextEncoder().encode("Hello World");
* const writer = new Buffer();
* writeAllSync(writer, contentBytes);
* console.log(writer.bytes().length); // 11
* ```
*/
export function writeAllSync(w: Deno.WriterSync, arr: Uint8Array) {
let nwritten = 0;
while (nwritten < arr.length) {
nwritten += w.writeSync(arr.subarray(nwritten));
}
}
/** Turns a Reader, `r`, into an async iterator.
*
* ```ts
* import { iterateReader } from "./conversion.ts";
*
* let f = await Deno.open("/etc/passwd");
* for await (const chunk of iterateReader(f)) {
* console.log(chunk);
* }
* f.close();
* ```
*
* Second argument can be used to tune size of a buffer.
* Default size of the buffer is 32kB.
*
* ```ts
* import { iterateReader } from "./conversion.ts";
*
* let f = await Deno.open("/etc/passwd");
* const it = iterateReader(f, {
* bufSize: 1024 * 1024
* });
* for await (const chunk of it) {
* console.log(chunk);
* }
* f.close();
* ```
*
* Iterator uses an internal buffer of fixed size for efficiency; it returns
* a view on that buffer on each iteration. It is therefore caller's
* responsibility to copy contents of the buffer if needed; otherwise the
* next iteration will overwrite contents of previously returned chunk.
*/
export async function* iterateReader(
r: Deno.Reader,
options?: {
bufSize?: number;
},
): AsyncIterableIterator<Uint8Array> {
const bufSize = options?.bufSize ?? DEFAULT_BUFFER_SIZE;
while (true) {
const b = new Uint8Array(bufSize);
const result = await r.read(b);
if (result === null) {
break;
}
yield b.subarray(0, result);
}
}
/** Turns a ReaderSync, `r`, into an iterator.
*
* ```ts
* import { iterateReaderSync } from "./conversion.ts";
*
* let f = Deno.openSync("/etc/passwd");
* for (const chunk of iterateReaderSync(f)) {
* console.log(chunk);
* }
* f.close();
* ```
*
* Second argument can be used to tune size of a buffer.
* Default size of the buffer is 32kB.
*
* ```ts
* import { iterateReaderSync } from "./conversion.ts";
* let f = await Deno.open("/etc/passwd");
* const iter = iterateReaderSync(f, {
* bufSize: 1024 * 1024
* });
* for (const chunk of iter) {
* console.log(chunk);
* }
* f.close();
* ```
*
* Iterator uses an internal buffer of fixed size for efficiency; it returns
* a view on that buffer on each iteration. It is therefore caller's
* responsibility to copy contents of the buffer if needed; otherwise the
* next iteration will overwrite contents of previously returned chunk.
*/
export function* iterateReaderSync(
r: Deno.ReaderSync,
options?: {
bufSize?: number;
},
): IterableIterator<Uint8Array> {
const bufSize = options?.bufSize ?? DEFAULT_BUFFER_SIZE;
while (true) {
const b = new Uint8Array(bufSize);
const result = r.readSync(b);
if (result === null) {
break;
}
yield b.subarray(0, result);
}
}
/** Copies from `src` to `dst` until either EOF (`null`) is read from `src` or
* an error occurs. It resolves to the number of bytes copied or rejects with
* the first error encountered while copying.
*
* ```ts
* import { copy } from "./conversion.ts";
*
* const source = await Deno.open("my_file.txt");
* const bytesCopied1 = await copy(source, Deno.stdout);
* const destination = await Deno.create("my_file_2.txt");
* const bytesCopied2 = await copy(source, destination);
* ```
*
* @param src The source to copy from
* @param dst The destination to copy to
* @param options Can be used to tune size of the buffer. Default size is 32kB
*/
export async function copy(
src: Deno.Reader,
dst: Deno.Writer,
options?: {
bufSize?: number;
},
): Promise<number> {
let n = 0;
const bufSize = options?.bufSize ?? DEFAULT_BUFFER_SIZE;
const b = new Uint8Array(bufSize);
let gotEOF = false;
while (gotEOF === false) {
const result = await src.read(b);
if (result === null) {
gotEOF = true;
} else {
let nwritten = 0;
while (nwritten < result) {
nwritten += await dst.write(b.subarray(nwritten, result));
}
n += nwritten;
}
}
return n;
}